首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Methanol-tolerant lipase producing yeast was successfully isolated and selected thorough ecological screening using palm oil-rhodamine B agar as one step-approach. All 49 lipase-producing yeasts exhibited the ability to catalyze esterification reaction of oleic acid and methanol at 3 molar equivalents. However, only 16 isolates catalyzed transesterification reaction of refined palm oil and methanol. Rhodotorula mucilagenosa P11I89 isolated from oil contaminated soil showed the strongest hydrolytic lipase activity of 1.2U/ml against palm oil. The production of oleic methyl ester and fatty acid methyl ester (FAME) of 64.123 and 51.260% was obtained from esterification and transesterification reaction catalyzed by whole cell of R. mucilagenosa P11I89 in the presence of methanol at 3 molar equivalents against the substrates, respectively. FAME content increased dramatically to 83.29% when 6 molar equivalents of methanol were added. Application of the methanol-tolerant-lipase producing yeast as a whole cell biocatalyst was effectively resolved major technical obstacles in term of enzyme stability and high cost of lipase, leading to the feasibility of green biodiesel industrialization.  相似文献   

2.
Biocatalysis by immobilized lipase is an efficient alternative process for conversion of crude vegetable oil with high free fatty acid content to biodiesel, which is the limit of the conventional alkaline-catalyzed reaction. In this study, influences of solid-state organic and inorganic buffer core matrices with different pKa on catalytic performance of cross-linked protein coated microcrystalline biocatalysts prepared from Thermomyces lanuginosus lipase (CL-PCMC-LIP) toward esterification of palmitic acid (PA), transesterification of refined palm oil (RPO), and co-ester/transesterification of crude palm oil (CPO) to fatty acid methyl ester (FAME) was studied. Glycine, CAPSO (3-(cyclohexylamino)-2-hydroxy-1-propanesulfonic acid), and TAPS ([(2-hydroxy-1,1-bis(hydroxymethyl)ethyl)amino]-1-propanesulfonic acid) were shown to be potent core matrices for these reactions. The optimal reaction contained 4:1 [methanol]/[fatty acid] molar equivalence ratio with 20% (w/w) CL-PCMC-LIP on glycine in the presence of tert-butanol as a co-solvent. Deactivation effect of glycerol on the biocatalyst reactive surface was shown by FTIR, which could be alleviated by increasing co-solvent content. The maximal FAME yields from PA, RPO, and CPO reached 97.6, 94.9, and 95.5%, respectively on a molar basis under the optimum conditions after incubation at 50 °C for 6 h. The biocatalyst retained >80% activity after recycling in five consecutive batches. The work demonstrates the potential of CL-PCMC-LIP on one-step conversion of inexpensive crude fatty acid-rich feedstock to biodiesel.  相似文献   

3.
Microbial lipase preparations from Thermomyces lanuginosus (TLL) and Pseudomonas fluorescens (PFL) were immobilized by multipoint covalent attachment on Toyopearl AF-amino-650M resin and the most active and thermal stable derivatives used to catalyze the transesterification reaction of babassu and palm oils with ethanol in solvent-free media. For this, different activating agents, mainly glutaraldehyde, glycidol and epichlorohydrin were used and immobilization parameters were estimated based on the hydrolysis of olive oil emulsion and butyl butyrate synthesis. TLL immobilized on glyoxyl-resin allowed obtaining derivatives with the highest hydrolytic activity (HAder) and thermal stability, between 27 and 31 times more stable than the soluble lipase. Although PFL derivatives were found to be less active and thermally stables, similar formation of butyl butyrate concentrations were found for both TLL and PFL derivatives. The highest conversion into biodiesel was found in the transesterification of palm oil catalyzed by both TLL and PFL glyoxyl-derivatives.  相似文献   

4.
In the present study conversion of waste cooking oil to biodiesel has been carried out via simultaneous esterification and transesterification reaction over silica sulfuric acid as a solid acid catalyst. The process variables that influence the fatty acid methyl ester (FAME) conversion, such as reaction temperature, reaction time, catalyst concentration and methanol to oil molar ratio were investigated and optimized using Taguchi method. Highest FAME production obtained under the optimized condition was 98.66 %. Analysis of variance revealed that temperature was the most significant factor effecting the FAME production among four factors studied. From the kinetic study, the reaction was found to follow pseudo first-order kinetics and rate constant of the reaction under optimum condition was 0.00852 min?1.  相似文献   

5.
Enzymatic lipase transesterification of palm oil to biodiesel in a packed‐bed reactor (PBR) using a novel strain of the fungus Aspergillus niger, immobilized within polyurethane biomass support particles (BSPs), was investigated. A three‐step addition of methanol was used to reduce lipase inhibition by immiscible methanol. The influence of water content and PBR flow rate was investigated. FAME yield was enhanced with an increase of PBR flow rate in the range of 0.15–30 L h?1, where inefficient mixing of the reaction mixture at lower flow rates resulted in low conversion rates i.e. 69% after 72‐h reaction. Adding the third mole equivalent of methanol resulted in lipase inhibition due to methanol migration into the accumulated glycerol layer. Glutaraldehyde (GA) solution (0.5 vol.%) was used to stabilize lipase activity, which led to a high FAME yield (>90%) in the PBR after 72‐h of reaction time at a flow rate of 15 L h?1, and a water content of 15%. Moreover, a high conversion rate (>85%) was maintained after four palm oil batch conversion cycles in the PBR. In contrast, lipase activity of non‐GA‐treated cells decreased with each PBR batch cycle, where only 70% FAME was produced after the forth PBR cycle. Transesterification of palm oil in a PBR system using BSPs‐immobilized A. niger as a whole‐cell biocatalyst is a viable process for enzymatic biodiesel production.  相似文献   

6.
Two types of lipases (extracellular and cell-bound) were produced by Geotrichum candidum 4013 in liquid medium and were used as biocatalysts in blackcurrant oil hydrolysis. Reaction products were analysed for the degree of conversion from which enzyme activity was evaluated, and the composition of free fatty acids was compared to the composition of oil substrate. The enzyme activity was measured also before and after the reaction in SC-CO2. The fatty acid composition of the acids liberated from oil by hydrolysis suggests a specificity of the cell-bound and extracellular enzymes from Geotrichum candidum 4013. The extracellular lipase displays low selectivity to the polyunsaturated fatty acids, and the cell-bound lipase possesses selectivity to the saturated fatty acids. Enantioselectivity of the tested processes achieved with both induced enzymes was high (from 43 to 242). The activity of all enzymes has markedly increased after their exposure to SC-CO2. The treatment of enzymes by SC-CO2 could be easy-to-use approaches to improve the efficiency of enzymatic reactions.  相似文献   

7.
This study aimed to develop an optimal continuous procedure of lipase-catalyzes transesterification of waste cooking palm oil in a packed bed reactor to investigate the possibility of large scale production further. Response surface methodology (RSM) based on central composite rotatable design (CCRD) was used to optimize the two important reaction variables packed bed height (cm) and substrate flow rate(ml/min) for the transesterification of waste cooking palm oil in a continuous packed bed reactor. The optimum condition for the transesterification of waste cooking palm oil was as follows: 10.53 cm packed bed height and 0.57 ml/min substrate flow rate. The optimum predicted fatty acid methyl ester (FAME) yield was 80.3% and the actual value was 79%. The above results shows that the RSM study based on CCRD is adaptable for FAME yield studied for the current transesterification system. The effect of mass transfer in the packed bed reactor has also been studied. Models for FAME yield have been developed for cases of reaction control and mass transfer control. The results showed very good agreement compatibility between mass transfer model and the experimental results obtained from immobilized lipase packed bed reactor operation, showing that in this case the FAME yield was mass transfer controlled.  相似文献   

8.
《Mycoscience》2020,61(3):136-144
Biodiesel (fatty acids methyl esters, FAME) has attracted considerable attention as an environmentally and eco-friendly alternative for diesel engines. This research manipulates the use of Aspergillus whole-cell lipase as a biocatalyst for biodiesel production from waste frying oil (WFO). A total of 17 isolates of Aspergillus species screened for lipase and esterase production abilities. Qualitatively, 11 Aspergillus isolates showed lipase and/or esterase activities and only 4 isolates were able to perform WFO transesterification under the tested conditions. Two Aspergillus isolates showed relatively high FAME yields, thus were selected as good enzyme producers. These two isolates were molecularly identified using rRNA gene sequence ITS1 and ITS2 as A. tamarii NDA03a (Genbank Accession Number MK849615) and A. flavus NDA04a (Genbank Accession Number MK811208), respectively. These identified isolates were exposed to ethyl methanesulfonate (EMS) for producing hyper lipolysis mutants. Mutagenesis led to 13.15 and 14.45% improvement of the WFO transesterification by A. tamarii NDA03a and A. flavus NDA04a, respectively. Random amplified polymorphic DNA (RAPD) analysis of the produced mutants confirmed the genetic basis of the activity variation. Genetic polymorphism reached to 79.31% and 80.65% between A. flavus NDA04a and A. tamarii NDA03a mutants and their corresponding wild types, respectively.  相似文献   

9.
The intracellular lipase production by Mucor circinelloides URM 4182 was investigated through a step-by-step strategy to attain immobilized whole-cells with high lipase activity. Physicochemical parameters, such as carbon and nitrogen sources, inoculum size and aeration, were studied to determine the optimum conditions for both lipase production and immobilization in polyurethane support. Olive oil and soybean peptone were found to be the best carbon and nitrogen sources, respectively, to enhance the intracellular lipase activity. Low inoculum level and poor aeration rate also provided suitable conditions to attain high lipase activity (64.8 ± 0.8 U g?1). The transesterification activity of the immobilized whole- cells was assayed and optimal reaction conditions for the ethanolysis of babassu oil were determined by experimental design. Statistical analysis showed that M. circinelloides whole-cells were able to produce ethyl esters at all tested conditions, with the highest yield attained (98.1 %) at 35 °C using an 1:6 oil-to-ethanol molar ratio. The biocatalyst operational stability was also assayed in a continuous packed bed reactor (PBR) charged with glutaraldehyde (GA) and Aliquat-treated cells revealing half-life of 43.0 ± 0.5 and 20.0 ± 0.8 days, respectively. These results indicate the potential of immobilized M. circinelloides URM 4182 whole-cells as a low-cost alternative to conventional biocatalysts in the production of ethyl esters from babassu oil.  相似文献   

10.
An extracellular lipase-producing bacterium was isolated from a fecal sample of lion-tailed macaque (Macaca silenus), an endangered Old World monkey that is endemic to the Western Ghats of South India. Morphological, biochemical and molecular analyses identified the bacterium as Serratia marcescens. Production of lipase was investigated in shake-flask culture. Optimum tributyrin concentration of 1.5 % was found to be the most suitable triglyceride to increase lipase production (13.3 U ml?1). The next best lipid source observed was olive oil (11.94 U ml?1), followed by castor oil, coconut oil and palm oil. Analyzing the effect of different carbon sources on lipase production revealed that 2 % glucose yielded higher lipase production than the other tested carbon sources. Investigations on suitable nitrogen source for lipase production revealed that 2 % meat extract yielded higher lipase production. The most suitable trace element for maximum lipase production was zinc sulfate, followed by magnesium sulfate and copper sulfate. Partial characterization of the crude lipase revealed that pH 7.0 and a temperature of 40 °C gave optimal lipase activity. Enzymatic activity of the crude sample was retained over a wide temperature range (20–75 °C), and 70 % of enzyme activity was retained at 60 °C. Testing the effect of various organic solvents on lipase activity revealed that hexadecane increased lipase activity by 85 % over the control.  相似文献   

11.
Candida antarctica lipase B (CALB) was immobilized on Fe3O4/SiOx-g-P(GMA) polymer carrier to catalyzed the transesterification of soybean oil and phytosterol. The enzyme loading of the obtained particles was 98.7 mg/g supports and the enzyme activity was 1226.5 U/g. The average particle size was 100.5?±?1.30 nm and the magnetization was 15.80 emu/g. The immobilized enzyme showed higher activities at a wider range of pH and temperatures. Its optimum reaction temperature was up to 50 °C; increased by 5 °C compared to the free enzyme. The obtained magnetic immobilized Fe3O4/SiOx-g-P(GMA) lipase was nanoscale. First-grade soybean oils were used as a substrate. System pH was adjusted to 7.0. The optimal reaction temperature was 50 °C and the reaction time was 3 h. The phytosterol concentration of 5% and immobilized CALB of 2% were obtained. The conversion rate of transesterification reaction between soybean oil and phytosterol was 86.2%. The use of magnets can quickly separate the immobilized enzymes from the substrates. The relative activity of the immobilized enzymes was 83.0% when reused seven times. The prepared immobilized CALB can improve efficiently enzyme activity and reutilization.  相似文献   

12.
An integrated optimization strategy involving a combination of different designs was employed to optimize producing conditions of cell-bound lipase (CBL) from Geotrichum sp. Firstly, it was obtained by a single factorial design that the most suitable carbon source was a mixture of olive oil and citric acid and the most suitable nitrogen source was a mixture of corn steep liquor and NH4NO3. Then, the Plackett–Burman design was used to evaluate the effects of 13 variables related to CBL production, and three statistically significant variables namely, temperature, olive oil concentration, and NH4NO3 concentration, were selected. Subsequently, the levels of the three variables for maximum CBL production were determined by response surface analysis as follows: 1.64% (v/v) olive oil, 1.49% (w/v) NH4NO3, and temperature 33.00°C. Such optimization resulted in a high yield of CBL at 23.15 U/ml, an enhanced 4.45-fold increase relative to the initial result (5.2 U/ml) in shake flasks. The dried CBL was used to synthesize methyl oleate in microaqueous hexane, resulting in 94% conversion after 24 h, and showed reusability with 70% residual activity and 69% conversion after eight cycles of batch operation, which indicating that CBL, as a novel and natural form of immobilized enzyme, can be effectively applied in repeated synthesis of methyl oleate in a microaqueous solvent.  相似文献   

13.
The extremely acidophilic microorganisms Bacillus pumilus and Bacillus subtilis were isolated from soil collected from the commercial edible oil and fish oil extraction industry. Optimization of conditions for acidic lipase production from B. pumilus and B. subtilis using palm oil and fish oil, respectively, was carried out using response surface methodology. The extremely acidic lipases, thermo-tolerant acidic lipase (TAL) and acidic lipase (AL), were produced by B. pumilus and B. subtilis, respectively. The optimum conditions for B. pumilus obtaining the maximum activity (1,100 U/mL) of TAL were fermentation time, 96 h; pH, 1; temperature, 50 °C; concentration of palm oil, 50 g/L. After purification, a 7.1-fold purity of lipase with specific activity of 5,173 U/mg protein was obtained. The molecular weight of the TAL was 55 kDa. The AL from B. subtilis activity was 214 U/mL at a fermentation time of 72 h; pH, 1; temperature, 35 °C; concentration of fish oil, 30 g/L; maltose concentration, 10 g/L. After purification, an 11.4-fold purity of lipase with specific activity of 2,189 U/mg protein was obtained. The molecular weight of the extremely acidic lipase was 22 kDa. The functional groups of lipases were determined by Fourier transform-infrared (FT-IR) spectroscopy.  相似文献   

14.
The marine strain Pseudomonas otitidis was isolated to hydrolyze the cooked sunflower oil (CSO) followed by the production of lipase. The optimum culture conditions for the maximum lipase production were determined using Plackett–Burman design and response surface methodology. The maximum lipase production, 1,980 U/ml was achieved at the optimum culture conditions. After purification, an 8.4-fold purity of lipase with specific activity of 5,647 U/mg protein and molecular mass of 39 kDa was obtained. The purified lipase was stable at pH 5.0–9.0 and temperature 30–80 °C. Ca2+ and Triton X-100 showed stimulatory effect on the lipase activity. The purified lipase was highly stable in the non-polar solvents. The functional groups of the lipase were determined by Fourier transform-infrared (FT-IR) spectroscopy. The purified lipase showed higher hydrolytic activity towards CSO over the other cooked oil wastes. About 92.3 % of the CSO hydrolysis was observed by the lipase at the optimum time 3 h, pH 7.5 and temperature 35 °C. The hydrolysis of CSO obeyed pseudo first order rate kinetic model. The thermodynamic properties of the lipase hydrolysis were studied using the classical Van’t Hoff equation. The hydrolysis of CSO was confirmed by FT-IR studies.  相似文献   

15.
The most effective way of enzymatic synthesis of biodiesel is through lipase-catalyzed transesterification, while its performance and economic feasibility should still be improved. In this study, lipase produced by an isolated Burkholderia sp. was immobilized on microsize Celite materials functionally modified with long alkyl groups. The specific activity of the immobilized lipase was 1,154 U/g. The methanolysis of olive oil catalyzed by the immobilized lipase obeyed Ping Pong Bi Bi model with an estimated V max, K m,TG, K m,M and K i,M value of 0.61 mol/(L min), 7.93 mol/L, 1.01 mol/L, and 0.24 mol/L, respectively. The activation energy of the enzymatic reaction is estimated as 15.51 kJ/mol. The immobilized lipase exhibits high thermal stability with thermal deactivation energy of 83 kJ/mol and a long half-life. The enthalpy, Gibb’s free energy, and entropy of the immobilized lipase were in the range of 80.02–80.35 kJ/mol, 88.35–90.13 kJ/mol, and ?28.22 to ?25.11 J/(mol K), respectively.  相似文献   

16.
Lipase enzymes catalyze the reversible hydrolysis of triacylglycerol to fatty acids and glycerol at the lipid–water interface. The metabolically versatile Ralstonia eutropha strain H16 is capable of utilizing various molecules containing long carbon chains such as plant oil, organic acids, or Tween as its sole carbon source for growth. Global gene expression analysis revealed an upregulation of two putative lipase genes during growth on trioleate. Through analysis of growth and activity using strains with gene deletions and complementations, the extracellular lipase (encoded by the lipA gene, locus tag H16_A1322) and lipase-specific chaperone (encoded by the lipB gene, locus tag H16_A1323) produced by R. eutropha H16 was identified. Increase in gene dosage of lipA not only resulted in an increase of the extracellular lipase activity, but also reduced the lag phase during growth on palm oil. LipA is a non-specific lipase that can completely hydrolyze triacylglycerol into its corresponding free fatty acids and glycerol. Although LipA is active over a temperature range from 10 °C to 70 °C, it exhibited optimal activity at 50 °C. While R. eutropha H16 prefers a growth pH of 6.8, its extracellular lipase LipA is most active between pH 7 and 8. Cofactors are not required for lipase activity; however, EDTA and EGTA inhibited LipA activity by 83 %. Metal ions Mg2+, Ca2+, and Mn2+ were found to stimulate LipA activity and relieve chelator inhibition. Certain detergents are found to improve solubility of the lipid substrate or increase lipase-lipid aggregation, as a result SDS and Triton X-100 were able to increase lipase activity by 20 % to 500 %. R. eutropha extracellular LipA activity can be hyper-increased, making the overexpression strain a potential candidate for commercial lipase production or in fermentations using plant oils as the sole carbon source.  相似文献   

17.
Superparamagnetic Fe3O4 hollow sub-microspheres (FHSM) with strong response to an external magnet were prepared via a solvothermal method, followed by acid etching. Lipase from Candida sp. 99–125 was directly immobilized onto the amino-functional FHSM by simple adsorption, without glutaraldehyde linkage. The immobilized lipase was used to catalyze the esterification/transesterification of waste cooking oil with methanol to produce fatty acid methyl ester (FAME), a major source of biodiesel. FAME yield exceeded 93.4% over a wide range of temperatures from 10 to 40?°C. Notably, stability was clearly improved at the lower temperatures, in particular, giving a FAME yield of 89.6% after eight cycles of use at 10?°C.  相似文献   

18.
Candida rugosa lipase (CRL) was encapsulated via the sol–gel method, using 5, 11, 17, 23-tetra-tert-butyl-25,27-bis(2-aminopyridine)carbonylmethoxy-26, 28-dihydroxy-calix[4]arene-grafted magnetic Fe3O4 nanoparticles (Calix-M-E). The catalytic activity of encapsulated lipase (Calix-M-E) was tested both in the hydrolysis of p-nitrophenyl palmitate (p-NPP) and the enantioselective hydrolysis of racemic naproxen methyl ester. The present study demonstrated that the calixarene-based compound has the potential to enhance both reaction rate and enantioselectivity of the lipase-catalyzed hydrolysis of racemic naproxen methyl ester. The encapsulated lipase (Calix-M-E) had great catalytic activity and enantioselectivity (E > 400), as well as remarkable reusability as compared to the encapsulated lipase without supports (E = 137) for S-Naproxen.  相似文献   

19.
Optimal conditions for enzymatic synthesis of biodiesel from palm oil and ethanol were determined with lipase from Pseudomonas fluorescens immobilized on epoxy polysiloxane–polyvinyl alcohol hybrid composite under a microwave heating system. The main goal was to reduce the reaction time preliminarily established by a process of conventional heating. A full factorial design assessed the influence of ethanol-to-palm oil (8:1–16:1) molar ratio and temperature (43–57 °C) on the transesterification yield. Microwave irradiations varying from 8 to 15 W were set up according to reaction temperature. Under optimal conditions (8:1 ethanol-to-oil molar ratio at 43 °C), 97.56 % of the fatty acids present in the palm oil were converted into ethyl esters in a 12-h reaction, corresponding to a productivity of 64.2 mg ethyl esters g?1 h?1. This represents a sixfold increase from the process carried out under conventional heating, thus proving to be a potential tool for enhancing biochemical modification of oils and fats. In general, advantages of the new process include: (1) microwaves speed up the enzyme-catalyzed reactions; (2) there are no destructive effects on the enzyme properties, such as stability and substrate specificity, and (3) the microwave assistance allows the entire reaction volume to be heated uniformly. These bring benefits of a low energy demand and a faster conversion of palm oil into biodiesel.  相似文献   

20.
Lipases/acyltransferases catalyse acyltransfer to various nucleophiles preferentially to hydrolysis even in aqueous media with high thermodynamic activity of water (a w >0.9). Characterization of hydrolysis and acyltransfer activities in a large range of temperature (5 to 80 °C) of secreted recombinant homologous lipases of the Pseudozyma antarctica lipase A superfamily (CaLA) expressed in Pichia pastoris, enlighten the exceptional cold-activity of two remarkable lipases/acyltransferases: CpLIP2 from Candida parapsilosis and CtroL4 from Candida tropicalis. The activation energy of the reactions catalysed by CpLIP2 and CtroL4 was 18–23 kJ mol?1 for hydrolysis and less than 15 kJ mol?1 for transesterification between 5 and 35 °C, while it was respectively 43 and 47 kJ mol?1 with the thermostable CaLA. A remarkable consequence is the high rate of the reactions catalysed by CpLIP2 and CtroL4 at very low temperatures, with CpLIP2 displaying at 5 °C 65 % of its alcoholysis activity and 45 % of its hydrolysis activity at 30 °C. These results suggest that, within the CaLA superfamily and its homologous subgroups, common structural determinants might allow both acyltransfer and cold-active properties. Such biocatalysts are of great interest for the efficient synthesis or functionalization of temperature-sensitive lipid derivatives, or more generally to lessen the environmental impact of biocatalytic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号