首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this work was to investigate the ability of the plant growth-promoting rhizobacterium Pseudomonas aureofaciens 63-28 to induce plant defense systems, including defense-related enzyme levels and expression of defense-related isoenzymes, and isoflavone production, leading to improved resistance to the phytopathogen Rhizoctonia solani AG-4 in soybean seedlings. Seven-dayold soybean seedlings were inoculated with P. aureofaciens 63-28, R. solani AG-4, or P. aureofaciens 63-28 plus R. solani AG-4 (P+R), or not inoculated (control). After 7 days of incubation, roots treated with R. solani AG-4 had obvious damping-off symptoms, but P+R-treated soybean plants had less disease development, indicating suppression of R. solani AG-4 in soybean seedlings. Superoxide dismutase (SOD) and catalase (CAT) activities of R. solani AG-4-treated roots increased by 24.6% and 54.0%, respectively, compared with control roots. Ascorbate peroxidase (APX) and phenylalanine ammonia lyase (PAL) activities of R. solani AG-4-treated roots were increased by 75.1% and 23.6%, respectively. Polyphenol oxidase (PPO) activity in soybean roots challenged with P. aureofaciens 63-28 and P+R increased by 25.0% and 11.6%, respectively. Mn-SOD (S1 band on gel) and Fe-SOD (S2) were strongly induced in P+R-treated roots, whereas one CAT (C1) and one APX (A3) were strongly induced in R. solani AG-4- treated roots. The total isoflavone concentration in P+Rtreated shoots was 27.2% greater than the control treatment. The isoflavone yield of R. solani AG-4-treated shoots was 60.9% less than the control.  相似文献   

2.
An endophytic bacterium, Bacillus thuringiensis GS1, was isolated from bracken (Pteridium aquilinum) and found to have maximal production of chitinase (4.3 units/ml) at 5 days after culture. This study investigated the ability of B. thuringiensis GS1 to induce resistance to Rhizoctonia solani KACC 40111 (RS) in cucumber plants. Chitinase activity was greatest in RS-treated plants at 4 days. beta-1,3- Glucanase activity was highest in GS1-treated plants at 5 days. Guaiacol peroxidase (GPOD) activity increased continuously in all treated plants for 5 days. Ascorbate peroxidase (APX) activity in RS-treated plants was increased 1.5-fold compared with the control at 4 days. Polyphenol oxidase (PPO) activity in RS-treated plants was increased 1.5-fold compared with the control at 3 days. At 5 days after treatment, activity staining revealed three bands with chitinase activity (Ch1, Ch2, and Ch3) on SDSPAGE of cucumber plants treated with GS1+RS, whereas only one band was observed for RS-treated plants (Ch2). One GPOD isozyme (Gp1) was also observed in response to treatment with RS and GS1+RS at 4 days. One APX band (Ap2) was present on the native-PAGE gel of the control, and GS1- and GS1+RS-treated plants at 1 day. PPO bands (Po1 and Po2) from RS- and GS1+RS-treated plants were stronger than in the control and GS1-treated plants upon native-PAGE at 5 days. Taken together, these results indicate that the induction of PR proteins and defense-related enzymes by B. thuringiensis GS1 might have suppressed the damping-off caused by R. solani KACC 40111 in cucumber plants.  相似文献   

3.
4.
5.
6.
Abstract

This study was carried out to evaluate the effects of salicylic acid on chlorophyll, carotenoid and antioxidant enzymes in potato plants infected with Rhizoctonia solani under greenhouse conditions. Results showed that with increase in SA amount of chlorophyll, carotenoid contents and also activity of polyphenoloxidase increased in both control and infected plants while increases in infected plants were higher. However, activities of peroxidase and catalase enzymes decreased under the same conditions. Hence, it seems that increase in carotenoid content in infected plants treated with SA is acting as an anti-oxidant against fungi infection. The decrease in catalase and peroxidase activities in response to SA treatment will result in reactive oxygen species produced be less oxidized. The remaining ROS in plants treated with SA is probably acting as anti-fungal agents. The increase in polyphenoloxidase activity will increase the root cells walls lignifications process acting as mechanical barrier against fungal infection.  相似文献   

7.
A laboratory and green house experiment was carried out on the comparative antagonistic performance of four different bioagents (Aspergillus sp., Gliocladium virens, Trichoderma harzianum and T. viride) isolated from soil against Rhizoctonia solani. Under laboratory conditions, T. harzianum exhibited maximum (75.55%) mycelial growth inhibition of R. solani This was followed by T. viride, which showed 65.93 per cent mycelial growth inhibition of the pathogen. Gliocladium virens was also found to be effective antagonists, which exhibited 57.77 per cent mycelial growth inhibition. While Aspergillus sp exhibited minimum growth inhibition (45.74%) in comparison to other bioagents. Under green house conditions, T. harzianum gave maximum protection of the disease (72.72%) followed by T. viride, which exhibited 54.54 per cent disease control. However, G. virens and Aspergillus sp were found least effective in controlling root rot of mungbean.  相似文献   

8.
Kasiamdari  R.S.  Smith  S.E.  Smith  F.A.  Scott  E.S. 《Plant and Soil》2002,238(2):235-244
Root-infecting fungal pathogens and also parasites, which do not cause major disease symptoms cause problems of contamination in pot cultures of arbuscular mycorrhizal (AM) fungi. We investigated the effect of the AM fungus, Glomus coronatum Giovannetti on disease caused by binucleate Rhizoctonia sp. (BNR) and R. solani in mung bean in the absence (P0) and presence (P1) of added soil phosphorus (P). When G. coronatum and BNR or R. solani were inoculated at the same time, G. coronatum improved the growth of the plants and reduced colonization of roots by BNR, but not by R. solani. R. solani reduced the growth of non-mycorrhizal mung bean in P0 soil 6 weeks after inoculation, whereas BNR had no effect on growth. G. coronatum reduced the severity of disease caused by BNR or R. solani on mung bean in both soil P treatments. When G. coronatum was established in the roots 3 weeks before BNR or R. solani was added to the potting mix, there was no significant effect of BNR or R. solani on growth of mung bean. Prior colonization by G. coronatum slightly reduced indices of disease caused by BNR or R. solani. In both experiments, addition of P stimulated plant growth and reduced the colonization of roots by BNR, but had little effect on disease severity. We conclude that the reduction of the effect of BNR or R. solani on mung bean could not be explained by improved P nutrition, but could be attributed to the presence of G. coronatum within and among the roots.  相似文献   

9.
Rhizoctonia solani isolates used in this investigation were identified as anastomosis-4 (AG-40), collected from different localities from Assiut governorate in Egypt. Pathogenicity test of seven isolates of R. solani was evaluated on soybean Giza 111 cultivar under greenhouse conditions. All tested isolates were able to infect soybean plants causing root rot with different degrees of severities, isolate No. 1, 2 and 3 showed significantly highest root rot severity, while isolate No. 5 gave the lowest percentage of root rot rating. The sodium dodecyl sulphate polyacrylamide gel electrophoresis patterns were used to compare three isolates of R. solani. There are no variations among R. solani isolates except a few exceptions according to their protein patterns. DNA markers obtained from all isolates showed genetic similarity among different isolates obtained from different geographical regions barring few exceptions. Correlation between DNA patterns of R. solani isolates and their virulence was detected, but no correlation with anastomosis groups (AG).  相似文献   

10.
11.
Three mineral oils, BSO, EWOS and E9267 and one vegetable oil (mustard oil), did not appreciably inhibit the mycelial growth of Rhizoctonia solani. However, treatment of 100 g seeds of mung bean with 2 ml EWOS and E9267 oils controlled more than 90% of the pre- and post-emergence damping-off and protected seedlings in soil inoculated with R. solani 5 days after sowing. Soaking seeds in solutions of these oils or drenching the soil did not control damping-off. Mustard oil controlled only pre-emergence damping-off.  相似文献   

12.
Acetone (5% v/v) inhibited growth of four isolates of Rhizoctonia solani which differ in their pathogenicity on squash seedlings. Acetone (5% v/v) showed best inhibition on the most aggressive isolate 4 followed by the less aggressive ones (1, 2 and 3, respectively); IAA had no effect on the growth of all R. solani isolates compared to the controls.  相似文献   

13.
We examined basal defense responses and cytomolecular aspects of riboflavin-induced resistance (IR) in sugar beet-Rhizoctonia solani pathsystem by investigating H(2)O(2) burst, phenolics accumulation and analyzing the expression of phenylalanine ammonia-lyase (PAL) and peroxidase (cprx1) genes. Riboflavin was capable of priming plant defense responses via timely induction of H(2)O(2) production and phenolics accumulation. A correlation was found between induction of resistance by riboflavin and upregulation of PAL and cprx1 which are involved in phenylpropanoid signaling and phenolics metabolism. Application of peroxidase and PAL inhibitors suppressed not only basal resistance, but also riboflavin-IR of sugar beet to the pathogen. Treatment of the leaves with each inhibitor alone or together with riboflavin reduced phenolics accumulation which was correlated with higher level of disease progress. Together, these results demonstrate the indispensability of rapid H(2)O(2) accumulation, phenylpropanoid pathway and phenolics metabolism in basal defense and riboflavin-IR of sugar beet against R. solani.  相似文献   

14.
15.
The effects of the phyotoxin from the fungal pathogen Rhizoctonia solani, causing sheath blight on the expression of defense‐related proteins of rice were investigated. The toxin inactivated by chemical treatment and by the toxin‐inactivating enzyme α‐glucosidase produced by Trichoderma viride was used in the study along with the active toxin. Toxin inactivated by T. viride α‐glucosidase and sodium periodate caused significantly less damage and electrolyte leakage to test plants. The active toxin and the pathogen induced chitinase and ß‐1,3‐glucanase synthesis in rice plants, while the inactivated toxin did not have any effect on the expression of these pathogenesis‐related proteins. The toxin was found to suppress the peroxidase activity 72 h after inoculation and the inactivated toxin restored the activity as that of untreated plants. There was no remarkable change in phenylalanine ammonia lyase activity in rice sheath treated with both the forms of the toxin.  相似文献   

16.
17.
18.
19.
《Fungal biology》2014,118(11):924-934
Rhizoctonia solani (teleomorph: Thanatephorus cucumeris) is a soil-borne plant pathogenic fungus that has a broad host range, including potato. In this study, the double-stranded RNA (dsRNA) profiles were defined for 39 Rhizoctonia solani isolates representative of two different anastomosis groups (AGs) associated with black scurf of potato in New Zealand. A large dsRNA of c. 12 kb–18 kb was detected in each of the isolates, regardless of AG or virulence on potato. Characterisation of the large dsRNA from R. solani AG-3PT isolate RS002, using random amplification of total dsRNA and analyses of overlapping cDNA sequences, resulted in the assembly of a consensus sequence of 14 694 nt. A single, large open reading frame was identified on the positive strand of the assembled sequence encoding a putative polypeptide of at least 4893 amino acids, with a predicted molecular mass of 555.6 kDa. Conserved domains within this polypeptide included those for a viral methyltransferase, a viral RNA helicase 1 and an RNA-dependent RNA polymerase. The domains and their sequential organisation revealed the polyprotein was very similar to those encoded by dsRNA viruses of the genus Endornavirus, in the family Endornaviridae. This is the first report of an endornavirus in R. solani, and thus the putative virus is herein named Rhizoctonia solani endornavirus - RS002 (RsEV-RS002). Partial characterisation of the large dsRNAs in five additional AG-3PT isolates of R. solani also identified them as probable endornaviruses, suggesting this family of viruses is widespread in R. solani infecting potato. The ubiquitous nature of endornaviruses in this plant pathogen implies they may have an important, but yet uncharacterised, role in R. solani.  相似文献   

20.
The interrelationships between reniform nematode (Rotylenchulus reniformis) and the cotton (Gossypium hirsutum) seedling blight fungus (Rhizoctonia solani) were studied using three isolates of R. solani, two populations of R. reniformis at multiple inoculum levels, and the cotton cultivars Dehapine 90 (DP 90) and Dehapine 41 (DP 41). Colonization of cotton hypocotyl tissue by R. solani resulted in increases (P ≤ 0.05) in nematode population densities in soil and in eggs recovered from the root systems in both 40- and 90-day-duration experiments. Increases in soil population densities resulted mainly from increases in juveniles. Enhanced reproduction of R. reniformis in the presence of R. solani was consistent across isolates (1, 2, and 3) of R. solani and populations (1 and 2) and inoculum levels (0.5, 2, 4, and 8 individuals/g of soil) of R. reniformis, regardless of cotton cultivar (DP 90 or DP 41). Severity of seedling blight was not influenced by the nematode. Rhizoctonia solani caused reductions (P ≤ 0.05) in cotton growth in 40- and 90-day periods. Rotylenchulus reniformis reduced cotton growth at 90 days. The relationship between nematode inoculum levels and plant growth reductions was linear. At 90 days, the combined effects of these pathogens were antagonistic to plant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号