首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gene encoding a cold-adapted, organic solvent stable lipase from a local soil-isolate, mesophilic Staphylococcus epidermidis AT2 was expressed in a prokaryotic system. A two-step purification of AT2 lipase was achieved using butyl sepharose and DEAE sepharose column chromatography. The final recovery and purification fold were 47.09 % and 3.45, respectively. The molecular mass of the purified lipase was estimated to be 43 kDa. AT2 lipase was found to be optimally active at pH 8 and stable at pH 6–9. Interestingly, this enzyme demonstrated remarkable stability at cold temperature (<30 °C) and exhibited optimal activity at a temperature of 25 °C. A significant enhancement of the lipolytic activity was observed in the presence of Ca2+, Tween 60 and Tween 80. Phenylmethylsulfonylfluoride, a well known serine inhibitor did not cause complete inhibition of the enzymatic activity. AT2 lipase exhibited excellent preferences towards long chain triglycerides and natural oils. The lipolytic activity was stimulated by dimethylsulfoxide and diethyl ether, while more than 50 % of its activity was retained in methanol, ethanol, acetone, toluene, and n-hexane. Taken together, AT2 lipase revealed highly attractive biochemical properties especially because of its stability at low temperature and in organic solvents.  相似文献   

2.
A Gram-stain negative, motile, rod-shaped bacterium, designated strain WM-2T, was isolated from a forest soil in Sihui City, South China, and characterized by means of a polyphasic approach. Growth occurred with 0–5 % (w/v) NaCl (optimum 0–1 %) and at pH 5.0–10.5 (optimum pH 8.5) and 4–40 °C (optimum 30 °C) in Luria–Bertani medium. Comparative 16S rRNA gene sequence analyses showed that strain WM-2T is a member of the genus Pseudomonas and most closely related to P. guguanensis, P. oleovorans subsp. lubricantis, P. toyotomiensis, P. alcaliphila and P. mendocina with 97.1–96.6 % sequence similarities. In terms of gyrB and rpoB gene sequences, strain WM-2T showed the highest similarity with the type strains of the species P. toyotomiensis and P. alcaliphila. The DNA–DNA relatedness values of strain WM-2T with P. guguanensis and P. oleovorans subsp. lubricantis was 48.7 and 37.2 %, respectively. Chemotaxonomic characteristics (the main ubiquinone Q-9, major fatty acids C18:1 ω7c/C18:1 ω6c, C16:0 and C16:1 ω7c/C16:1 ω6c and DNA G+C content 65.2 ± 0.7 mol%) were similar to those of members of the genus Pseudomonas. Polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unknown aminophospholipid, an unknown phospholipid and five unknown lipids. According to the results of polyphasic analyses, strain WM-2T represents a novel species in the genus Pseudomonas, for which the name Pseudomonas sihuiensis sp. nov. is proposed. The type strain is WM-2T (=KCTC 32246T=CGMCC 1.12407T).  相似文献   

3.
A novel Gram-stain-positive, motile, catalase- and oxidase-positive, endospore-forming, aerobic, rod-shaped bacterium, designated strain JSM 099021T, was isolated from an oyster collected from Naozhou Island in the South China Sea. Growth occurred with 0?C15% (w/v) NaCl (optimum 2?C4%) and at pH 6.0?C10.0 (optimum pH 7.5) and at 10?C45°C (optimum 30?C35°C). meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. The predominant respiratory quinone was menaquinone 7 (MK-7) and the major polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The major cellular fatty acids were anteiso-C15:0, anteiso-C17:0, iso-C15:0 and iso-C16:0. The genomic DNA G + C content was 39.5 mol%. A phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 099021T belongs to the genus Bacillus, and was most closely related to the type strains of Bacillus halmapalus (sequence similarity 99.0%), Bacillus horikoshii (98.4%) and Bacillus cohnii (98.0%). The combination of phylogenetic analysis, DNA?CDNA hybridization, phenotypic characteristics and chemotaxonomic data supported the proposal that strain JSM 099021T represents a new species of the genus Bacillus, for which the name Bacillus zhanjiangensis sp. nov. is proposed. The type strain was JSM 099021T (=DSM 23010T = KCTC 13713T).  相似文献   

4.
A taxonomic study was carried out on strain 22II-S11-z10T, which was isolated from the surface seawater of the Atlantic Ocean. The bacterium was found to be Gram-stain negative, oxidase and catalase positive, oval- to rod-shaped and non-motile. Growth was observed at salinities of 0.5–9 % and at temperatures of 10–41 °C. The isolate can reduce nitrate to nitrite, degrade gelatin and aesculin, but can not degrade Tween 80. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 22II-S11-z10T belongs to the genus Actibacterium, with the highest sequence similarity to the type strain Actibacterium mucosum CECT 7668T (97.3 %). The DNA–DNA hybridization estimate value between strain 22II-S11-z10T and A. mucosum CECT 7668T was 19.30 ± 2.29 %. The principal fatty acids were identified as Summed Feature 8 (C18:1 ω7c/ω6c as defined by the MIDI system, 75.2 %) and Summed Feature 3 (C16:1 ω7c/ω6c, 6.9 %). The G+C content of the chromosomal DNA was determined to be 59.0 mol%. The respiratory quinone was determined to be Q-10 (100 %). Phosphatidylglycerol, phosphatidylcholine, two phospholipids, two aminolipids and two lipids were identified in the polar lipids. The combined genotypic and phenotypic data show that strain 22II-S11-z10T represents a novel species within the genus Actibacterium, for which the name Actibacterium atlanticum sp. nov. is proposed, with the type strain 22II-S11-z10T (=MCCC 1A09298T = LMG 27158T).  相似文献   

5.
A mesophilic, obligately anaerobic, propionate-producing fermentative bacterium, designated strain NM7T, was isolated from rural rice paddy field. Cells of strain NM7T are Gram-negative, non-motile, non-spore-forming, short rods, and negative for catalase. The strain grew optimally at 37 °C (the range for growth 15–40 °C) and pH 7.0 (pH 5.0–7.5). The strain could grow fermentatively on various sugars, including arabinose, xylose, fructose, galactose, glucose, mannose, cellobiose, lactose, maltose, sucrose, pectin and starch. The main end products of glucose fermentation were acetate and propionate. Yeast extract was not required but stimulated the growth. Nitrate, sulfate, thiosulfate, elemental sulfur, sulfite, and Fe(III) nitrilotriacetate were not used as terminal electron acceptors. The G+C content of genomic DNA was 42.8 mol%. The major cellular fatty acids were C15:0, anteiso-C15:0, C16:0, and C17:0. The most abundant polar lipid of strain NM7T was phosphatidylethanolamine. 16S rRNA gene sequence analysis revealed that it belongs to the family Porphyromonadaceae of the phylum Bacteroidetes. The closest recognized species was Paludibacter propionicigenes (91.4 % similarity in 16S rRNA gene sequence). A novel species, Paludibacter jiangxiensis sp. nov., is proposed to accommodate strain NM7T (=JCM 17480T = CGMCC 1.5150T = KCTC 5844T).  相似文献   

6.
A thiosulfate-oxidizing facultative chemolithoautotrophic Burkholderia sp. strain ATSB13T was previously isolated from rhizosphere soil of tobacco plant. Strain ATSB13T was aerobic, Gram-staining-negative, rod shaped and motile by means of sub-terminal flagellum. Strain ATSB13T exhibited mixotrophic growth in a medium containing thiosulfate plus acetate. A phylogenetic study based on 16S rRNA gene sequence analysis indicated that strain ATSB13T was most closely related to Burkholderia kururiensis KP23T (98.7%), Burkholderia tuberum STM678T (96.5%) and Burkholderia phymatum STM815T (96.4%). Chemotaxonomic data [G+C 64.0 mol%, major fatty acids, C18:1 ω7c (28.22%), C16:1 ω7c/15 iso 2OH (15.15%), and C16:0 (14.91%) and Q-8 as predominant respiratory ubiquinone] supported the affiliation of the strain ATSB13T within the genus Burkholderia. Though the strain ATSB13T shared high 16S rRNA gene sequence similarity with the type strain of B. kururiensis but considerably distant from the latter in terms of several phenotypic and chemotaxonomic characteristics. DNA–DNA hybridization between strain ATSB13T and B. kururiensis KP23T was 100%, and hence, it is inferred that strain ATSB13T is a member of B. kururiensis. On the basis of data obtained from this study, we propose that B. kururiensis be subdivided into B. kururiensis subsp. kururiensis subsp. nov. (type strain KP23T = JCM 10599T = DSM 13646T) and B. kururiensis subsp. thiooxydans subsp. nov. (type strain ATSB13T = KACC 12758T).  相似文献   

7.
Urea in alcoholic beverages is a precursor of ethyl carbamate (EC), which is carcinogenic. At present, removal of urea by acid urease is considered to be the most effective method. In this study, a strain with higher acid urease production was screened and the enzyme activity was 1.12 U/mL. The strain was identified as Staphylococcus cohnii via a phylogenetic analysis of its 16S rDNA gene sequence, its morphological characteristics, and its physiological and biochemical properties, named as Staphylococcus cohnii HFUTY-08. Optimum culture conditions were determined through a single-factor test and an orthogonal test, with results as follows: glucose concentration 30 g/L, peptone concentration 15 g/L, initial pH 5, and an optimal inoculation amounts of 5%. Under these conditions, the activity of acid urease produced by strain Staphylococcus cohnii HFUTY-08 was 1.78 U/ml. Besides, the crude enzyme was purified to electrophoretic homogeneity by ion exchange chromatography and gel filtration chromatography. The molecular weight of the enzyme was estimated to be 295 kDa and the structural features of the enzyme were defined as (αβγ)3. Finally, the preliminary study on the removal of urea by acid urease in Chinese rice wine (CRW) showed that the enzyme could remove about 75% urea within 72 h at 37 °C, which effectively prevented EC production.  相似文献   

8.
Two Gram-positive, rod-shaped moderately halophilic bacterial strains, designated AD7-25T and AB-11, were isolated from Aiding and Manasi salt lakes in Xinjiang of China, respectively. The strains were found to be able to grow at NaCl concentrations of 0–21 % (w/v), with optimum growth occurring at 6–8 % (w/v) NaCl. The optimal temperature and pH for growth were determined to be 33–37 °C and pH 7.0–7.5. Cells of the strains are motile by means of polar flagella. Both strains can produce ellipsoidal spores. The major cellular fatty acids were identified as anteiso-C15:0, iso-C15:0, iso-C14:0, anteiso-C17:0 and iso-C16:0. The diamino acid in the peptidoglycan and the major quinone system were determined to be meso-diaminopimelic acid (meso-DAP) and MK-7, respectively. The DNA G+C contents of stains AD7-25T and AB-11 were 39.8 and 40.0 mol%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences revealed that these two novel strains are closely related to the genus Oceanobacillus showing 90–99.5 % similarity with respect to type strains. These two novel strains were most closely related to Oceanobacillus oncorhynchi subsp. incaldanensis DSM 16557T (99.1 and 99.5 %), followed by O. oncorhynchi subsp. oncorhynchi JCM 12661T (99.1 and 99.4 %), Oceanobacillus neutriphilus CGMCC 1.7693T (97.0 and 97.5 %), Oceanobacillus sojae JCM 15792T (97.6 and 98.0 %) and Oceanobacillus locisalsi KCTC 13253T (96.5 and 96.9 %). The DNA–DNA hybridization data indicated that DNA relatedness between strains AD7-25T and AB-11 was 91.0 %, and the genomic homology of representative strain AD7-25T with O. oncorhynchi subsp. incaldanensis DSM 16557T, O. oncorhynchi subsp. oncorhynchi JCM 12661T, O. neutriphilus CGMCC 1.7693T, O. sojae JCM 15792T and O. locisalsi KCTC 13253T were 41, 39, 20, 23 and 17 %, respectively. On the basis of phenotypic and phylogenetic distinctiveness, strains AD7-25T and AB-11 should be assigned to the genus Oceanobacillus as a new species, for which the name Oceanobacillus aidingensis sp. nov. was proposed. The type strain is AD7-25T (=CGMCC 1.9106 T = NBRC 105904T).  相似文献   

9.
Two deltaproteobacterial sulfate reducers, designated strain I.8.1T and I.9.1T, were isolated from the oxygen minimum zone water column off the coast of Peru at 400 and 500 m water depth. The strains were Gram-negative, vibrio-shaped and motile. Both strains were psychrotolerant, grew optimally at 20°C at pH 7.0–8.0 and at 2.5–3.5% NaCl (w/v). The strains grew by utilizing hydrogen/acetate, C3–4 fatty acids, amino acids and glycerol as electron acceptors for sulfate reduction. Fumarate, lactate and pyruvate supported fermentative growth. Sulfate, sulfite, thiosulfate and taurin supported growth as electron acceptors. Both strains were catalase-positive and highly oxygen-tolerant, surviving 24 days of exposure to atmospheric concentrations. MK6 was the only respiratory quinone. The most prominent cellular fatty acid was iso-17:1-ω9c (18%) for strain I.8.1T and iso-17:0-ω9c (14%) for strain I.9.1T. The G+C contents of their genomic DNA were 45–46 mol%. Phylogenetic analysis of 16S rRNA and dsrAB gene sequences showed that both strains belong to the genus Desulfovibrio. Desulfovibrio acrylicus DSM 10141T and Desulfovibrio marinisediminis JCM 14577T represented their closest validly described relatives with pairwise 16S rRNA gene sequence identities of 98–99%. The level of DNA-DNA hybridization between strains I.8.1T and I.9.1T was 30–38%. The two strains shared 10–26% DNA-DNA relatedness with D. acrylicus. Based on a polyphasic investigation it is proposed that strains I.8.1T and I.9.1T represent a novel species for which the name Desulfovibrio oceani sp. nov. is proposed with the two subspecies D. oceani subsp. oceani (type strain, I.8.1T = DSM 21390T = JCM 15970T) and D. oceani subsp. galateae (type strain, I.9.1T = DSM 21391T = JCM 15971T).  相似文献   

10.
A novel Gram-positive, rod-shaped, motile, spore-forming, nitrogen-fixing bacterium, designated strain 112T, was isolated from cabbage rhizosphere in Beijing, China. The strain was found to grow at 10–40 °C and pH 4–11, with an optimum of 30 °C and pH 7.0, respectively. Phylogenetic analysis based on a fragment of the full-length 16S rRNA gene sequence revealed that strain 112T is a member of the genus Paenibacillus. High levels of 16S rRNA gene similarities were found between strain 112T, Paenibacillus sabinae DSM 17841T (97.82 %) and Paenibacillus forsythiae DSM 17842T (97.22 %). However, the DNA–DNA hybridization values between strain 112T and the type strains of these two species were 10.36 and 6.28 %, respectively. The predominant menaquinone was found to be menaquinone 7 (MK-7). The major fatty acids were determined to be anteiso-C15:0 and C16:0. The major polar lipids were found to be diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and unknown aminophospholipids. The cell wall peptidoglycan was found to contain meso-diaminopimelic acid. The DNA G+C content was determined to be 55.4 mol%. On the basis of its phenotypic characteristics, 16S rRNA gene sequence analysis and the value of DNA–DNA hybridization, strain 112T is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus brassicae sp. nov. is proposed. The type strain is 112T (= ACCC 01125T = DSM 24983T).  相似文献   

11.
A novel mesophilic, methylotrophic, methanogenic archaeon, designated strain EK1T, was enriched and isolated from wetland sediment. Phylogenetic analysis showed that strain EK1T was affiliated with the genus Methanomethylovorans within the family Methanosarcinaceae, and shared the highest 16S rRNA and methyl-coenzyme M reductase alpha-subunit gene sequence similarity with the type strain of Methanomethylovorans hollandica (98.8 and 92.6 %, respectively). The cells of strain EK1T were observed to be Gram-negative, non-motile and irregular cocci that did not lyse in 0.1 % (w/v) sodium dodecyl sulfate. Methanol, mono-, di- and trimethylamine, dimethyl sulfide and methanethiol were found to be used as catabolic and methanogenic substrates, whereas H2/CO2, formate, 2-propanol and acetate were not. Growth was observed at 25–40 °C (optimum, 37 °C), at pH 5.5–7.5 (optimum, pH 6.0–6.5) and in the presence of 0–0.1 M NaCl (optimum, 0 M). Growth and methane production rates were stimulated in the presence of H2/CO2 although methane production and growth yields were not significantly affected; acetate, formate, 2-propanol and CO/CO2/N2 did not affect methane production. CoCl2 (0.6–2.0 μM) and FeCl2 (25 mg/l) stimulated growth, while yeast extract and peptone did not. The DNA–DNA hybridization experiment revealed a relatedness of <20 % between EK1T and the type strains of the genus Methanomethylovorans. The DNA G+C content of strain EK1T was determined to be 39.2 mol%. Based on the polyphasic taxonomic study, strain EK1T represents a novel species belonging to the genus Methanomethylovorans, for which the name Methanomethylovorans uponensis sp. nov. is proposed. The type strain is strain EK1T(=NBRC 109636T = KCTC 4119T = JCM 19217T).  相似文献   

12.
A non-pigmented, motile, Gram-negative bacterium designated H 17T was isolated from a seawater sample collected in Port Phillip Bay (the Tasman Sea, Pacific Ocean). The new organism displayed optimal growth between 4 and 37 °C, was found to be neutrophilic and slightly halophilic, tolerating salt water environments up to 10 % NaCl. Strain H 17T was found to be able to degrade starch and Tween 80 but unable to degrade gelatin or agar. Phosphatidylglycerol (27.7 %) and phosphatidylethanolamine (72.3 %) were found to be the only associated phospholipids. The major fatty acids identified are typical for the genus Alteromonas and include C16:0, C16:1ω7, C17:1ω8 and C18:1ω7. The G+C content of the DNA was found to be 43.4 mol%. A phylogenetic study, based on the 16S rRNA gene sequence analysis and Multilocus Phylogenetic Analysis, clearly indicated that strain H 17T belongs to the genus Alteromonas. The DNA?DNA relatedness between strain H 17T and the validly named Alteromonas species was between 30.7 and 46.4 mol%. Based on these results, a new species, Alteromonas australica, is proposed. The type strain is H 17T (= KMM 6016T = CIP 109921T).  相似文献   

13.
A Gram-positive, moderately halotolerant, rod-shaped, spore forming bacterium, designated strain FJAT-14515T was isolated from a soil sample in Cihu area, Taoyuan County, Taiwan. The strain grew at 10–35 °C (optimum at 30 °C), pH 5.7–9.0 (optimum at pH 7.0) and at salinities of 0–5 % (w/v) NaCl (optimum at 1 % w/v). The diagnostic diamino acid of the peptidoglycan of the isolated strain was meso-diaminopimelic acid and major respiratory isoprenoid quinone was MK-7. Major cellular fatty acids were anteiso-C15:0 (40.6 %), iso-C15:0 (20.7 %) and the DNA G+C content of strain FJAT-14515T was 37.1 mol %. A phylogenetic analysis based on 16S rRNA gene sequences indicated that strain FJAT-14515T belongs to the genus Bacillus, and was most closely related to the reference strains of Bacillus muralis DSM 16288T (97.6 %) and Bacillus simplex DSM 1321T (97.5 %). Levels of DNA–DNA relatedness between strain FJAT-14515T and the reference strains of B. muralis DSM 16288T and B. simplex DSM 1321T were 27.9 % ± 3.32 and 44.1 % ± 0.57, respectively. Therefore, on the basis of phenotypic, chemotaxonomic and genotypic properties, strain FJAT-14515T represents a novel species of the genus Bacillus, for which the name Bacillus cihuensis sp. nov. is proposed. The type strain is FJAT-14515T (=DSM 25969T = CGMCC 1.12697T).  相似文献   

14.
A taxonomic study was carried out on strain 22II-S10sT, which was isolated from the surface seawater of the Atlantic Ocean. The bacterium was found to be Gram-negative, oxidase and catalase positive, rod shaped and motile by subpolar flagella. The isolate was capable of gelatine hydrolysis but unable to reduce nitrate to nitrite or degrade Tween 80 or aesculin. Growth was observed at salinities of 0.5–18 % (optimum, 2–12 %), at pH of 3–10 (optimum, 7) and at temperatures of 10–41 °C (optimum 28 °C). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 22II-S10sT belongs to the genus Roseivivax, with highest sequence similarity to Roseivivax halodurans JCM 10272T (97.2 %), followed by Roseivivax isoporae LMG 25204T (97.0 %); other species of genus Roseivivax shared 95.2–96.7 % sequence similarity. The DNA–DNA hybridization estimate values between strain 22II-S10sT and the two type strains (R. halodurans JCM 10272T and R. isoporae LMG 25204T) were 22.00 and 21.40 %. The principal fatty acids were identified as Summed Feature 8 (C18:1 ω7c/ω6c) (67.4 %), C18:0 (7.2 %), C19:0 cyclo ω8c (7.1 %), C18:1 ω7c 11-methyl (6.8 %) and C16:0 (5.9 %). The respiratory quinone was determined to be Q-10 (100 %). Phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, an aminolipid, a glycolipid and three phospholipids were present. The G+C content of the chromosomal DNA was determined to be 67.5 mol%. The combined genotypic and phenotypic data show that strain 22II-S10sT represents a novel species within the genus Roseivivax, for which the name Roseivivax atlanticus sp. nov. is proposed, with the type strain 22II-S10sT (= MCCC 1A09150T = LMG 27156T).  相似文献   

15.
A novel, gram reaction positive aerobic actinobacterium, designated G12T, not validly named as Geodermatophilus obscurus subsp. amargosae, was accessed in the DSMZ open collection as DSM 46136T. The optimal growth was at 2,535 °C, at pH 6.0–12.0 and in the absence of NaCl, forming greenish-black-coloured colonies on GYM agar. Chemotaxonomic and molecular characteristics of the isolate matched those described for members of the genus Geodermatophilus. The DNA G+C content of the strain was 73.0 mol%. The peptidoglycan contained meso-diaminopimelic acid as diagnostic diamino acid. The main phospholipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and a small amount of phosphatidylglycerol; MK-9(H4) was the dominant menaquinone and galactose was detected as a diagnostic sugar. The major cellular fatty acid was branched-chain saturated acid iso-C15:0. The 16S rRNA gene showed 94.2–99.5 % sequence identity with the members of the genus Geodermatophilus. Based on the chemotaxonomic results and 16S rRNA gene sequence analysis, strain G12T is proposed to represent a novel species, Geodermatophilus amargosae. Type strain is G12T [=G96] (=DSM 46136T = CCUG 62971T = MTCC 11559T = ATCC 25081T = JCM 3153T = NBRC 13316T = NRRL B-3578T = KCTC 9360T). The INSDC accession number is HF679056.  相似文献   

16.
A novel bacterial strain designated 9PNM-6T was isolated from an abandoned lead–zinc ore mine site in Meizhou, Guangdong Province, China. The isolate was found to be Gram-negative, rod-shaped, orange-pigmented, strictly aerobic, oxidase- and catalase-positive. Growth occurred at 0–4 % NaCl (w/v, optimum, 0 %), at pH 6.0–8.0 (optimum, pH 7.0) and at 15–32 °C (optimum, 28–30 °C). Phylogenetic analysis based on 16S rRNA gene sequence similarities showed that strain 9PNM-6T belongs to the genus Sphingomonas, with the highest sequence similarities with Sphingomonas jejuensis NBRC 107775T (99.7 %), Sphingomonas koreensis KCTC 2882T (95.1 %) and Sphingomonas dokdonesis KCTC 12541T (95.1 %). The chemotaxonomic characteristics of strain 9PNM-6T were consistent with those of the genus Sphingomonas. The predominant respiratory quinone was identified as ubiquinone Q-10, the major polyamine as sym-homospermidine, and the major cellular fatty acids as C18:1 ω7c, C16:0, C16:1 ω7c and/or C16:1 ω6c and C14:0 2-OH. The major polar lipids are sphingoglycolipid, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatideylcholine, an unidentified phospholipid and four unidentified aminolipids. The genomic DNA G+C content of strain 9PNM-6T was determined to be 69.2 ± 0.6 mol%. Based on comparative analyses of morphological, physiological and chemotaxonomic data, and levels of DNA–DNA relatedness values, strain 9PNM-6T is considered to represent a novel species of the genus Sphingomonas, for which the name Sphingomonas gimensis sp. nov. (Type strain 9PNM-6T = GIMCC 1.655T = CGMCC 1.12671T = DSM 27569T) is proposed.  相似文献   

17.
A Gram-negative, aerobic, motile by means of single polar flagellum, short rod-shaped marine bacterium, designated strain E418T, was isolated from the spines on the body surface of starfish Acanthaster planci in the Xisha islands, China. Cells of strain E418T were found to grow optimally at pH 7–8, at 25–37 °C, and in the presence of 2–5 % (w/v) NaCl. Phylogenetic analysis based on the comparison of 16S rRNA gene sequences revealed that strain E418T is a member of the genus Pseudoalteromonas. The closest relative to this strain was found to be P. ruthenica LMG 19699T, with a similarity level of 97.7 %. DNA relatedness between the novel isolate and this phylogenetically related species was 57.4 %. Strain E418T decomposed Tween 80, gelatin, and casein, but was unable to decompose starch and grow on DNase Agar. The cellular fatty acid profile consisted of significant amounts of C16:1ω7c/C16:1ω6c, C18:1ω7c/C18:1ω6c, C16:0, and C17:1ω8c. The G+C content of DNA of this strain was determined to be 46.7 mol%. Phenotypic characteristics, phylogenetic analysis and DNA–DNA relatedness data suggest that strain E418T represents a novel species of the genus Pseudoalteromonas, for which the name Pseudoalteromonas xishaensis sp. nov. is proposed. The type strain of P. xishaensis is strain E418T (DSM 25588T = NBRC 108846T = CCTCC AB 2011177T).  相似文献   

18.
Thirteen coagulase-negative, oxidase-negative, and novobiocin-susceptible staphylococci were isolated from human clinical specimens. The isolates were differentiated from known staphylococcal species on the basis of 16S rRNA, hsp60, rpoB, dnaJ, tuf, and gap gene sequencing, automated ribotyping, (GTG)5-PCR fingerprinting, and MALDI-TOF MS analysis. Phylogenetic analysis based on the 16S rRNA gene sequence indicated phylogenetic relatedness of the analyzed strains to Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus devriesei, and Staphylococcus lugdunensis. DNA–DNA hybridization experiments between representative strains CCM 8418T, CCM 8421T, and the closest phylogenetic neighbors confirmed that the isolates represent novel Staphylococcus species, for which the name Staphylococcus petrasii sp. nov. is proposed. Genotypic and phenotypic analyses unambiguously split the strains into two closely related subclusters. Based on the results, two novel subspecies S. petrasii subsp. petrasii subsp. nov. and S. petrasii subsp. croceilyticus subsp. nov. are proposed, with type strains CCM 8418T (=CCUG 62727T) and CCM 8421T (=CCUG 62728T), respectively.  相似文献   

19.
A Gram-positive, facultative anaerobic, motile, endospore-forming rod strain, designated DX-4T, was isolated from an electrochemically active biofilm. Growth occurred at 30–65 °C (optimum 55 °C), at pH 6.0–8.5 (optimum pH 7.0–7.5) and with <6 % (w/v) NaCl. Cells were catalase- and oxidase-positive. The main respiratory quinone was MK-7, the predominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol mannoside, and unidentified aminophospholipid, the DNA G+C content was 38.6 mol% and the major fatty acids (>5 %) were iso-C15:0 (38.9 %), iso-C17:0 (30.5 %), iso-C16:0 (5.6 %), and anteiso-C17:0 (5.2 %). The phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain DX-4T is a member of the genus Bacillus. The results of phenotypic, chemotaxonomic, and genotypic analyses clearly indicated that strain DX-4T represents a novel species, for which the name Bacillus borbori sp. nov. is proposed. The type strain is DX-4T (= CCTCC AB2012196T = KCTC 33103T).  相似文献   

20.
A novel moderately thermophilic bacterium, strain STGHT, was isolated from Severo-Stavropolskoye underground gas storage (Russia). Cells of strain STGHT were spore-forming motile straight rods 0.3 μm in diameter and 2.0–4.0 μm in length having a Gram-positive cell wall structure. The temperature range for growth was 36–65 °C, with an optimum at 50–52 °C. The pH range for growth was 5.5–8.0, with an optimum at pH 7.0–7.5. Growth of strain STGHT was observed at NaCl concentrations ranging from 0 to 4.0 % (w/v) with an optimum at 1.0 % (w/v). Strain STGHT grew anaerobically by reduction of nitrate, thiosulfate, S0 and AQDS using a number of complex proteinaceous compounds, organic acids and carbohydrates as electron donors. Nitrate was reduced to nitrite; thiosulfate and sulfur were reduced to sulfide. It also was able to ferment pyruvate, glucose, fructose, and maltose. The strain STGHT did not grow under aerobic conditions during incubation with atmospheric concentration of oxygen but was able to microaerobic growth (up to 10 % of oxygen in gas phase). The G+C content of DNA of strain STGHT was 34.8 mol%. 16S rRNA gene sequence analysis revealed that the isolated organism belongs to the class Bacilli. We propose to assign strain STGHT to a new species of a novel genus Tepidibacillus fermentans gen. nov., sp.nov. The type strain is STGHT (=DSM 23802T, =VKM B-2671T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号