首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite antibody-dependent cellular cytotoxicity (ADCC) responses being implicated in protection from HIV-1 infection, there is limited evidence that they control virus replication. The high mutability of HIV-1 enables the virus to rapidly adapt, and thus evidence of viral escape is a very sensitive approach to demonstrate the importance of this response. To enable us to deconvolute ADCC escape from neutralizing antibody (nAb) escape, we identified individuals soon after infection with detectable ADCC responses, but no nAb responses. We evaluated the kinetics of ADCC and nAb responses, and viral escape, in five recently HIV-1-infected individuals. In one individual we detected viruses that escaped from ADCC responses but were sensitive to nAbs. In the remaining four participants, we did not find evidence of viral evolution exclusively associated with ADCC-mediating non-neutralizing Abs (nnAbs). However, in all individuals escape from nAbs was rapid, occurred at very low titers, and in three of five cases we found evidence of viral escape before detectable nAb responses. These data show that ADCC-mediating nnAbs can drive immune escape in early infection, but that nAbs were far more effective. This suggests that if ADCC responses have a protective role, their impact is limited after systemic virus dissemination.  相似文献   

2.
DNA vaccination is an effective means of eliciting strong antibody responses to a number of viral antigens. However, DNA immunization alone has not generated persistent, high-titer antibody and neutralizing antibody responses to human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env). We have previously reported that DNA-primed anti-Env antibody responses can be augmented by boosting with Env-expressing recombinant vaccinia viruses. We report here that recombinant Env protein provides a more effective boost of DNA-initiated antibody responses. In rabbits primed with Env-expressing plasmids, protein boosting increased titer, persistence, neutralizing activity, and avidity of anti-Env responses. While titers increased rapidly after boosting, avidity and neutralizing activity matured more slowly over a 6-month period following protein boosting. DNA priming and protein immunization with HIV-1 HXB-2 Env elicited neutralizing antibody for T cell line-adapted, but not primary isolate, viruses. The most effective neutralizing antibody responses were observed after priming with plasmids which expressed noninfectious virus-like particles. In contrast to immunizations with HIV-1 Env, DNA immunizations with the influenza virus hemagglutinin glycoprotein did not require a protein boost to achieve high-titer antibody with good avidity and persistence.  相似文献   

3.
HIV-1-specific cytotoxic T lymphocytes(CTLs) and neutralizing antibodies(NAbs) are present during chronic infection, but the relative contributions of these effector mechanisms to viral containment remain unclear. Here, using an in vitro model involving autologous CD4+ T cells,primary HIV-1 isolates, HIV-1-specific CTLs, and neutralizing monoclonal antibodies, we show that b12, a potent and broadly neutralizing monoclonal antibody to HIV-1, was able to block viral infection when preincubated with virus prior to infection, but was much less effective than CTLs at limiting virus replication when added to infected cell cultures. However, the same neutralizing antibody was able to contain viruses by antibody-dependent cell-mediated virus inhibition in vitro,which was mediated by natural killer cells(NKs) and dependent on an Fc-Fc receptor interaction.Meanwhile, bulk CTLs from HIV-1 controllers were more effective in suppression of virus replication than those from progressors. These findings indicate that control of HIV-1 replication in activated CD4~+ T cells is ineffectively mediated by neutralizing antibodies alone, but that both CTLs and antibody-dependent NK-mediated immune mechanisms contribute to viral containment. Our study systemically compared three major players in controlling HIV-1 infection, CTLs, NAbs, and NKs, in an autologous system and highlighted the multifactorial mechanisms for viral containment and vaccine success.  相似文献   

4.
Investigating the incidence and prevalence of HIV-1 superinfection is challenging due to the complex dynamics of two infecting strains. The superinfecting strain can replace the initial strain, be transiently expressed, or persist along with the initial strain in distinct or in recombined forms. Various selective pressures influence these alternative scenarios in different HIV-1 coding regions. We hypothesized that the potency of the neutralizing antibody (NAb) response to autologous viruses would modulate viral dynamics in env following superinfection in a limited set of superinfection cases. HIV-1 env pyrosequencing data were generated from blood plasma collected from 7 individuals with evidence of superinfection. Viral variants within each patient were screened for recombination, and viral dynamics were evaluated using nucleotide diversity. NAb responses to autologous viruses were evaluated before and after superinfection. In 4 individuals, the superinfecting strain replaced the original strain. In 2 individuals, both initial and superinfecting strains continued to cocirculate. In the final individual, the surviving lineage was the product of interstrain recombination. NAb responses to autologous viruses that were detected within the first 2 years of HIV-1 infection were weak or absent for 6 of the 7 recently infected individuals at the time of and shortly following superinfection. These 6 individuals had detectable on-going viral replication of distinct superinfecting virus in the env coding region. In the remaining case, there was an early and strong autologous NAb response, which was associated with extensive recombination in env between initial and superinfecting strains. This extensive recombination made superinfection more difficult to identify and may explain why the detection of superinfection has typically been associated with low autologous NAb titers.  相似文献   

5.
The current lack of envelope glycoprotein immunogens that elicit broadly neutralizing antibody responses remains a major challenge for human immunodeficiency virus type 1 (HIV-1) vaccine development. However, the recent design and construction of stable soluble gp140 trimers have shown that some neutralization breadth can be achieved by using immunogens that better mimic the functional viral spike complex. The use of genetic delivery systems to drive the in vivo expression of such immunogens for the stimulation of neutralizing antibodies against HIV-1 may offer advantages by maintaining the quaternary structure of the trimeric envelope glycoproteins. Here, we describe the biochemical and immunogenic properties of soluble HIV-1 envelope glycoprotein trimers expressed by recombinant Semliki Forest virus (rSFV). The results presented here demonstrate that rSFV supports the expression of stable soluble gp140 trimers that retain recognition by conformationally sensitive antibodies. Further, we show that rSFV particle immunizations efficiently primed immune responses as measured after a single boost with purified trimeric gp140 protein, resulting in a Th1-biased antibody response. This differed from the Th2-biased antibody response obtained after repeated immunizations with purified gp140 protein trimers. Despite this difference, both regimens stimulated neutralizing antibody responses of similar potency. This suggests that rSFV may be a useful component of a viral vector prime-protein boost regimen aimed at stimulating both cell-mediated immune responses and neutralizing antibodies against HIV-1.  相似文献   

6.
The effect of Highly Active Antiretroviral Therapy (HAART) on binding and neutralizing antibody responses to human immunodeficiency virus type-1 (HIV-1) during primary and chronic infection was investigated. Seven patients HAART treated during primary infection, six HAART treated during chronic infection and five patients treated only with ZVD (Zidovudine) were analysed. HAART inhibited the development of anti env antibodies during primary infection. Administering HAART during primary infection usually did not substantially affect the development of weak neutralizing antibody responses against autologous virus. However, we demonstrated that very early treatment, during seroconversion, induce in some cases, a strong neutralizing antibodies against autologous virus. These results may be relevant for understanding how HAART may elicit a strong protective responses and may be useful in developing new strategies designed to achieve a long term control of the HIV infection.  相似文献   

7.
Characterization of the neutralizing interaction between antibody and virus is hindered by the nonsynchronized progression of infection in cell cultures. Discrete steps of the viral entry sequence cannot be discerned, and thus, the mode of antibody-mediated interference with virus infectivity remains undefined. Here, we magnetically synchronize the motion and cell attachment of human immunodeficiency virus type 1 (HIV-1) to monitor the progression of neutralization, both in solution and following virus attachment to the cell. By simultaneous transfer of all viral particles from reaction solution with antibody to the cell-bound state, the precise rate of neutralization of cell-free virus could be determined for each antibody. HIV-1 neutralization by both monoclonal and polyclonal antibody preparations followed distinct pseudo-first-order kinetics. For all antibodies, cell types, and HIV-1 strains examined, postattachment interference served a major role in the neutralizing effect. To monitor the progression of postattachment interference, we synchronized the entry process at initiation and measured the escape of cell-bound virus from antibody. We found that different antibodies neutralized the virus over different time frames during the entry phase. Virus was observed to progress through a sequence of shifting sensitivities to different antibodies during entry, suggested here to correlate with the exposure time of the target epitope on receptor-activated viral envelope proteins. Thus, by monitoring the progression of HIV-1 entry under synchronized conditions, we identify a new and significant determinant of antibody neutralization capacity, namely, the time frames for neutralization during the course of the viral entry phase.  相似文献   

8.
A window of opportunity for immune responses to extinguish human immunodeficiency virus type 1 (HIV-1) exists from the moment of transmission through establishment of the latent pool of HIV-1-infected cells. A critical time to study the initial immune responses to the transmitted/founder virus is the eclipse phase of HIV-1 infection (time from transmission to the first appearance of plasma virus), but, to date, this period has been logistically difficult to analyze. To probe B-cell responses immediately following HIV-1 transmission, we have determined envelope-specific antibody responses to autologous and consensus Envs in plasma donors from the United States for whom frequent plasma samples were available at time points immediately before, during, and after HIV-1 plasma viral load (VL) ramp-up in acute infection, and we have modeled the antibody effect on the kinetics of plasma viremia. The first detectable B-cell response was in the form of immune complexes 8 days after plasma virus detection, whereas the first free plasma anti-HIV-1 antibody was to gp41 and appeared 13 days after the appearance of plasma virus. In contrast, envelope gp120-specific antibodies were delayed an additional 14 days. Mathematical modeling of the earliest viral dynamics was performed to determine the impact of antibody on HIV replication in vivo as assessed by plasma VL. Including the initial anti-gp41 immunoglobulin G (IgG), IgM, or both responses in the model did not significantly impact the early dynamics of plasma VL. These results demonstrate that the first IgM and IgG antibodies induced by transmitted HIV-1 are capable of binding virions but have little impact on acute-phase viremia at the timing and magnitude that they occur in natural infection.  相似文献   

9.
Chimeric simian-human immunodeficiency viruses (SHIV) containing the human immunodeficiency virus type 1 (HIV-1) tat, rev, env, and, in some cases, vpu genes were inoculated into eight cynomolgus monkeys. Viruses could be consistently recovered from the CD8-depleted peripheral blood lymphocytes of all eight animals for at least 2 months. After this time, virus isolation varied among the animals, with viruses continuing to be isolated from some animals beyond 600 days after inoculation. The level of viral RNA in plasma during acute infection and the frequency of virus isolation after the initial 2-month period were higher for the Vpu-positive viruses. All of the animals remained clinically healthy, and the absolute numbers of CD4-positive lymphocytes were stable. Antibodies capable of neutralizing HIV-1 were generated at high titers in animals exhibiting the greatest consistency of virus isolation. Strain-specific HIV-1-neutralizing antibodies were initially elicited, and then more broadly neutralizing antibodies were elicited. env sequences from two viruses isolated more than a year after infection were analyzed. In the Vpu-negative SHIV, for which virus loads were lower, a small amount of env variation, which did not correspond to that found in natural HIV-1 variants, was observed. By contrast, in the Vpu-positive virus, which was consistently isolated from the host animal, extensive variation of the envelope glycoproteins in the defined variable gp120 regions was observed. Escape from neutralization by CD4 binding site monoclonal antibodies was observed for the viruses with the latter envelope glycoproteins, and the mechanism of escape appears to involve decreased binding of the antibody to the monomeric gp120 glycoproteins. The consistency with which SHIV infection of cynomolgus monkeys is initiated and the similarities in the neutralizing antibody response to SHIV and HIV-1 support the utility of this model system for the study of HIV-1 prophylaxis.  相似文献   

10.
Proposals for the use of live attenuated human immunodeficiency virus (HIV) type 1 (HIV-1) as a vaccine candidate in humans have been based on the protection afforded by attenuated simian immunodeficiency virus in the macaque model. Although it is not yet known if this strategy could succeed in humans, a study of the Sydney Blood Bank Cohort (SBBC), infected with an attenuated HIV-1 quasispecies with natural nef and nef/long terminal repeat deletions for up to 17 years, could provide insights into the long-term immunological consequences of living with an attenuated HIV-1 infection. In this study, HIV-specific cytoxic T-lymphocyte (CTL) responses in an SBBC donor and six recipients were examined over a 3-year period with enzyme-linked immunospot, tetrameric complex binding, direct CTL lysis, and CTL precursor level techniques. Strong HIV-specific CTL responses were detected in four of seven patients, including one patient with an undetectable viral load. Two of seven patients had weak CTL responses, and in one recipient, no HIV-specific CTLs were detected. High levels of circulating effector and memory HIV-specific CTLs can be maintained for prolonged periods in these patients despite very low viral loads.  相似文献   

11.
The development of an effective human immunodeficiency virus (HIV-1) vaccine is a high global health priority. Soluble native-like HIV-1 envelope glycoprotein trimers (Env), including those based on the SOSIP design, have shown promise as vaccine candidates by inducing neutralizing antibody responses against the autologous virus in animal models. However, to overcome HIV-1’s extreme diversity a vaccine needs to induce broadly neutralizing antibodies (bNAbs). Such bNAbs can protect non-human primates (NHPs) and humans from infection. The prototypic BG505 SOSIP.664 immunogen is based on the BG505 env sequence isolated from an HIV-1-infected infant from Kenya who developed a bNAb response. Studying bNAb development during natural HIV-1 infection can inform vaccine design, however, it is unclear to what extent vaccine-induced antibody responses to Env are comparable to those induced by natural infection. Here, we compared Env antibody responses in BG505 SOSIP-immunized NHPs with those in BG505 SHIV-infected NHPs, by analyzing monoclonal antibodies (mAbs). We observed three major differences between BG505 SOSIP immunization and BG505 SHIV infection. First, SHIV infection resulted in more clonal expansion and less antibody diversity compared to SOSIP immunization, likely because of higher and/or prolonged antigenic stimulation and increased antigen diversity during infection. Second, while we retrieved comparatively fewer neutralizing mAbs (NAbs) from SOSIP-immunized animals, these NAbs targeted more diverse epitopes compared to NAbs from SHIV-infected animals. However, none of the NAbs, either elicited by vaccination or infection, showed any breadth. Finally, SOSIP immunization elicited antibodies against the base of the trimer, while infection did not, consistent with the base being placed onto the virus membrane in the latter setting. Together these data provide new insights into the antibody response against BG505 Env during infection and immunization and limitations that need to be overcome to induce better responses after vaccination.  相似文献   

12.
Most human immunodeficiency virus type 1 (HIV-1)-infected individuals develop an HIV-specific neutralizing antibody (NAb) response that selects for escape variants of the virus. Here, we studied autologous NAb responses in five typical CCR5-using progressors in relation to viral NAb escape and molecular changes in the viral envelope (Env) in the period from seroconversion until after AIDS diagnosis. In sera from three patients, high-titer neutralizing activity was observed against the earliest autologous virus variants, followed by declining humoral immune responses against subsequent viral escape variants. Autologous neutralizing activity was undetectable in sera from two patients. Patients with high-titer neutralizing activity in serum showed the strongest positive selection pressure on Env early in infection. In the initial phase of infection, gp160 length and the number of potential N-linked glycosylation sites (PNGS) increased in viruses from all patients. Over the course of infection, positive selection pressure declined as the NAb response subsided, coinciding with reversions of changes in gp160 length and the number of PNGS. A number of identical amino acid changes were observed over the course of infection in the viral quasispecies of different patients. Our results indicate that although neutralizing autologous humoral immunity may have a limited effect on the disease course, it is an important selection pressure in virus evolution early in infection, while declining HIV-specific humoral immunity in later stages may coincide with reversion of NAb-driven changes in Env.  相似文献   

13.
Repeated immunizations of goats, horses, or chimpanzees with envelope glycoprotein gp120 isolated from human immunodeficiency virus type 1 (HIV-1) resulted in type-specific neutralizing-antibody responses, which began to decay approximately 20 days following the administration of antigen. This was true repeatedly for serum samples from animals hyperimmunized with gp120s from either the HTLV-IIIB (IIIB) or the envelope-divergent HTLV-IIIRF (RF) HIV-1 isolates. Animals previously immunized with the IIIB gp120 were then inoculated with purified RF gp120. The first response in these animals was an anamnestic resurgence of neutralizing antibody to IIIB without detectable neutralizing antibody for RF. However, with later RF gp120 boosts, the IIIB neutralizing-antibody titers fell and an RF type-specific neutralizing-antibody response developed. When assessed with other HIV-1 variants, no group-specific neutralizing antibody was seen in any of the vaccination protocols evaluated. These results will pose real obstacles in the development of an effective vaccine for HIV.  相似文献   

14.
HIV-2 has a lower pathogenicity and transmission rate than HIV-1. Neutralizing antibodies could be contributing to these observations. Here we explored side by side the potency and breadth of intratype and intertype neutralizing activity (NAc) in plasma of 20 HIV-1-, 20 HIV-2-, and 11 dually HIV-1/2 (HIV-D)-seropositive individuals from Guinea-Bissau, West Africa. Panels of primary isolates, five HIV-1 and five HIV-2 isolates, were tested in a plaque reduction assay using U87.CD4-CCR5 cells as targets. Intratype NAc in HIV-2 plasma was found to be considerably more potent and also broader than intratype NAc in HIV-1 plasma. This indicates that HIV-2-infected individuals display potent type-specific neutralizing antibodies, whereas such strong type-specific antibodies are absent in HIV-1 infection. Furthermore, the potency of intratype NAc was positively associated with the viral load of HIV-1 but not HIV-2, suggesting that NAc in HIV-1 infection is more antigen stimulation dependent than in HIV-2 infection, where plasma viral loads typically are at least 10-fold lower than in HIV-1 infection. Intertype NAc of both HIV-1 and HIV-2 infections was, instead, of low potency. HIV-D subjects had NAc to HIV-2 with similar high potency as singly HIV-2-infected individuals, whereas neutralization of HIV-1 remained poor, indicating that the difference in NAc between HIV-1 and HIV-2 infections depends on the virus itself. We suggest that immunogenicity and/or antigenicity, meaning the neutralization phenotype, of HIV-2 is distinct from that of HIV-1 and that HIV-2 may display structures that favor triggering of potent neutralizing antibody responses.  相似文献   

15.
Information about neutralizing antibody responses in subtype C-infected individuals is limited, even though this viral subtype causes the majority of AIDS cases worldwide. Here we compared the course and magnitude of the autologous neutralizing antibody (NAb) response against viral envelope (Env) glycoproteins present during acute and early infection with subtypes B and C human immunodeficiency virus type 1 (HIV-1). NAb responses were evaluated in 6 subtype B-infected and 11 subtype C-infected subjects over a mean evaluation period of 25 months using a pseudovirus reporter gene assay. All subjects in the C cohort were infected through heterosexual contact, while five of the six subjects in the B cohort were infected via male-to-male contact. The kinetics and magnitude of the NAb responses varied among subjects in the B and C cohorts; however, the median 50% inhibitory concentration (IC(50) titer) reached by antibody in the plasma of subtype C-infected subjects, overall, was 3.5-fold higher than in the subtype B-infected subjects (P = 0.06). The higher titers of NAbs in the C cohort were associated with viruses having significantly shorter amino acid length (P = 0.002) in the V1 to V4 region of the surface Env glycoprotein, gp120, compared to the B cohort. Despite the potency of the autologous subtype C NAb response, it was not directed against cross-neutralizing epitopes. These data demonstrate that subtype C Envs elicit a potent yet restricted NAb response early in infection that frequently reaches IC(50) titers in excess of 1:1,000 and suggest that clade-specific differences may exist in Env immunogenicity or susceptibility to neutralization.  相似文献   

16.
A major goal of human immunodeficiency virus type 1 (HIV-1) vaccine efforts is the design of Envelope (Env)-based immunogens effective at eliciting heterologous or broad neutralizing antibodies (NAbs). We hypothesized that programming the B-cell response could be achieved by sequentially exposing the host to a collection of env variants representing the viral quasispecies members isolated from an individual that developed broad NAbs over time. This ordered vaccine approach (sequential) was compared to exposure to a cocktail of env clones (mixture) and to a single env variant (clonal). The three strategies induced comparable levels of the autologous and heterologous neutralization of tier 1 pseudoviruses. Sequential and mixture exposure to quasispecies led to epitope targeting similar to that observed in the simian-human immunodeficiency virus (SHIV)-infected animal from which the env variants were cloned, while clonal and sequential exposure led to greater antibody maturation than the mixture. Therefore, the sequential vaccine approach best replicated the features of the NAb response observed in that animal. This study is the first to explore the use of a collection of HIV-1 env quasispecies variants as immunogens and to present evidence that it is possible to educate the B-cell response by sequential exposure to native HIV-1 quasispecies env variants derived from an individual with a broadened NAb response.  相似文献   

17.
Long-term delivery of potent broadly-neutralizing antibodies is a promising approach for the prevention of HIV-1 infection. We used AAV vector intramuscularly to deliver anti-SIV monoclonal antibodies (mAbs) in IgG1 form to rhesus monkeys. Persisting levels of delivered mAb as high as 270 μg/ml were achieved. However, host antibody responses to the delivered antibody were observed in 9 of the 12 monkeys and these appeared to limit the concentration of delivered antibody that could be achieved. This is reflected in the wide range of delivered mAb concentrations that were achieved: 1–270 μg/ml. Following repeated, marginal dose, intravenous challenge with the difficult-to-neutralize SIVmac239, the six monkeys in the AAV-5L7 IgG1 mAb group showed clear protective effects despite the absence of detectable neutralizing activity against the challenge virus. The protective effects included: lowering of viral load at peak height; lowering of viral load at set point; delay in the time to peak viral load from the time of the infectious virus exposure. All of these effects were statistically significant. In addition, the monkey with the highest level of delivered 5L7 mAb completely resisted six successive SIVmac239 i.v. challenges, including a final challenge with a dose of 10 i.v. infectious units. Our results demonstrate the continued promise of this approach for the prevention of HIV-1 infection in people. However, the problem of anti-antibody responses will need to be understood and overcome for the promise of this approach to be effectively realized.  相似文献   

18.
To test the hypothesis that changing neutralizing antibody responses against human immunodeficiency virus type 1 (HIV-1) during chronic infection were a response to emergence of neutralization escape mutants, we cloned expressed and characterized envelope clones from patients in the Multicenter AIDS Cohort Study (MACS). Pseudotyped HIV-1 envelope clones obtained from differing time points were assessed for sensitivity to neutralization by using sera from different times from the same and different patients. Clones from early and late time points during chronic infection had similar neutralization sensitivity, and neutralizing antibody responses cross-reacted with early, late, and heterologous envelopes. The potential for broadly effective HIV-1 immunization is supported.  相似文献   

19.
The development of anti-human immunodeficiency virus (anti-HIV) neutralizing antibodies and the evolution of the viral envelope glycoprotein were monitored in rhesus macaques infected with a CCR5-tropic simian/human immunodeficiency virus (SHIV), SHIVSF162P4. Homologous neutralizing antibodies developed within the first month of infection in the majority of animals, and their titers were independent of the extent and duration of viral replication during chronic infection. The appearance of homologous neutralizing antibody responses was preceded by the appearance of amino acid changes in specific variable and conserved regions of gp120. Amino acid changes first appeared in the V1, V2, C2, and V3 regions and subsequently in the C3, V4, and V5 regions. Heterologous neutralizing antibody responses developed over time only in animals with sustained plasma viremia. Within 2 years postinfection the breadth of these responses was as broad as that observed in certain patients infected with HIV type 1 (HIV-1) for over a decade. Despite the development of broad anti-HIV-1 neutralizing antibody responses, viral replication persisted in these animals due to viral escape. Our studies indicate that cross-reactive neutralizing antibodies are elicited in a subset of SHIVSF162P4 infected macaques and that their development requires continuous viral replication for extended periods of time. More importantly, their late appearance does not prevent progression to disease. The availability of an animal model where cross-reactive anti-HIV neutralizing antibodies are developed may facilitate the identification of virologic and immunologic factors conducive to the development of such antibodies.  相似文献   

20.
Human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T-cell responses generated during acute infection play a critical role in the initial control of viremia. However, little is known about the viral T-cell epitopes targeted during acute infection or about their hierarchy in appearance and relative immunodominance over time. In this study, HIV-1-specific CD8+ T-cell responses in 18 acutely infected individuals expressing HLA-A3 and/or -B7 were characterized. Detailed analysis of CD8 responses in one such person who underwent treatment of acute infection followed by reexposure to HIV-1 through supervised treatment interruptions (STI) revealed recognition of only two cytotoxic T-lymphocyte (CTL) epitopes during symptomatic acute infection. HIV-1-specific CD8+ T-cell responses broadened significantly during subsequent exposure to the virus, ultimately targeting 27 distinct CTL epitopes, including 15 different CTL epitopes restricted by a single HLA class I allele (HLA-A3). The same few peptides were consistently targeted in an additional 17 persons expressing HLA-A3 and/or -B7 during acute infection. These studies demonstrate a consistent pattern in the development of epitope-specific responses restricted by a single HLA allele during acute HIV-1 infection, as well as persistence of the initial pattern of immunodominance during subsequent STI. In addition, they demonstrate that HIV-1-specific CD8+ T-cell responses can ultimately target a previously unexpected and unprecedented number of epitopes in a single infected individual, even though these are not detectable during the initial exposure to virus. These studies have important implications for vaccine design and evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号