首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparative mapping in grasses. Oat relationships   总被引:8,自引:0,他引:8  
The development of RFLP linkage maps in hexaploid and diploid oat allows us to study genetic relationships of these species at the DNA level. In this report, we present the extension of a previously developed diploid oat map (Avena atlantica x A. hirtula) and its molecular-genetic relationships with wheat, rice and maize. Examination of 92–99% of the length of the oat genome map with probes common to Triticeae species, rice or maize showed that 84, 79 and 71%, respectively, was conserved between these species and oat. Generally, the orders of loci among chromosomes homoeologous to oat chromosomes A and D were the most conserved and those of chromosomes homoeologous to oat chromosome G were the least conserved. Conservation was observed for blocks ranging from whole chromosomes 101 cM long to small segments 2.5 cM long containing two loci. Comparison of the homoeologous segments of Triticeae, rice and maize relative to oat indicated that certain regions have been maintained in all four species. The relative positions of major genes governing traits such as seed storage proteins and resistance to leaf rusts have been conserved between cultivated oat and Triticeae species. Also, the locations of three vernalization/or photo-period response genes identified in hexaploid oat correspond to the locations of similar genes in homoeologous chromosomes of wheat, rice or maize. The locations of the centromeres for six of the seven oat chromosomes were estimated based on the homoeologous segments between oat and Triticeae chromosomes.  相似文献   

2.
A cultivated oat linkage map was developed using a recombinant inbred population of 136 F6:7 lines from the cross 'Ogle' x 'TAM O-301'. A total of 441 marker loci, including 355 restriction fragment length polymorphism (RFLP) markers, 40 amplified fragment length polymorphisms (AFLPs), 22 random amplified polymorphic DNAs (RAPDs), 7 sequence-tagged sites (STSs), 1 simple sequence repeat (SSR), 12 isozyme loci, and 4 discrete morphological traits, was mapped. Fifteen loci remained unlinked, and 426 loci produced 34 linkage groups (with 2-43 loci each) spanning 2049 cM of the oat genome (from 4.2 to 174.0 cM per group). Comparisons with other Avena maps revealed 35 genome regions syntenic between hexaploid maps and 16-34 regions conserved between diploid and hexaploid maps. Those portions of hexaploid oat maps that could be compared were completely conserved. Considerable conservation of diploid genome regions on the hexaploid map also was observed (89-95%); however, at the whole-chromosome level, colinearity was much lower. Comparisons among linkage groups, both within and among Avena mapping populations, revealed several putative homoeologous linkage group sets as well as some linkage groups composed of segments from different homoeologous groups. The relationships between many Avena linkage groups remain uncertain, however, due to incomplete coverage by comparative markers and to complications introduced by genomic duplications and rearrangements.  相似文献   

3.
C A Kremer  M Lee  J B Holland 《Génome》2001,44(2):192-204
A population of 100 F6-derived recombinant inbred lines was developed from the cross of two diploid (2n = 14) Avena accessions, CI3815 (A. strigosa) and C11994 (A. wiestii). Restriction fragment length polymorphism (RFLP) probes previously mapped in other grass species were used to develop a framework linkage map suitable for comparative genetics. Nine linkage groups were identified among the 181 loci mapped, with an average interlocus distance of 5 cM, and a total genetic map length of 880 cM. A cluster of five tightly linked crown rust resistance genes (Pca) was localized on the map, as were five loci identified by disease resistance gene analogs from maize, sorghum, and wheat. None of the five loci identified by the gene analogs were linked to the Pca locus. The linkage map was compared with previously published diploid and hexaploid linkage maps in an attempt to identify homologous or homoeologous chromosomes between populations. Locus orders and linkage relationships were poorly conserved between the A. strigosa x A. wiestii map and other Avena maps. In spite of mapping complications due to duplications within a basic genome a well as the allopolyploid constitution of many Avena species, such map comparisons within Avena provide further evi dence of substantial chromosomal rearrangement between species within Avena.  相似文献   

4.
Crown rust resistance is an important selection criterion in ryegrass breeding. The disease, caused by the biotrophic fungus Puccinia coronata, causes yield losses and reduced quality. In this study, we used linkage mapping and QTL analysis to unravel the genomic organization of crown rust resistance in a Lolium perenne population. The progeny of a pair cross between a susceptible and a resistant plant were analysed for crown rust resistance. A linkage map, consisting of 227 loci (AFLP, SSR, RFLP and STS) and spanning 744 cM, was generated using the two-way pseudo-testcross approach from 252 individuals. QTL analysis revealed four genomic regions involved in crown rust resistance. Two QTLs were located on LG1 (LpPc4 and LpPc2) and two on LG2 (LpPc3 and LpPc1). They explain 12.5, 24.9, 5.5 and 2.6% of phenotypic variance, respectively. An STS marker, showing homology to R genes, maps in the proximity of LpPc2. Further research is, however, necessary to check the presence of functional R genes in this region. Synteny at the QTL level between homologous groups of chromosomes within the Gramineae was observed. LG1 and LG2 show homology with group A and B chromosomes of oat on which crown rust-resistance genes have been identified, and with the group 1 chromosomes of the Triticeae, on which leaf rust-resistance genes have been mapped. These results are of major importance for understanding the molecular background of crown rust resistance in ryegrasses. The identified markers linked to crown rust resistance have the potential for use in marker-assisted breeding.  相似文献   

5.
Group 1 chromosomes of the Triticeae tribe have been studied extensively because many important genes have been assigned to them. In this paper, chromosome 1 linkage maps of Triticum aestivum, T. tauschii, and T. monococcum are compared with existing barley and rye maps to develop a consensus map for Triticeae species and thus facilitate the mapping of agronomic genes in this tribe. The consensus map that was developed consists of 14 agronomically important genes, 17 DNA markers that were derived from known-function clones, and 76 DNA markers derived from anonymous clones. There are 12 inconsistencies in the order of markers among seven wheat, four barley, and two rye maps. A comparison of the Triticeae group 1 chromosome consensus map with linkage maps of homoeologous chromosomes in rice indicates that the linkage maps for the long arm and the proximal portion of the short arm of group 1 chromosomes are conserved among these species. Similarly, gene order is conserved between Triticeae chromosome 1 and its homoeologous chromosome in oat. The location of the centromere in rice and oat chromosomes is estimated from its position in homoeologous group 1 chromosomes of Triticeae.  相似文献   

6.

Key message

Oat crown rust is one of the most damaging diseases of oat. We identified a new source of resistance and developed KASP and TaqMan markers for selection in breeding programs.

Abstract

A new highly effective resistance to oat crown rust (Puccinia coronata f. sp. avenae) was identified in the diploid oat Avena strigosa PI 258731 and introgressed into hexaploid cultivated oat. Young plants with this resistance show moderate susceptibility, whereas older plant tissues and adult plants are resistant with no virulent isolates encountered in over 8 years of testing. Resistance was incorporated into hexaploid oat by embryo rescue, colchicine chromosome doubling followed by backcrosses with a hexaploid parent, and selection for stable transmission of resistance. To mitigate flag leaf and panicle chlorosis/necrosis associated with the resistance, crosses were made with derived resistant lines to breeding lines of divergent parentage followed by selection. Subsequently, two F2 sister lines, termed MNBT1020-1 and MNBT1021-1, were identified in which the chlorosis/necrosis was reduced. These two lines performed well in replicated multi-location state trials in 2015 and 2016 out-yielding all cultivar entries. Segregating F2:3 plants resulting from crosses of MNBT lines to susceptible parents were genotyped with the oat 6K SNP array, and SNP loci with close linkage to the resistance were identified. KASP assays generated from linked SNPs showed accurate discrimination of the resistance in derivatives of the resistant MNBT lines crossed to susceptible breeding lines. A TaqMan marker was developed and correctly identified homozygous resistance in over 95% of 379 F4 plants when rust was scored in F4:5 plants in the field. Thus, a novel highly effective resistance and associated molecular markers are available for use in breeding, genetic analysis, and functional studies.
  相似文献   

7.
Oat receptor-like kinase gene sequences, homologous to the Lrk10 gene from wheat (Triticum aestivum L.), were mapped in oat (Avena sativa L.). PCR primers designed from the wheat Lrk10 were used to produce ALrk10 from oat. Two DNA sequences, ALrk1A1 and ALrk4A5, were produced from primers designed from coding and noncoding regions of ALrk10. Their use as RFLP probes indicated that the kinase genes mapped to four loci on different hexaploid oat 'Kanota' x 'Ogle' linkage groups (4_12, 5, 6, and 13) and to a fifth locus unlinked to other markers. Three of these linkage groups contain a region homologous to the short arm of chromosome I of wheat and the fourth contains a region homologous to chromosome 3 of wheat. Analysis with several nullisomics of oat indicated that two of the map locations are on satellite chromosomes. RFLP mapping in a 'Dumont' x 'OT328' population indicated that one map location is closely linked to Pg9, a resistance gene to oat stem rust (Puccinia graminis subsp. avenae). Comparative mapping indicates this to be the region of a presumed cluster of crown rust (Puccinia coronata subsp. avenae) and stem rust resistance genes (Pg3, Pg9, Pc44, Pc46, Pc50, Pc68, Pc95, and PcX). The map position of several RGAs located on KO6 and KO3_38 with respect to Lrk10 and storage protein genes are also reported.  相似文献   

8.
Molecular mapping of wheat. Homoeologous group 2.   总被引:21,自引:0,他引:21  
A molecular-marker map of bread wheat having many markers in common with other grasses in the Gramineae family is a prerequisite for molecular level genetic studies and breeding in this crop species. We have constructed restriction fragment length polymorphism maps of the A-, B-, and D-genome chromosomes of homoeologous group 2 of hexaploid wheat (Triticum aestivum L. em. Thell) using 114 F7 lines from a synthetic x bread wheat cross and clones from 11 libraries. Chromosomes 2A, 2B, and 2D comprise 57, 60, and 56 markers and each spans about 200 cM. Comparisons between chromosomes are facilitated by 26 sets of homoeoloci. Genes mapped include a heterologous abscisic acid responsive locus cloned as pBS128, the epidermal waxiness inhibitor W21, and two presumed leaf rust and stem rust resistance genes. Anomalies suggesting ancestral rearrangements in chromosome 2B are pointed out and features of wheat group 2 chromosomes that are common to barley (Hordeum vulgare L.), rice (Oryza spp.), and T. tauschii are discussed.  相似文献   

9.
A genetic map of diploid wheat, Triticum monococcum L., involving 335 markers, including RFLP DNA markers, isozymes, seed storage proteins, rRNA, and morphological loci, is reported. T. monococcum and barley linkage groups are remarkably conserved. They differ by a reciprocal translocation involving the long arms of chromosomes 4 and 5, and paracentric inversions in the long arm of chromosomes 1 and 4; the latter is in a segment of chromosome arm 4L translocated to 5L in T. monococcum. The order of the markers in the inverted segments in the T. monococcum genome is the same as in the B and D genomes of T. aestivum L. The T. monococcum map differs from the barley maps in the distribution of recombination within chromosomes. The major 5S rRNA loci were mapped on the short arms of T. monococcum chromosomes 1 and 5 and the long arms of barley chromosomes 2 and 3. Since these chromosome arms are colinear, the major 5S rRNA loci must be subjected to positional changes in the evolving Triticeae genome that do not perturb chromosome colinearity. The positional changes of the major 5S rRNA loci in Triticeae genomes are analogous to those of the 18S-5.8S-26S rRNA loci.  相似文献   

10.
Degenerate primers based on conserved regions of the nucleotide binding site (NBS) domain (encoded by the largest group of cloned plant disease resistance genes) were used to isolate a set of 15 resistance gene analogs (RGA) from the diploid species Avena strigosa Schreb. These were grouped into seven classes on the basis of 60% or greater nucleic acid sequence identity. Representative clones were used for genetic mapping in diploid and hexaploid oats. Two RGAs were mapped at two loci of the linkage group AswBF belonging to the A. strigosa × A. wiestii Steud map, and ten RGAs were mapped at 15 loci in eight linkage groups belonging to the A. byzantina C. Koch cv. Kanota × A. sativa L. cv. Ogle map. A similar approach was used for targeting genes encoding receptor-like kinases. Three different sequences were obtained and mapped to two linkage groups of the hexaploid oat map. Associations were explored between already known disease resistance loci mapped in different populations and the RGAs. Molecular markers previously linked to crown rust and barley yellow dwarf resistance genes or quantitative trait loci were found in the Kanota × Ogle map linked to RGAs at a distance ranging from 0 cM to 20 cM. Homoeologous RGAs were found to be linked to loci either conferring resistance to different isolates of the same pathogen or to different pathogens. This suggests that these RGAs identify genome regions containing resistance gene clusters.  相似文献   

11.
Anchor probes for comparative mapping of grass genera   总被引:13,自引:0,他引:13  
 Comparative mapping of cDNA clones provides an important foundation for examining structural conservation among the chromosomes of diverse genera and for establishing hypotheses about the relationship between gene structure and function in a wide range of organisms. In this study, “anchor probes” were selected from cDNA libraries developed from rice, oat, and barley that were informative for comparative mapping in the grass family. One thousand eight hundred probes were screened on garden blots containing DNA of rice, maize, sorghum, sugarcane, wheat, barley, and oat, and 152 of them were selected as “anchors” because (1) they hybridized to the majority of target grass species based on Southern analysis, (2) they appeared to be low or single copy in rice, and (3) they helped provide reasonably good genome coverage in all species. Probes were screened for polymorphism on mapping parents, and polymorphic markers were mapped onto existing species-specific linkage maps of rice, oat, maize, and wheat. In wheat, both polymorphic and monomorphic markers could be assigned to chromosomes or chromosome arms based on hybridization to nullitetrasomic and ditelosomic stocks. Linkage among anchored loci allowed the identification of homoeologous regions of these distantly related genomes. Anchor probes were sequenced from both ends, providing an average of 260 bp in each direction, and sequences were deposited in GenBank. BLAST was used to compare the sequences with each other and with a non-redundant protein sequence database maintained at the European Molecular Biology Laboratory (EMBL). Of the anchor probes identified in this study 78% showed significant similarity to protein sequences for known genes with BLASTX scores exceeding 100. Received: 27 June 1997 / Accepted: 17 July 1997  相似文献   

12.
Genetic mapping using molecular markers such as restriction fragment length polymorphisms (RFLPs) has become a powerful tool for plant geneticists and breeders. Like many economically important polyploid plant species, detailed genetic studies of hexaploid tall fescue (Festuca arundinacea Schreb.) are complicated, and no genetic map has been established. We report here the first tall fescue genetic map. This map was generated from an F2 population of HD28-56 by Kentucky-31 and contains 108 RFLP markers. Although the two parental plants were heterozygous, the perennial and tillering growth habit, high degree of RFLP, and disomic inheritance of tall fescue enabled us to identify the segregating homologous alleles. The map covers 1274 cM on 19 linkage groups with an average of 5 loci per linkage group (LG) and 17.9 cM between loci. Mapping the homoeologous loci detected by the same probe allowed us to identify five homoeologous groups within which the gene orders were found to be generally conserved among homoeologous chromosomes. An exception was homoeologous group 5, in which only 2 of the 3 homoeologous chromosomes were identified. Using 12 genome-specific probes, we were able to assign several linkage groups to one of the three genomes (PG1G2) in tall fescue. All the loci detected by the 11 probes specific to the G1 and/or G2 genomes, with one exception, identified loci located on 4 chromosomes of two homoeologous groups (LG2a, LG2c, LG3a, and LG3c). A P-genome-specific probe was used to map a locus on LG5c. Comparative genome mapping with maize probes indicated that homoeologous group 3 and 2 chromosomes in tall fescue corresponded to maize chromosome 1. Difficulties and advantages of applying RFLP technology in polyploids with high levels of heterozygosity are discussed.Journal Series No. 12, 190  相似文献   

13.
Conventionally, the genetics of species of the family Gramineae have been studied separately. Comparative mapping using DNA markers offers a method of combining the research efforts in each species. In this study, we developed consensus maps for members of the Triticeae tribe (Triticum aestivum, T. tauschii, andHordeum spp.) and compared them to rice, maize and oat. The aneuploid stocks available in wheat are invaluable for comparative mapping because almost every DNA fragment can be allocated to a chromosome arm, thus preventing erroneous conclusions about probes that could not be mapped due to a lack of polymorphism between mapping parents. The orders of the markers detected by probes mapped in rice, maize and oat were conserved for 93, 92 and 94% of the length of Triticeae consensus maps, respectively. The chromosome segments duplicated within the maize genome by ancient polyploidization events were identified by homoeology of segments from two maize chromosomes to regions of one Triticeae chromosome. Homoeologous segments conserved across Triticeae species, rice, maize, and oat can be identified for each Triticeae chromosome. Putative orthologous loci for several simply inherited and quantitatively inherited traits in Gramineae species were identified.Communicated by H. Saedler  相似文献   

14.
P J Rayapati  V A Portyanko  M Lee 《Génome》1994,37(6):900-903
Alcohol-soluble seed storage proteins of oat (avenins) were extracted from two diploid accessions representing the A genome and separated by high-resolution acid polyacrylamide gel electrophoresis. Polymorphisms were detected for three clearly resolved protein bands. Linkage analysis of 88 F2:3 families mapped the three bands to a single locus. Integration of avenin segregation data with an RFLP linkage map constructed from the same population, mapped the avenin locus to a linkage group containing a locus conferring resistance to nine isolates of Puccinia coronata. Linkage between genes encoding alcohol-soluble seed proteins and genes for resistance to Puccinia species was also observed for the homoeologous group 1 chromosomes of barley (1H), rye (1R), wheat (1A, 1B, 1D), and chromosomes 4 and 10 of maize.  相似文献   

15.
Molecular mapping of wheat. Homoeologous group 3.   总被引:21,自引:0,他引:21  
A prerequisite for molecular level genetic studies and breeding in wheat is a molecular marker map detailing its similarities with those of other grass species in the Gramineae family. We have constructed restriction fragment length polymorphism maps of the A-, B-, and D-genome chromosomes of homoeologous group 3 of hexaploid wheat (Triticum aestivum L. em. Thell) using 114 F7-8 lines from a synthetic x bread wheat cross. The map consists of 58 markers spanning 230 cM on chromosome 3A, 62 markers spanning 260 cM on 3B, and 40 markers spanning 171 cM on 3D. Thirteen libraries of genomic or cDNA clones from wheat, barley, and T. tauschii, the wheat D genome donor, are represented, facilitating the alignment and comparison of these maps with maps of other grass species. Twenty-four clones reveal homoeoloci on two of the three genomes and the associated linkages are largely comparable across genomes. A consensus sequence of orthologous loci in grass species genomes is assembled from this map and from existing maps of the chromosome-3 homoeologs in barley (Hordeum spp.), T. tauschii, and rice (Oryza spp.). It illustrates the close homoeology among the four species and the partial homoeology of wheat chromosome 3 with oat (Avena spp.) chromosome C. Two orthologous red grain color genes, R3 and R1, are mapped on chromosome arms 3BL and 3DL.  相似文献   

16.
The use of RFLP markers, together with a partial set of monosomics available in Avena byzantina cv Kanota, has enabled us to identify putative homoeologous chromosome sets in hexaploid Avena species (2n = 6x = 42, AACCDD). We first identified probes producing distinct three-band patterns on Southern blots that possibly reflect orthologous loci of the three genomes present in the hexaploid. Using monosomic analysis, 51 different restriction fragments that hybridized to 26 probes were localized to 12 different chromosomes for which monosomic stocks were available. These DNA restriction fragments were localized to specific monosomics using image analysis to quantify band intensity relative to other bands in the same lane. From these data, we have tentatively identified two complete homoeologous sets of three chromosomes each and two partial sets of two of the three chromosomes. The results indicate that RFLP dosage analysis is useful in the characterization of homoeologous chromosomes in hexaploid oat where nullisomics for many of the chromosomes are not available.Mention of a trademark or proprietary product does not constitute a guarantee or warranty by the USDA-ARS or the University of Minnesota and does not imply approval over other products that also may be suitableJoint contribution of the Minnesota Agricultural Experiment Station and USDA-ARS. Scientific Journal Series Paper no. 20 650 of the Minnesota Agricultural Experiment Station  相似文献   

17.
The physical mapping of single locus sequences by tyramide-fluorescence in situ hybridization (Tyr-FISH) and the analysis of sequences obtained from microdissected chromosomes were assayed as potential tools for (1) determining homology and homoeology among chromosome regions of Avena species, and (2) establishing associations between linkage groups and specific chromosomes. Low copy number probes, derived from resistance gene analogues (RGAs) and 2.8-4.5 kb long, successfully produced hybridization signals on specific chromosomes. Four sets of homoeologous chromosome regions were identified in the hexaploids using 3 probes that produced 4 single locus markers in A. strigosa and 2 in A. eriantha. Laser capture microdissection of metaphase I cells of A. sativa monosomic lines allowed the isolation of critical univalents. Sequences derived from 2 RGAs were successfully amplified in DNA extracted from univalents. In one instance, it was possible to map a nucleotide polymorphism specific for 1 chromosome. An association was established between this chromosome and its linkage groups in 2 hexaploid genetic maps. The results indicate that Tyr-FISH is useful in the characterization of homoeologous chromosome segments in hexaploids, whereas chromosome microdissection, as employed in this work, needs to be improved before it can routinely be used with meiotic chromosomes.  相似文献   

18.
Restriction fragment length polymorphism (RFLP) maps of chromosomes 6A, 6B, and 6D of hexaploid wheat (Triticum aestivum L. em. Thell.) have been produced. They were constructed using a population of F7-8 recombinant inbred lines derived from a synthetic wheat x bread wheat cross. The maps consist of 74 markers assigned to map positions at a LOD >= 3 (29 markers assigned to 6A, 24 to 6B, and 21 to 6D) and 2 markers assigned to 6D ordered at a LOD of 2.7. Another 78 markers were assigned to intervals on the maps. The maps of 6A, 6B, and 6D span 178, 132, and 206 cM, respectively. Twenty-one clones detected orthologous loci in two homoeologues and 3 detected an orthologous locus in each chromosome. Orthologous loci are located at intervals of from 1.5 to 26 cM throughout 70% of the length of the linkage maps. Within this portion of the maps, colinearity (homosequentiality) among the three homoeologues is strongly indicated. The remainder of the linkage maps consists of three segments ranging in length from 47 to 60 cM. Colinearity among these chromosomes and other Triticeae homoeologous group 6 chromosomes is indicated and a consensus RFLP map derived from maps of the homoeologous group 6 chromosomes of hexaploid wheat, tetraploid wheat, Triticum tauschii, and barley is presented. Key words : RFLP, wheat, linkage maps, molecular markers.  相似文献   

19.
A molecular-marker linkage map has been constructed for perennial ryegrass (Lolium perenne L.) using a one-way pseudo-testcross population based on the mating of a multiple heterozygous individual with a doubled haploid genotype. RFLP, AFLP, isoenzyme, and EST data from four collaborating laboratories within the International Lolium Genome Initiative were combined to produce an integrated genetic map containing 240 loci covering 811 cM on seven linkage groups. The map contained 124 codominant markers, of which 109 were heterologous anchor RFLP probes from wheat, barley, oat, and rice, allowing comparative relationships between perennial ryegrass and other Poaceae species to be inferred. The genetic maps of perennial ryegrass and the Triticeae cereals are highly conserved in terms of synteny and colinearity. This observation was supported by the general agreement of the syntenic relationships between perennial ryegrass, oat, and rice and those between the Triticeae and these species. A lower level of synteny and colinearity was observed between perennial ryegrass and oat compared with the Triticeae, despite the closer taxonomic affinity between these species. It is proposed that the linkage groups of perennial ryegrass be numbered in accordance with these syntenic relationships, to correspond to the homoeologous groups of the Triticeae cereals.  相似文献   

20.
The objectives of this study were to develop a high-density chromosome bin map of homoeologous group 7 in hexaploid wheat (Triticum aestivum L.), to identify gene distribution in these chromosomes, and to perform comparative studies of wheat with rice and barley. We mapped 2148 loci from 919 EST clones onto group 7 chromosomes of wheat. In the majority of cases the numbers of loci were significantly lower in the centromeric regions and tended to increase in the distal regions. The level of duplicated loci in this group was 24% with most of these loci being localized toward the distal regions. One hundred nineteen EST probes that hybridized to three fragments and mapped to the three group 7 chromosomes were designated landmark probes and were used to construct a consensus homoeologous group 7 map. An additional 49 probes that mapped to 7AS, 7DS, and the ancestral translocated segment involving 7BS also were designated landmarks. Landmark probe orders and comparative maps of wheat, rice, and barley were produced on the basis of corresponding rice BAC/PAC and genetic markers that mapped on chromosomes 6 and 8 of rice. Identification of landmark ESTs and development of consensus maps may provide a framework of conserved coding regions predating the evolution of wheat genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号