首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Sainfoin (Onobrychis viciifolia), a temperate perennial forage legume, can be nodulated by rhizobia isolated from 3 arctic legume species:Astragalus alpinus, oxytropis maydelliana andOxytropis arctobia. Arctic rhizobia, which are adapted to growth at low temperatures, may be useful in improving symbiotic nitrogen fixation during cold phases of the growing season, if they are effective on a temperate legume. In this study, we report on the symbiotic effectiveness of arctic rhizobia on sainfoin, as appraised by the total shoot dry matter yield obtained from 2 harvests. Under N-free conditions, 5 arctic strains at the first harvest and 8 at the second harvest were as effective as temperate standard strains. In the presence of 30 mgl−1 NO3-N, 7 arctic strains gave significantly higher yields than temperate strains at the second harvest. These results indicate that effective arctic rhizobia have a potential for use as inoculants on sainfoin. Contribution no 325 of Agriculture Canada Research Station a Sainte-Foy.  相似文献   

2.
Forty-eight strains of Rhizobium isolated from the root nodules of three species of legumes indigenous to the high tundra (Astragalus alpinus, Oxytropis maydelliana andOxytropis arctobia) are phenotypically heterogenous with respect to intrinsic antibiotic resistance, expression of nitrogenase activityex planta and plasmid content. All of the strains possess a 250–300 kb plasmid and are homologous to each other on the genomic DNA level but have little DNA homology with selected reference strains of well characterized species of rhizobia. The arctic rhizobia have an optimum growth temperature of 23°C and can grow slowly at 5°C. The DNA from four of the isolates, which were selected for detailed investigation, have sequences homologous tonif andnod genes fromRhizobium trifolii.  相似文献   

3.
Thirty-seven rhizobium strains, isolated from root nodules of Astragalus cicer (L.) (cicer milkvetch) deriving from different geographic regions, were compared with the representative strains of the known rhizobial species and genera by numerical analysis of phenotypic characteristics. Our results indicated that Astragalus cicer rhizobia were related to the bacteria of Mesorhizobium species and formed two major phena. One phenon, localized on Mesorhizobium loti branch, contained strains from Poland. Another cluster, placed in the vicinity of M. tianshanense, M. mediterraneum, M. ciceri, and M. huakuii, comprised cicer milkvetch nodule isolates from Canada, Ukraine, and one strain from Poland. The relationship of Astragalus cicer microsymbionts to bacteria of the Mesorhizobium species was also supported by phage typing. Received: 10 February 2000 / Accepted: 8 March 2000  相似文献   

4.
Abstract. Significant levels of nitrogenase activity (nitrogen fixation) were demonstrated in three species of Arctic legumes ( Oxytropis maydelliana, O. arctobia and Astragalus alpinus ) growing in high tundra at Sarcpa Lake, Melville Peninsula, N.W.T. Nitrogenase activity of intact plants was correlated with the number of nodules per plant, with field soil temperatures and limited by water shortage. Activity in freshly detached nodules showed a plateau of maximum activity between 10°C and 25°C and a near linear decline with temperature down to 0°C. Unusually, the segmented nodules of all three species are perennial in which growth and leghaemoglobin production resumes each spring from an overwintering apical meristem. Nodules are most numerous in the warmer soil stratum (2–10 cm. depth). Other studies indicate that the arctic rhizobia belong to a single cold-adapted species which has co-evolved with the legumes of tundra.  相似文献   

5.
Mesorhizobium sp. strain N33 (Oxytropis arctobia), a rhizobial strain isolated in arctic Canada, is able to fix nitrogen at very low temperatures in association with a few arctic legume species belonging to the genera Astragalus, Onobrychis, and Oxytropis. Using mass spectrometry and nuclear magnetic resonance spectroscopy, we have determined the structure of N33 Nod factors, which are major determinants of nodulation. They are pentameric lipochito-oligosaccharides 6-O sulfated at the reducing end and exhibit other original substitutions: 6-O acetylation of the glucosamine residue next to the nonreducing terminal glucosamine and N acylation of the nonreducing terminal glucosamine by methyl-branched acyl chains of the iso series, some of which are alpha,beta unsaturated. These unusual substitutions may contribute to the peculiar host range of N33. Analysis of N33 whole-cell fatty acids indicated that synthesis of the methyl-branched fatty acids depended on the induction of bacteria by plant flavonoids, suggesting a specific role for these fatty acids in the signaling process between the plant and the bacteria. Synthesis of the methyl-branched alpha,beta-unsaturated fatty acids required a functional nodE gene.  相似文献   

6.
中国帕米尔高原根瘤菌-豆科植物共生资源调查   总被引:10,自引:1,他引:9  
对帕米尔高原进行了根瘤菌——豆科植物共生资源的调查与收集,分析了根瘤的特征和根瘤菌的抗逆性。共采集到11属22种豆科植物,除菜豆、昆仑锦鸡儿、豇豆和白花草木樨等4种豆科植物未见结瘤外,其它豆科植物均能结瘤,其中帕米尔扁蓿豆、美丽棘豆、毛序棘豆、金毛脬萼黄芪等4种为新发现的结瘤豆科植物。共收集到8属18种豆科植物的根瘤样品250份,发现根瘤数量相对较少,颜色以白色或褐色为多,形状多样,多着生于主根、侧根的上部。通过对109株根瘤菌的抗逆性分析,获得一些具有耐低温和耐盐碱能力的优良菌株。  相似文献   

7.
While the arctic flora is particularly threatened by climate changes, the molecular aspects allowing colonization of this harsh environment remain largely enigmatic. Genes with a likely functional or evolutive role for arctic Oxytropis (Fabaceae) were previously discovered given a sharp differential expression between arctic and temperate species, but the evolutionary forces in action were unknown within the respective species. Here, we analyze gene duplication patterns and positive and negative selection between genes from species of contrasting environments, which can reveal potential gene functions. Genes were amplified and sequenced from two arctic (Oxytropis arctobia and O. maydelliana) and two temperate (O. campestris subsp. johannensis and O. splendens) species. Detection of codons under positive or negative selection and phylogenetic analyses were used to further elucidate pathogenesis-related class 10 (PR-10), ripening-related proteins, cold dehydrins gene families and light-harvesting complex (lhcaIII and lhcbI) genes from Oxytropis. Overall, results showed that the three gene families duplicated in tandem prior to the Oxytropis genus diversification; that genes overexpressed in arctic species evolve under higher constraints at the sequence level in these species; that evolving novel protein variants in PR-10 genes were required for initial adaptation to the Arctic, and that Oxytropis cold dehydrins are of a novel (K-like–Y4–K–S) structure, where the Y-segment is under stringent evolutive constraints in the arctic species. This suggests a scenario not previously described for arctic plants, where tandem duplications precede gene recruitment that later become both highly expressed and under stringent constraints in the arctic species.  相似文献   

8.
The temperate forage legume sainfoin (Onobrychis viciifolia) is readly nodulated by rhizobia isolated from arctic legumes (Astragalus and Oxytropis species). We have investigated the effects of low temperatures on nitrogenase activity in sainfoin nodulated by arctic and temperate (homologous) rhizobia. At low temperatures, nitrogenase activity of arctic rhizobia measured either with detached nodules or with whole plants, was higher than that of temperate rhizobia. At 5°C and 10°C, nitrogenase activity values of arctic rhizobia represented 12% and 33% of those measured at 20°C, while lower values of 3.7% and 22.4% were observed with temperate rhizobia. This cold adaptation was also reflected on bacterial growth where, at 5°C and 10°C, arctic rhizobia showed a shorter doubling time and synthesized more protein than temperate rhizobia.  相似文献   

9.
Astragalus cicer (cicer milkvetch) nodule bacteria were investigated for host plant specificity and partial nodC gene sequences, whilst their native host was studied for the microscopic structure of root nodules. The strains under investigation formed nodules not only on the original host but also on Astragalus glycyphyllos, Astragalus sinicus, Lotus corniculatus, and Phaseolus vulgaris. The nodules induced on the cicer milkvetch were classified as indeterminate and characterized by apical, persistent meristem, a large bacteroid region with infected and uninfected cells, and elongated bacteroids singly located inside peribacteroid membranes. By comparison of the partial nodC gene sequences of a representative strain of astragali rhizobia to those contained in the GenBank database, a close symbiotic relationship of A. cicer microsymbionts to Rhizobium sp. (Oxytropis) was found.  相似文献   

10.
Twenty-five Rhizobium strains were isolated from root nodules of Astragalus spp. (10), Hedysarum alpinum (7), Glycyrrhiza pallidiflora (3) and Ononis arvensis (5). The sensitivity of these strains to bacteriophages of Rhizobium loti, R. meliloti, R. galegae and R. leguminosarum was studied. Phages specific to R. loti strains were shown to induce the phage lysis of several Astragalus, Hedysarum and Ononis rhizobia. Ten R. loti strains tested for nodulation abilities on the plant hosts under investigation were able to develop nitrogen-fixing nodules on the Ononis arvensis roots. On the other hand, rhizobia from Ononis and Glycyrrhiza could form an effective symbiosis with Lotus corniculatus plants, so these bacteria are considered to belong to the Rhizobium loti taxon. Bacterial strains isolated from Astragalus and Hedysarum were observed to cross-nodulate their plant hosts as well as Oxytropis campestris, Glycyrrhiza uralensis and Ononis arvensis plants, whereas they could not nodulate Lotus plants. It is concluded that these Rhizobium strains comprise a cross-inoculation group related to Rhizobium loti. ei]{gnR O D}{fnDixon}  相似文献   

11.
Summary Eighteen strains of Rhizobium lupini were shown to form effectively nitrogen-fixing root nodules in Lotus uliginosus whose rhizobia appeared culturally similar to R. lupini. Six strains formed effective or (in one case) semi-effective nodules in Ornithopus sativus.Evidence has been found for the existence of an extensive cross-inoculation group involving the genera Lupinus, Ornithopus, Lotus, Anthyllis, Caragana, Astragalus, Ononis, Genista, Mimosa and probably others. The rhizobia include fastgrowing as well as slow-growing strains.Dedicated to Professor C. B. Van Niel on the occasion of his 70 th birthday.  相似文献   

12.
We compared heat shock proteins (HSPs) and cold shock proteins (CSPs) produced by different species of Rhizobium having different growth temperature ranges. Several HSPs and CSPs were induced when cells of three arctic (psychrotrophic) and three temperate (mesophilic) strains of rhizobia were shifted from their optimal growth temperatures (arctic, 25 degrees C; temperate, 30 degrees C) to shock temperatures outside their growth temperature ranges. At heat shock temperatures, three major HSPs of high molecular weight (106,900, 83,100, and 59,500) were present in all strains for all shock treatments (29, 32, 36.4, 38.4, 40.7, 41.4, and 46.4 degrees C), with the exception of temperate strains exposed to 46.4 degrees C, in which no protein synthesis was detected. Cell survival of arctic and temperate strains decreased markedly with the increase of shock temperature and was only 1% at 46.4 degrees C. Under cold shock conditions, five proteins (52.0, 38.0, 23.4, 22.7, and 11.1 kDa) were always present for all treatments (-2, -5, and -10 degrees C) in arctic strains. Among temperate strains, five CSPs (56.1, 37.1, 34.4, 17.3, and 11.1 kDa) were present at temperatures down to 0 degrees C. The 34.4- and the 11.1-kDa components were present in all temperate strains at -5 degrees C and in one strain at -10 degrees C. Survival of all strains decreased with cold shock temperatures but was always higher than 50%. These results show that rhizobia can synthesize proteins at temperatures not permissive for growth. In all shock treatments, no correspondence between the number of HSPs or CSPs produced and rhizobial survival was found.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We compared heat shock proteins (HSPs) and cold shock proteins (CSPs) produced by different species of Rhizobium having different growth temperature ranges. Several HSPs and CSPs were induced when cells of three arctic (psychrotrophic) and three temperate (mesophilic) strains of rhizobia were shifted from their optimal growth temperatures (arctic, 25 degrees C; temperate, 30 degrees C) to shock temperatures outside their growth temperature ranges. At heat shock temperatures, three major HSPs of high molecular weight (106,900, 83,100, and 59,500) were present in all strains for all shock treatments (29, 32, 36.4, 38.4, 40.7, 41.4, and 46.4 degrees C), with the exception of temperate strains exposed to 46.4 degrees C, in which no protein synthesis was detected. Cell survival of arctic and temperate strains decreased markedly with the increase of shock temperature and was only 1% at 46.4 degrees C. Under cold shock conditions, five proteins (52.0, 38.0, 23.4, 22.7, and 11.1 kDa) were always present for all treatments (-2, -5, and -10 degrees C) in arctic strains. Among temperate strains, five CSPs (56.1, 37.1, 34.4, 17.3, and 11.1 kDa) were present at temperatures down to 0 degrees C. The 34.4- and the 11.1-kDa components were present in all temperate strains at -5 degrees C and in one strain at -10 degrees C. Survival of all strains decreased with cold shock temperatures but was always higher than 50%. These results show that rhizobia can synthesize proteins at temperatures not permissive for growth. In all shock treatments, no correspondence between the number of HSPs or CSPs produced and rhizobial survival was found.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
A multilocus phylogenetic approach was applied to elucidate the phylogeny of Astragalus cicer rhizobia derived from Poland, Ukraine, and Canada. The strains selected for the studies represented three main geographically different phenons of these bacteria. Phylogenetic analyses were performed with three chromosomal housekeeping loci (16S rRNA, atpD, glnII) and three symbiotic genes located on a plasmid (nodA, nodC, nifH). The “core” and “auxiliary” gene trees revealed that A. cicer nodule isolates were intermingled with the strains of Mesorhizobium species, which implies that they are descendents of the same ancestor as mesorhizobia and fall into the Mesorhizobium genus. The noted congruence of the housekeeping and symbiotic gene phylogenies of A. cicer microsymbionts indicates that sym loci are transferred to these bacteria through vertical transmission without a significant participation of intergeneric horizontal gene spread. All the three sym gene sequences of the Polish and Ukrainian A. cicer nodule isolates were more closely related to one another than to the corresponding sequences of the Canadian isolates. The phylogeographic patterns of the sym genes of intercontinental strains point to their relatively long, separate, evolutionary history.  相似文献   

15.
Kishinevsky  B. D.  Nandasena  K. G.  Yates  R. J.  Nemas  C.  Howieson  J.G. 《Plant and Soil》2003,251(1):143-153
Cultural, physiological and biochemical properties of 18 strains of rhizobia isolated from root nodules of the forage legume H. spinosissimum were compared with those of rhizobia from the related species H. coronarium (15 strains) and H. flexuosum (four strains). On the basis of 43 characteristics the 37 strains of Hedysarum rhizobia could be divided into two groups by numerical analysis. The H. spinosissimum rhizobia formed the first group and the second group comprised the strains from H. coronarium and H. flexuosum. The reference Rhizobium leguminosarum bv. viceae strain 250A was clustered with the rhizobia from H. coronarium and H. flexuosum. By contrast Bradyrhizobium sp. (Arachis) reference strain 280A was not clustered with any of the strains tested, indicating that the H. spinosissimum rhizobia differ from both Rhizobium and Bradyrhizobium. Serological data also discriminate between H. spinosissimum and H. coronariumrhizobia but not between the latter and H. flexuosum strains. The strains tested exhibit a high degree of specificity for nodulation and nitrogen fixation. We also determined the16SrRNA gene sequence of H. spinosissimum rhizobia (four strains), H. coronarium (two strains) and H. flexuosum (two strains) and found that the four H. spinosissimum isolates share a 98% identity among each other in this region but they showed less than 92% identity to the H. coronarium and H. flexuosum isolates. The H. spinosissimum isolates were closely related to both Mesorhizobium loti and M. ciceri, sharing 97% identity with each species.  相似文献   

16.
Rhizobia nodulating native Astragalus and Oxytropis spp. in Northern Europe are not well-studied. In this study, we isolated bacteria from nodules of four Astragalus spp. and two Oxytropis spp. from the arctic and subarctic regions of Sweden and Russia. The phylogenetic analyses were performed by using sequences of three housekeeping genes (16S rRNA, rpoB and recA) and two accessory genes (nodC and nifH). The results of our multilocus sequence analysis (MLSA) of the three housekeeping genes tree showed that all the 13 isolates belonged to the genus Mesorhizobium and were positioned in six clades. Our concatenated housekeeping gene tree also suggested that the isolates nodulating Astragalus inopinatus, Astragalus frigidus, Astragalus alpinus ssp. alpinus and Oxytropis revoluta might be designated as four new Mesorhizobium species. The 13 isolates were grouped in three clades in the nodC and nifH trees. 15N analysis suggested that the legumes in association with these isolates were actively fixing nitrogen.  相似文献   

17.
Horsegram [Macrotyloma uniflorum (Lam.) Verdc.) is an important grain legume and fodder crop in India. Information on root nodule endosymbionts of this legume in India is limited. In the present study, 69 isolates from naturally occurring root nodules of horsegram collected from two agro-eco-climatic regions of South India was analyzed by generation rate, acid/alkali reaction on YMA medium, restriction fragment length polymorphism analysis of 16S-23S rDNA intergenic spacer region (IGS), and sequence analyses of IGS and housekeeping genes glnII and recA. Based on the rDNA IGS RFLP by means of three restriction enzymes rhizobia were grouped in five clusters (I–V). By sequence analysis of 16S-23S rDNA IGS identified genotypes of horsegram rhizobia were distributed into five divergent lineages of Bradyrhizobium genus which comprised (I) the IGS type IV rhizobia and valid species B. yuanmingense, (II) the strains of IGS type I and Bradyrhizobium sp. ORS 3257 isolated from Vigna sp., (III) the strains of the IGS type II and Bradyrhizobium sp. CIRADAc12 from Acacia sp., (IV) the IGS type V strains and Bradyrhizobium sp. genospecies IV, and (V) comprising genetically distinct IGS type III strains which probably represent an uncharacterized new genomic species. Nearly, 87% of indigenous horsegram isolates (IGS types I, II, III, and V) could not be related to any other species within the genus Bradyrhizobium. Phylogeny based on housekeeping glnII and recA genes confirmed those results found by the analysis of the IGS sequence. All the isolated rhizobia nodulated Macrotyloma sp. and Vigna spp., and only some of them formed nodules on Arachis hypogeae. The isolates within each IGS type varied in their ability to fix nitrogen. Selection for high symbiotic effective strains could reward horsegram production in poor soils of South India where this legume is largely cultivated.  相似文献   

18.
Eighty-two strains of rhizobia were isolated from soils taken from several sites in Mauritania and Senegal. These soil samples were collected from natural stands of Acacia nilotica and Acacia senegal. The soils from Mauritania were less rich in native rhizobia than the soils from Senegal. The strains were characterized using polymerase chain reaction–restriction fragment length polymorphism and by sequencing the rDNA 16S–23S intergenic spacer region (IGS). They were sorted into seven IGS groups. These groups were not associated with the geographical origin of the strains or with the host-plant species at the site where the soils were collected. Most of the strains were in three of the IGS groups (I, IV, and V). One representative strain from each IGS group was sequenced and showed that the strains were from the genus Mesorhizobium. IGS groups I, IV, and VI were close to the species M. plurifarium (AF34563), IGS groups IIand III were close to the species Mesorhizobium sp. (AF510360), IGS group V was close to the species Mesorhizobium sp. (AF510366), and IGS group VII was close to Mesorhizobium sp. (AF510346).  相似文献   

19.
Summary Internal group antigens of several slow-growing and fast-growing Rhizobium strains were tested by gel-diffusion against antisera to three strains of Rhizobium japonicum. At least one, generally two common antigens were found in 13 strains of R. japonicum, 4 strains of R. lupini, 4 strains isolated from cowpea and two slow-growing strains isolated from Lotus. Forty-six fast-growing rhizobia (including two from Lotus and 4 from Leucaena leucocephala) were clearly distinguished from the slow-growing strains in tests with the same antisera. They were wholly negative (9) or gave a much weaker non-identical line with one antiserum (24 strains), two antisera (8) or three antisera (5). The 5 strains of agrobacteria grouped with the fast-growing rhizobia.  相似文献   

20.
Thirty-three rhizobial strains isolated from the root nodules of Astragalus luteolus and Astragalus ernestii growing on the west plateau at two different altitudes in Sichuan province, China, were characterized by amplified rDNA restriction analysis (ARDRA), amplified fragment length polymorphism (AFLP), and by sequencing of rrs, glnA, glnII and nifH . The ARDRA analysis revealed considerable genomic diversity. In AFLP analysis, 20 of 33 Astragalus rhizobia formed three distinct clades, with others dispersed into different groups with the reference strains. Phylogenetic analysis of the rrs gene of six representative strains showed that the isolates were members of the genus Mesorhizobium . Three of the isolates formed a sister clade to Mesorhizobium loti and Mesorhizobium ciceri , whereas the other three formed a sister clade to a clade harboring the species Mesorhizobium huakuii, Mesorhizobium plurifarum, Mesorhizobium septentrionale and Mesorhizobium amorphae , indicating the existence of two new species. Phylogenetic analysis of glnA and glnII confirmed the rrs phylogenies for four strains, but the trees were incongruent. The nifH sequences of the strains formed a monophyletic clade and were typical of those of mesorhizobia forming symbioses with inverted repeat lacking clade legume species. The incongruent phylogenies of the genes studied suggest that horizontal gene transfer and recombination shape mesorhizobial populations in the gene center of the host plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号