首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of the abundance of the tick O. papillipes in the Namangan and Andizhan districts was conducted on vast material. According to the tick abundance (from very high to very low) settlements were arranged into five groups. Most common are settlements with a high and average tick abundance. In most cases the agent of TRF was isolated from the ticks. Natural and anthropogenic factors determining the abundance rate of ticks in some settlements and possibilities of their practical use for the quick annihilation of TRF nidi are discussed.  相似文献   

2.
The contemporary state of settlement nidi of tick-borne relapsing fever is discussed on the material collected in the Namanganskaya and Andizhanskaya regions of Uzbek SSR. Despite the control measures and rise of the sanitary culture of population the conditions are still preserved for the maintenance of nidi. As in ancient estates, classical nidi of tick-borne relapsing fever, so in modern ones there are preserved conditions for existence of flourishing populations of vectors, i.e. favourable habitats and the availability of hosts. The analysis of factors is given affecting the contemporary level of sick-rate with tick-borne relapsing fever. Within the limits of the distribution area of the vector a higher sick-rate should be expected than it is registered.  相似文献   

3.
A complex of possible vectors and reservoirs of infection in nature has been investigated in five different nidi of hemorrhagic fever with the renal syndrome in the Primorje territory. 2455 ixodid ticks, 19 458 trombiculid mites, 10 942 gamasid mites and 2138 fleas were collected from 1700 small mammals. It has been established that every investigated nidus differs in a peculiar specific composition and ratio between small mammals and their ectoparasites.  相似文献   

4.
Ticks are often infected with more than one pathogen, and several field surveys have documented nonrandom levels of coinfection. Levels of coinfection by pathogens in four tick species were analyzed using published infection data. Coinfection patterns of pathogens in field-collected ticks include numerous cases of higher or lower levels of coinfection than would be expected due to chance alone, but the vast majority of these cases can be explained on the basis of vertebrate host associations of the pathogens, without invoking interactions between pathogens within ticks. Nevertheless, some studies have demonstrated antagonistic interactions, and some have suggested potential mutualisms, between pathogens in ticks. Negative or positive interactions between pathogens within ticks can affect pathogen prevalence, and thus transmission patterns. Probabilistic projections suggest that the effect on transmission depends on initial conditions. When the number of tick bites is relatively low (e.g., for ticks biting humans) changes in prevalence in ticks are predicted to have a commensurate effects on pathogen transmission. In contrast, when the number of tick bites is high (e.g., for wild animal hosts) changes in pathogen prevalence in ticks have relatively little effect on levels of transmission to reservoir hosts, and thus on natural transmission cycles.  相似文献   

5.
Final results of the virological and serological investigations of the circulation of the Crimean hemorrhagic fever virus in the Turkmenian SSR carried out in 1968-1976 are presented in this report. In the examination of 2294 blood serum samples of human beings complement binding antibodies against the Crimean hemorrhagic fever were revealed in 0.4% of cases. It was revealed that five species of ixodes ticks could he infected with this virus; for the first time its strains were also isolated from the Hyalomma dromedarii ticks. Isolation of the Crimean hemorrhagic fever virus from ticks and determination of the precipitating antibodies against this virus in agricultural animals--from 6.2 to 11.1%--in all the regions of the republic pointed out that the natural nidi zones were widespread at the territory of the Turkmenian SSR, and that it was necessary to carry out further study of the given focus.  相似文献   

6.
Borrelia hermsii, a causative agent of relapsing fever of humans in western North America, is maintained in enzootic cycles that include small mammals and the tick vector Ornithodoros hermsi. In mammals, the spirochetes repeatedly evade the host’s acquired immune response by undergoing antigenic variation of the variable major proteins (Vmps) produced on their outer surface. This mechanism prolongs spirochete circulation in blood, which increases the potential for acquisition by fast-feeding ticks and therefore perpetuation of the spirochete in nature. Antigenic variation also underlies the relapsing disease observed when humans are infected. However, most spirochetes switch off the bloodstream Vmp and produce a different outer surface protein, the variable tick protein (Vtp), during persistent infection in the tick salivary glands. Thus the production of Vmps in mammalian blood versus Vtp in ticks is a dominant feature of the spirochete’s alternating life cycle. We constructed two mutants, one which was unable to produce a Vmp and the other was unable to produce Vtp. The mutant lacking a Vmp constitutively produced Vtp, was attenuated in mice, produced lower cell densities in blood, and was unable to relapse in animals after its initial spirochetemia. This mutant also colonized ticks and was infectious by tick-bite, but remained attenuated compared to wild-type and reconstituted spirochetes. The mutant lacking Vtp also colonized ticks but produced neither Vtp nor a Vmp in tick salivary glands, which rendered the spirochete noninfectious by tick bite. Thus the ability of B. hermsii to produce Vmps prolonged its survival in blood, while the synthesis of Vtp was essential for mammalian infection by the bite of its tick vector.  相似文献   

7.
The soft tick Ornithodoros hermsi, which ranges in specific arboreal zones of western North America, acts as a vector for the relapsing fever spirochete Borrelia hermsii. Two genomic groups (genomic group I [GGI] and GGII) of B. hermsii are differentiated by multilocus sequence typing yet are codistributed in much of the vector's range. To test whether the tick vector can be infected via immersion, noninfected, colony-derived O. hermsi larvae were exposed to reduced-humidity conditions before immersion in culture suspensions of several GGI and GGII isolates. We tested for spirochetes in ticks by immunofluorescence microscopy and in mouse blood by quantitative PCR of the vtp locus to differentiate spirochete genotypes. The immersed larval ticks were capable of spirochete transmission to mice at the first nymphal feeding. Tick infection with mixed cultures of isolates DAH (vtp-6) (GGI) and MTW-2 (vtp-5) (GGII) resulted in ticks that caused spirochetemias in mice consisting of MTW-2 or both DAH and MTW-2. These findings show that this soft tick species can acquire B. hermsii by immersion in spirochete suspensions, that GGI and GGII isolates can coinfect the tick vector by this method, and that these spirochetes can be cotransmitted to a rodent host.  相似文献   

8.
Tick-borne spirochetes include borreliae that cause Lyme disease and relapsing fever in humans. They survive in a triangle of parasitic interactions between the spirochete and its vertebrate host, the spirochete and its tick vector, and the host and the tick. Until recently, the significance of vector-host interactions in the transmission of arthropod-borne disease agents has been overlooked. However, there is now compelling evidence that the pharmacological activity of tick saliva can have a profound effect on pathogen transmission both from infected tick to uninfected host, and from infected host to uninfected tick. The salivary glands of ticks provide a pharmacopoeia of anti-inflammatory, anti-haemostatic and anti-immune molecules. These include bioactive proteins that control histamine, bind immunoglobulins, and inhibit the alternative complement cascade. The effect of these molecules is to provide a privileged site at the tick-host interface in which borreliae and other tick-borne pathogens are sheltered from the normal innate and acquired host immune mechanisms that combat infections. Understanding the key events at the tick vector-host interface, that promote spirochete infection and transmission, will provide a better understanding of the epidemiology and ecology of these important human pathogens.  相似文献   

9.
The soft tick, Ornithodoros coriaceus (Koch) (Acari: Argasidae), is a common mammalian parasite of livestock in many arid regions of the western U.S.A. The tick is a known vector of the undescribed bacterial pathogen that causes epizootic bovine abortion (EBA), which results in late-term abortions in beef cattle and subsequent economic loss, which can be considerable, to producers. A second reported bacterial pathogen, Borrelia coriaceae, a member of the relapsing fever complex, has also been identified in this tick and was at one time hypothesized to be the aetiological agent of EBA. In order to test whether bacterial infections in ticks overlapped geographically and to determine the prevalence of co-infection in O. coriaceus populations, we used molecular methods to detect bacterial DNA from ticks collected from a wide variety of habitats in California, Nevada and Oregon. Of the 15 sites at which ticks tested positive for the agent of EBA (aoEBA), eight also contained ticks positive for Borrelia spp. by polymerase chain reaction assay. Additionally, two ticks were co-infected; both of these were collected from the same location. Univariate risk analysis indicated the presence of juniper-dominated habitat at the collection site and geographic location to be significantly associated with infection of the tick vector by either pathogen.  相似文献   

10.
Borrelial relapsing fever was once a major worldwide epidemic disease that made a significant impact on Livingstone during his epic travels through Africa and throughout Europe. Indeed, the term ‘relapsing fever’ was first used to describe clinical cases of this disease in Edinburgh. During the last century, we have witnessed the demise of the louse‐borne infection, largely through improving standards of living resulting in a reduction in body lice, the vector for Borrelia recurrentis [louse‐borne relapsing fever (LBRF)]. The tick‐borne zoonotic form of the disease persists in endemic foci around the world [tick‐borne relapsing fever (TBRF)]. Indeed, TBRF is reportedly the most common bacterial infection from Senegal and listed within the top ten causes of mortality in children under five in Tanzania. In Ethiopia, LBRF is again within the top ten causes of hospital admission, associated with significant morbidity and mortality. Despite these figures, many now regard relapsing fever as an unusual tropical disease. Certainly, recent cases have been imported following travel from endemic zones. More surprisingly, cases have been reported following family reunions in Colorado, USA. A further case was reported from the Mt Wilson observatory in Los Angeles, USA. In many regions, the infection is zoonotic with natural reservoirs in several vertebrate species. In West Africa, infection is again primarily zoonotic. Whether those species found predominantly in East Africa are zoonoses or are infections of humans alone is still debated, however, the life cycle may be determined by the feeding preferences of their arthropod vectors.  相似文献   

11.
Argasid ticks of the Ornithodoros erraticus complex are associated with traditional pig‐farming practices on the Iberian Peninsula and are also found elsewhere in North Africa, West Africa, and western Asia. The ticks associated with pig farming on the Iberian Peninsula are the only biological vectors of African swine fever virus (ASFV) known to occur in Europe, and their ecology makes them an extremely effective reservoir of both ASFV and the Borrelia species which cause tick‐borne relapsing fever (TBRF) in humans. The recent reappearance of ASFV in the European Union, coupled with evidence that Portuguese tick populations continue to harbor Borrelia despite a lack of confirmed human infections, suggest that these populations merit closer attention. In Portugal, a series of surveys over the last twenty‐five years indicates that the number of farm sites with tick infestations has declined and suggest that populations are sensitive to changes in farm management, particularly the use of modern pig housing. Various technologies have been suggested for the control of farm‐associated Ornithodoros ticks and related species but, in our opinion, farm management changes are still the most effective strategy for population control. Furthermore, we suggest that this species could probably be eradicated from Iberian pig farms.  相似文献   

12.
The purpose of this study was to describe an unreported entomopathogenic fungus that naturally infects the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Engorged female ticks, showed symptoms of fungal infection after controlled tick infestation of cattle. Infected ticks developed a distinctive dark colour, a pale mould grew over the cuticle and the ticks eventually died covered with fungal conidiophores. The responsible fungus was isolated and cultured on mycological medium and submitted to microscopic morphology, biochemical phenotyping and 18S rRNA ribotyping analyses, which identified it as aflatoxin-producing Aspergillus flavus. Spores from the cultured fungus were experimentally sprayed over healthy engorged female ticks, obtaining an 80% prevalence of experimental infection of healthy ticks and their egg masses, the larval progeny after incubation under laboratory conditions was also infected. These results demonstrate that A. flavus is the causative agent of the natural fungal disease of the cattle tick R. microplus described here.  相似文献   

13.

Background

With the global distribution, morbidity, and mortality associated with tick and louse-borne relapsing fever spirochetes, it is important to understand the dynamics of vector colonization by the bacteria and transmission to the host. Tick-borne relapsing fever spirochetes are blood-borne pathogens transmitted through the saliva of soft ticks, yet little is known about the transmission capability of these pathogens during the relatively short bloodmeal. This study was therefore initiated to understand the transmission dynamics of the relapsing fever spirochete Borrelia turicatae from the vector Ornithodoros turicata, and the subsequent dissemination of the bacteria upon entry into murine blood.

Methodology/Principal Findings

To determine the minimum number of ticks required to transmit spirochetes, one to three infected O. turicata were allowed to feed to repletion on individual mice. Murine infection and dissemination of the spirochetes was evaluated by dark field microscopy of blood, quantitative PCR, and immunoblotting against B. turicatae protein lysates and a recombinant antigen, the Borrelia immunogenic protein A. Transmission frequencies were also determined by interrupting the bloodmeal 15 seconds after tick attachment. Scanning electron microscopy (SEM) was performed on infected salivary glands to detect spirochetes within acini lumen and excretory ducts. Furthermore, spirochete colonization and dissemination from the bite site was investigated by feeding infected O. turicata on the ears of mice, removing the attachment site after engorment, and evaluating murine infection.

Conclusion/Significance

Our findings demonstrated that three ticks provided a sufficient infectious dose to infect nearly all animals, and B. turicatae was transmitted within seconds of tick attachment. Spirochetes were also detected in acini lumen of salivary glands by SEM. Upon host entry, B. turicatae did not require colonization of the bite site to establish murine infection. These results suggest that once B. turicatae colonizes the salivary glands the spirochetes are preadapted for rapid entry into the mammal.  相似文献   

14.

Background

Tick-borne relapsing fever spirochetes are maintained in endemic foci that involve a diversity of small mammals and argasid ticks in the genus Ornithodoros. Most epidemiological studies of tick-borne relapsing fever in West Africa caused by Borrelia crocidurae have been conducted in Senegal. The risk for humans to acquire relapsing fever in Mali is uncertain, as only a few human cases have been identified. Given the high incidence of malaria in Mali, and the potential to confuse the clinical diagnosis of these two diseases, we initiated studies to determine if there were endemic foci of relapsing fever spirochetes that could pose a risk for human infection.

Methodology/Principal Findings

We investigated 20 villages across southern Mali for the presence of relapsing fever spirochetes. Small mammals were captured, thin blood smears were examined microscopically for spirochetes, and serum samples were tested for antibodies to relapsing fever spirochetes. Ornithodoros sonrai ticks were collected and examined for spirochetal infection. In total, 11.0% of the 663 rodents and 14.3% of the 63 shrews tested were seropositive and 2.2% of the animals had active spirochete infections when captured. In the Bandiagara region, the prevalence of infection was higher with 35% of the animals seropositive and 10% infected. Here also Ornithodoros sonrai were abundant and 17.3% of 278 individual ticks tested were infected with Borrelia crocidurae. Fifteen isolates of B. crocidurae were established and characterized by multi-locus sequence typing.

Conclusions/Significance

The potential for human tick-borne relapsing fever exists in many areas of southern Mali.  相似文献   

15.
The results of titration of adult virus infected ticks of Ixodes persulcatus are given. The ticks were collected in various natural nidi of tick-borne encephalitis and individually fed on laboratory animals. The results of titration of ticks of the same species primarily infected on laboratory animals during virusemia are given as well. Changes of the virus titer in engorged ticks were observed till the egg production. A role of the presence of virus in engorged ticks for the process of the agent circulation in natural nidi is discussed.  相似文献   

16.
Relapsing fever, an infection caused by Borrelia spirochetes, is generally considered a transient, self-limiting disease in humans. The present study reveals that murine infection by Borrelia duttonii can be reactivated after an extended time as a silent infection in the brain, with no bacteria appearing in the blood and spirochete load comparable to the numbers in an infected tick. The host cerebral gene expression pattern is indistinguishable from that of uninfected animals, indicating that persistent bacteria are not recognized by the immune system nor cause noticeable tissue damage. Silent infection can be reactivated by immunosuppression, inducing spirochetemia comparable to that of initial densities. B. duttonii has never been found in any host except man and the tick vector. We therefore propose the brain to be a possible natural reservoir of the spirochete. The view of relapsing fever as an acute disease should be extended to include in some cases prolonged persistence, a feature characteristic of the related spirochetal infections Lyme disease and syphilis.  相似文献   

17.
Tick-borne relapsing fever is a bacterial infection caused by spirochetes of the genus Borrelia. This zoonotic disease is transmitted to humans through the bite of soft ticks of the genus Ornithodoros. It is responsible for recurring fever access associated with spirochetemia. We present here an overview of tick-borne relapsing fever occurring in Europe, as well as of the potential threat to travellers.  相似文献   

18.
We review the findings of a longitudinal study of transmission of the intracellular tick-borne bacterium Anaplasma phagocytophilum from sheep to Ixodes ricinus ticks under natural conditions of tick attachment in the UK. In this study, sheep-to-tick transmission efficiency varied in a quadratic relationship with the number of adult ticks that were feeding on the sheep. We raise the hypothesis that this relationship may be due to conflicting effects of the density of ticks on bacterial survival and target cell (neutrophil) fluxes at the tick-host interface: in the same sheep at the same time, resistance to ticks was progressively inhibited with increasing number of feeding adult ticks, and investigation of serological responses to tick antigens suggesting loss of resistance may be associated with polarisation of host Th1 to Th2 type responses to ticks. We also raise the hypothesis that these properties, with superimposed effects on tick survival, may mean that variation in tick density is an important causal factor of observed variations in the force of A. phagocytophilum infection amongst different geographic foci. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
The lone star tick Amblyomma americanum is host to a wide diversity of endosymbiotic bacteria. We identified a novel Wolbachia symbiont infecting A. americanum. Multilocus sequence typing phylogenetically placed the endosymbiont in the increasingly diverse F supergroup. We assayed a total of 1031 ticks (119 females, 78 males and 834 nymphs in 89 pools) from 16 Maryland populations for infection. Infection frequencies in the natural populations were approximately 5% in females and <2% (minimum infection rate) in nymphs; infection was not detected in males. Infected populations were only observed in southern Maryland, suggesting the possibility that Wolbachia is currently invading Maryland A. americanum populations. Because F supergroup Wolbachia have been detected previously in filarial nematodes, tick samples were assayed for nematodes by PCR. Filarial nematodes were detected in 70% and 9% of Wolbachia-positive and Wolbachia-negative tick samples, respectively. While nematodes were more common in Wolbachia-positive tick samples, the lack of a strict infection concordance (Wolbachia-positive, nematode-negative and Wolbachia-negative, nematode-positive ticks) suggests that Wolbachia prevalence in ticks is not due to nematode infection. Supporting this hypothesis, phylogenetic analysis indicated that the nematodes were likely a novel species within the genus Acanthocheilonema, which has been previously shown to be Wolbachia-free.  相似文献   

20.
The soft tick Ornithodoros sonrai is recognized as the only vector of Borrelia crocidurae causing human relapsing fever in West Africa. Its determination has been exclusively based on morphological features, geographical distribution and vector competence. Some ambiguities persist in its systematics and may cause misunderstanding about West African human relapsing fevers epidemiology. By amplifying and aligning 16S and 18S rDNA genes in O. sonrai specimens collected from 14 distinct sites in Senegal and Mauritania, we showed the existence of four genetically different subgroups that were morphologically and ecologically identified as belonging to the same species. Within O. sonrai, intraspecific polymorphism was high (pairwise divergence from 0.2% to 16.4%). In all cases, these four subgroups formed a monophyletic clade sharing a common ancestor with East African soft ticks that transmit Borrelia duttoni human relapsing fever. From amplification of the flagellin gene of B. crocidurae we verified that all subgroups of O. sonrai were infected by B. crocidurae and may constitute vectors for this pathogen. All flagellin sequences were identical, refuting the hypothesis suggesting parallel evolution between O. sonrai and B. crocidurae. However, differences in infection rates were significant, suggesting different vector competences between subgroups of O. sonrai.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号