首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Effect of glutamine and its metabolites (amino acids) on Chlorella glutamine synthetase (GS) (E.C.6.3.1.2) in the presence of Mg or Mn was studied. Purified GS preparation was used, isolated from Chlorella grown in the presence of NH as a sole nitrogen source. Glutamate, aspartate, alanine and glycine inhibit GS activity in the presence of both Mg and Mn. Tryptophane and valine (up to 15 mM) activate GS in the presence of Mn. Tryptophane inhibits GS in the system with Mg. Sinergistic inhibition was observed under the combined effect of amino acids on GS in the presence of Mn and aspartate or alanine. The change of GS activity observed is supposed to be due to the inhibitory effect of glutamine and amino acids studied, since the glutamine content is increased (in 2.5 times for 5 min) and that of alanine and dicarbonic amino acids (for the following 15 min) under NH assimilation in Chlorella cells.  相似文献   

4.
A decrease of glutamine synthetase (E. C. 6.3.1.2.) activity was observed under the assimilation of ammonium nitrogen in Chlorella. At the same time a decrease of ATP content in Chlorella cells took place. The ATP content was 7-fold decreased, while ADP and AMP contents were 4-fold and 3-fold increased respectively, after 15 min. of Chlorella incubation on "ammonium" medium. Further incubation for 45 min, resulted in gradual increase of ATP content and in decrease of ADP and AMP contents. The value of energy charge in ammonium assimilating Chlorella cells sharply decreased for first 15 min. of incubation and then it normalized gradually. The experiments with glutamine synthetase preparation, isolated from ammonium assimilating cells, have shown that ADP and AMP are strong inhibitors of the enzyme in the presence of Mg2+, and only ADP produces the inhibitory effect in the presence of Mn2+. No enzyme reactivation was observed after the transfer of ammonium assimilating cells into nitrogen-free medium or nitrate medium, the enzyme activity increasing at the expense of enzyme protein synthesis denovo.  相似文献   

5.
6.
7.
A highly purified preparation of glutamine synthetase from chlorella grown on a medium containing nitrate as a sole source of nitrogen, was isolated and characterized by disc-electrophoresis and analytical ultracentrifugation. The N-terminal amino acid of glutamine synthetase is glycine. The molecular weight of glutamine synthetase is 32.000; its activity in the presence of Mg2+ was 150 mkmol o-phosphate per min per mg protein. The molecular weight of subunits of the enzyme, equal to 53.000 was determined by disc-electrophoresis in polyacrylamide gel in the presence of sodium dodecyl sulfate. Electron microscopy of negatively contrasted enzyme preparations revealed 6 subunits in the enzyme molecule, arranged in a point symmetry group 32.  相似文献   

8.
The presence of two cysteine residues per each six monomers comprising the oligomer of Chlorella glutamine synthetase (E.C.6.3.1.2) is demonstrated using homogenous enzyme preparation. p-Chloromercuribenzoate (p-CMB) is found to inhibit glutamine synthetase activity, the degree of inhibition depending on the inhibitor concentration. The following enzyme reactivation by dithiotreitol (10(-2) M) was observed only when the enzyme was inactivated with 10(-5) M p-CMB under 15 min. preincubation. Preincubation of the enzyme with 10(-4) M p-CMB for 45 min. did not result in its reactivation. Gel filtration of glutamine synthetase treated with 10(-4) M p-CMB has revealed the dissociation of the enzyme into inactive monomers. Incubation of glutamine synthetase with p-CMB at various pH values, incubation after pre-treatment with urea and experiments with HgCl2 indicate the presence of free and masked inside the globula SH-groups in the enzyme molecule. Competitive character of the enzyme inhibition with p-CMB with respect to ATP indicates that SH-groups of the active site participate in the ATP binding, probably, as Mg-ATP or Mn-ATP complexes. Data on the estimation of ionization constant of glutamate-binding group and experiments on the effect of histidine photooxidation on the enzyme activity indicate the presence of histidine residue in the enzyme active site, which participates in glutamate binding.  相似文献   

9.
Glutamine synthetase (GS) (E.C.6.3.1.2) activity in Chlorella cells decreased when NH4+ was added to nitrogen-free growth medium. This GS inactivation had such a rate, that it could not be due to the repression of enzyme synthesis: the GS activity decreased by 20% within 5 minutes of NH4+ assimilation. Glutamine content in cell increased in 2.5 times for this period. In vitro experiments have shown that glutamine is a strong inhibitor of GS from Chlorella grown in the presence of NO3-, and in a less degree--an inhibitor of GS from cells grown in ammonium-containing medium. The data obtained are negative with respect to possible mechanisms of GS activity regulation via adenylation and ATP-dependent destruction of glutamine synthetase.  相似文献   

10.
Thermal unfolding of dodecameric manganese glutamine synthetase (622,000 M(r)) at pH 7 and approximately 0.02 ionic strength occurs in two observable steps: a small reversible transition (Tm approximately 42 degrees C; delta H approximately equal to 0.9 J/g) followed by a large irreversible transition (Tm approximately 81 degrees C; delta H approximately equal to 23.4 J/g) in which secondary structure is lost and soluble aggregates form. Secondary structure, hydrophobicity, and oligomeric structure of the equilibrium intermediate are the same as for the native protein, whereas some aromatic residues are more exposed. Urea (3 M) destabilizes the dodecamer (with a tertiary structure similar to that without urea at 55 degrees C) and inhibits aggregation accompanying unfolding at < or = 0.2 mg protein/mL. With increasing temperature (30-70 degrees C) or incubation times at 25 degrees C (5-35 h) in 3 M urea, only dodecamer and unfolded monomer are detected. In addition, the loss in enzyme secondary structure is pseudo-first-order (t1/2 = 1,030 s at 20.0 degrees C in 4.5 M urea). Differential scanning calorimetry of the enzyme in 3 M urea shows one endotherm (Tmax approximately 64 degrees C; delta H = 17 +/- 2 J/g). The enthalpy change for dissociation and unfolding agrees with that determined by urea titrations by isothermal calorimetry (delta H = 57 +/- 15 J/g; Zolkiewski M, Nosworthy NJ, Ginsburg A, 1995, Protein Sci 4: 1544-1552), after correcting for the binding of urea to protein sites exposed during unfolding (-42 J/g). Refolding and assembly to active enzyme occurs upon dilution of urea after thermal unfolding.  相似文献   

11.
12.
13.
Glutamine synthetase activity is modulated by nitrogen repression and by two distinct inactivation processes. Addition of glutamine to exponentially grown yeast leads to enzyme inactivation. 50% of glutamine synthetase activity is lost after 30 min (a quarter of the generation time). Removing glutamine from the growth medium results in a rapid recovery of enzyme activity. A regulatory mutation (gdhCR mutation) suppresses this inactivation by glutamine in addition to its derepressing effect on enzymes involved in nitrogen catabolism. The gdhCR mutation also increases the level of proteinase B in exponentially grown yeast. Inactivation of glutamine synthetase is also observed during nitrogen starvation. This inactivation is irreversible and consists very probably of a proteolytic degradation. Indeed, strains bearing proteinase A, B and C mutations are no longer inactivated under nitrogen starvation.  相似文献   

14.
Saccharomyces cerevisiae glutamine synthetase is inactivated in vivo by the addition of glutamine or ammonia. Inactivation is characterized by a specific loss of synthetase activity; transferase activity remains stable. Several physiological perturbations cause inactivation, such as carbon starvation or limitation for a required amino acid, which could cause a buildup of glutamine. The kinetics of reappearance of synthetase activity after inactivation suggest that the process is reversible in vivo. No change in the native size of the enzyme was associated with inactivation but there appears to be a change in the immunological properties of the enzyme subunit.  相似文献   

15.
In crude extracts of the cyanobacterium Anabaena variabilis, glutamine synthetase (GS) could be effectively inactivated by the addition of NADH. GS inactivation was completed within 30 min. Both the inactivated GS and the active enzyme were isolated. No difference between the two enzyme forms was seen in sodium dodecyl sulfate-gels, and only minor differences were detectable by UV spectra, which excludes modification by a nucleotide. Mass spectrometry revealed that the molecular masses of active and inactive GS are equal. While the Km values of the substrates were unchanged, the Vmax values of the inactive GS were lower, reflecting the inactivation factor in the crude extract. This result indicates that the active site was affected. From the crude extract, a fraction mediating GS inactivation could be enriched by ammonium sulfate precipitation and gel filtration. GS inactivation by this fraction required the presence of NAD(P)H, Fe3+, and oxygen. In the absence of the GS-inactivating fraction, GS could be inactivated by Fe2+ and H2O2. The GS-inactivating fraction produced Fe2+ and H2O2, using NADPH, Fe3+, and oxygen. Accordingly, the inactivating fraction was inhibited by catalase and EDTA. This GS-inactivating system of Anabaena is similar to that described for oxidative GS inactivation in Escherichia coli. We conclude that GS inactivation by NAD(P)H is caused by irreversible oxidative damage and is not due to a regulatory mechanism of nitrogen assimilation.  相似文献   

16.
17.
18.
19.
20.
Induction of glutamine synthetase by cortisol   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号