首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipase from the fungi Thermomyces (formerly Humicola) lanuginosa (TlL) is widely used in industry. This interfacial enzyme is inactive under aqueous conditions, but catalytic activation is induced on binding to a lipid-water interface. In order for protein engineering to design more efficient mutants of TlL for specific applications, it is important to characterize its interfacial catalysis. A complete analysis of steady-state kinetics for the hydrolysis of a soluble substrate by TlL has been developed using an interface different from the substrate. Small vesicles of 1-palmitoyl-2-oleoylglycero-sn-3-phosphoglycerol (POPG) or other anionic phospholipids are a neutral diluent interface for the partitioning of substrate and enzyme. TlL binds to these interfaces in an active or open form, thus implying a displacement of the helical lid away from the active site. A study of the influence of substrate and diluent concentration dependence of the rate of hydrolysis provides a basis for the determination of the primary interfacial catalytic parameters. The interfacial activation is not supported by zwitterionic vesicles or by large anionic vesicles of 100 nm diameter, although TlL binds to these interfaces. Using a combination of fluorescence-based techniques applied to several mutants of TlL with different tryptophan residues we have shown that TlL binds to phospholipid vesicles in different forms rendering different catalytic activities, and that the open lid conformation is achieved and stabilized by a combination of electrostatic and hydrophobic interactions between the enzyme's lipid-binding face and the interface.  相似文献   

2.
Triglyceride lipase from Thermomyces lanuginosa (TlL) binds to the non-substrate small (40 nm) unilamelar vesicles of 1,2-dimiristoylglycero-sn-3-phosphoglycerol (DMPG-SUVs) in a catalytically active structure, whereas it adopts a catalytically incompetent form in binding to zwitterionic 1,2-dimiristoylglycero-sn-3-phosphocholine (DMPC-SUVs) or to large (100 nm) unilamelar DMPG (DMPG-LUVs) vesicles. Steady-state anisotropy measurements with probes that localize at different positions in the membrane give information on the effects of TlL (and its mutants) on the mobility of the phospholipids. All TlL mutants insert into the DMPG-SUVs and increase lipid order at the headgroup region and at the hydrophobic core of the lipid bilayer as well. The increase of the rigidity of the membrane that occurs in the gel and liquid crystal states, results in an increase of the phase transition temperature (Tm). Kinetic experiments with monolayers of 1,2-dicaprin demonstrate the thermal stability of the enzyme in the range of temperatures of the phase transition. Mutations in the tryptophan (Trp) residues of TlL reduce activity of this enzyme and affect its interaction with the membrane. The membrane insertions of TlL mutants with other than Trp substitutions are much more shallower and produce only small increases of Tm, whereas mutation of lid-located Trp89 or mutation of any other Trp residue (117, 221, 260) result in a deeper penetration and significant increases of the Tm. Lipid dynamics of DMPC-SUVs or DMPG-LUVs are not affected by any of the TlL mutants, despite their strong binding to the lipids revealed by resonance energy transfer (RET). These results are consistent with the lipase–lipid penetration model in which the “lid” region of TlL inserts into the highly curved anionic interface, thus stabilizing the “open” or active enzyme conformation, whereas TlL binds to the surface of zwitterionic and large (small curvature) anionic vesicles in a “closed” (or inactive) conformation, without insertion of the lid.  相似文献   

3.
Hedin EM  Høyrup P  Patkar SA  Vind J  Svendsen A  Hult K 《Biochemistry》2005,44(50):16658-16671
The triglyceride lipase (EC 3.1.1.3) Thermomyces lanuginosus lipase (TLL) binds with high affinity to unilamellar phospholipid vesicles that serve as a diluent interface for both lipase and substrate, but it displays interfacial activation on only small and negatively charged such vesicles [Cajal, Y., et al. (2000) Biochemistry 39, 413-423]. The productive-mode binding orientation of TLL at the lipid-water interface of small unilamellar vesicles (SUV) consisting of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG) was previously determined using electron spin resonance (ESR) spectroscopy in combination with site-directed spin-labeling [Hedin, E. M. K., et al. (2002) Biochemistry 41, 14185-14196]. In our investigation, we have studied the interfacial orientation of TLL when bound to large unilamellar vesicles (LUV) consisting of POPG, and bound to SUV consisting of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC). Eleven single-cysteine TLL mutants were spin-labeled as previously described, and studied upon membrane binding using the water soluble spin-relaxation agent chromium(III) oxalate (Crox). Furthermore, dansyl-labeled vesicles revealed the intermolecular fluorescence quenching efficiency between each spin-label positioned on TLL, and the lipid membrane. ESR exposure and fluorescence quenching data show that TLL associates closer to the negatively charged PG surface than the zwitterionic PC surface, and binds to both POPG LUV and POPC SUV predominantly through the concave backside of TLL opposite the active site, as revealed by the contact residues K74C-SL, R209C-SL, and T192C-SL. This orientation is significantly different compared to that on the POPG SUV, and might explain the differences in activation of the lipase. Evidently, both the charge and accessibility (curvature) of the vesicle surface determine the TLL orientation at the phospholipid interface.  相似文献   

4.
Tritrpticin and indolicidin are short 13-residue tryptophan-rich antimicrobial peptides that hold potential as future alternatives for antibiotics. Isothermal titration calorimetry (ITC) has been applied as the main tool in this study to investigate the thermodynamics of the interaction of these two cathelicidin peptides as well as five tritrpticin analogs with large unilamellar vesicles (LUVs), representing model and natural anionic membranes. The anionic LUVs were composed of (a) 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPE/POPG) (7:3) and (b) natural E. coli polar lipid extract. 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) was used to make model zwitterionic membranes. Binding isotherms were obtained to characterize the antimicrobial peptide binding to the LUVs, which then allowed for calculation of the thermodynamic parameters of the interaction. All peptides exhibited substantially stronger binding to anionic POPE/POPG and E. coli membrane systems than to the zwitterionic POPC system due to strong electrostatic attractions between the highly positively charged peptides and the negatively charged membrane surface, and results with tritrpticin derivatives further revealed the effects of various amino acid substitutions on membrane binding. No significant improvement was observed upon increasing the Tritrp peptide charge from +4 to +5. Replacement of Arg residues with Lys did not substantially change peptide binding to anionic vesicles but moderately decreased the binding to zwitterionic LUVs. Pro to Ala substitutions in tritrpticin, allowing the peptide to adopt an alpha-helical structure, resulted in a significant increase of the binding to both anionic and zwitterionic vesicles and therefore reduced the selectivity for bacterial and mammalian membranes. In contrast, substitution of Trp with other aromatic amino acids significantly decreased the peptide's ability to bind to anionic LUVs and essentially eliminated binding to zwitterionic LUVs. The ITC results were consistent with the outcome of fluorescence spectroscopy membrane binding and perturbation studies. Overall, our work showed that a natural E. coli polar lipid extract as a bacterial membrane model was advantageous compared to the simpler and more widely used POPE/POPG lipid system.  相似文献   

5.
Tritrpticin and indolicidin are short 13-residue tryptophan-rich antimicrobial peptides that hold potential as future alternatives for antibiotics. Isothermal titration calorimetry (ITC) has been applied as the main tool in this study to investigate the thermodynamics of the interaction of these two cathelicidin peptides as well as five tritrpticin analogs with large unilamellar vesicles (LUVs), representing model and natural anionic membranes. The anionic LUVs were composed of (a) 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPE/POPG) (7:3) and (b) natural E. coli polar lipid extract. 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) was used to make model zwitterionic membranes. Binding isotherms were obtained to characterize the antimicrobial peptide binding to the LUVs, which then allowed for calculation of the thermodynamic parameters of the interaction. All peptides exhibited substantially stronger binding to anionic POPE/POPG and E. coli membrane systems than to the zwitterionic POPC system due to strong electrostatic attractions between the highly positively charged peptides and the negatively charged membrane surface, and results with tritrpticin derivatives further revealed the effects of various amino acid substitutions on membrane binding. No significant improvement was observed upon increasing the Tritrp peptide charge from + 4 to + 5. Replacement of Arg residues with Lys did not substantially change peptide binding to anionic vesicles but moderately decreased the binding to zwitterionic LUVs. Pro to Ala substitutions in tritrpticin, allowing the peptide to adopt an α-helical structure, resulted in a significant increase of the binding to both anionic and zwitterionic vesicles and therefore reduced the selectivity for bacterial and mammalian membranes. In contrast, substitution of Trp with other aromatic amino acids significantly decreased the peptide's ability to bind to anionic LUVs and essentially eliminated binding to zwitterionic LUVs. The ITC results were consistent with the outcome of fluorescence spectroscopy membrane binding and perturbation studies. Overall, our work showed that a natural E. coli polar lipid extract as a bacterial membrane model was advantageous compared to the simpler and more widely used POPE/POPG lipid system.  相似文献   

6.
Mogensen JE  Sehgal P  Otzen DE 《Biochemistry》2005,44(5):1719-1730
Lipases catalyze the hydrolysis of triglycerides and are activated at the water-lipid interface. Thus, their interaction with amphiphiles such as detergents is relevant for an understanding of their enzymatic mechanism. In this study, we have characterized the effect of nonionic, anionic, cationic, and zwitterionic detergents on the enzymatic activity and thermal stability of Thermomyces lanuginosus lipase (TlL). For all detergents, low concentrations enhance the activity of TlL toward p-nitrophenyl butyrate by more than an order of magnitude; at higher detergent concentrations, the activity declines, leveling off close to the value measured in the absence of detergent. Surprisingly, these phenomena mainly involve monomeric detergent, as activation and inhibition occur well below the cmc for the nonionic and zwitterionic detergents. For anionic and cationic detergents, activation straddles the monomer-micelle transition. The data can be fitted to a three state interaction model, comprising free TlL in the absence of detergent, an activated complex with TlL at low detergent concentrations, and an enzyme-inhibiting complex at higher concentrations. For detergents with the same headgroup, there is an excellent correspondence between carbon chain length and ability to activate and inhibit TlL. However, the headgroup and number of chains also modulate these effects, dividing the detergents overall into three broad groups with rising activation and inhibition ability, namely, anionic and cationic detergents, nonionic and single-chain zwitterionic detergents, and double-chain zwitterionic detergents. As expected, only anionic and cationic detergents lead to a significant decrease in lipase thermal stability. Since nonionic detergents activate TlL without destabilizing the protein, activation/inhibition and destabilization must be independent processes. We conclude that lipase-detergent interactions occur at many independent levels and are governed by a combination of general and structurally specific interactions. Furthermore, activation of TlL by detergents apparently does not involve the classical interfacial activation phenomenon as monomeric detergent molecules are in most cases responsible for the observed increase in activity.  相似文献   

7.
Interfacial activation of Rhizomucor miehei lipase is accompanied by a hinge-type motion of a single helix (residues 83-94) that acts as a lid over the active site. Activation of the enzyme involves the displacement of the lid to expose the active site, suggesting that the dynamics of the lid could be of mechanistic and kinetic importance. To investigate possible activation pathways and to elucidate the effect of a hydrophobic environment (as would be provided by a lipid membrane) on the lid opening, we have applied molecular dynamics and Brownian dynamics techniques. Our results indicate that the lipase activation is enhanced in a hydrophobic environment. In nonpolar low-dielectric surroundings, the lid opens in approximately 100 ns in the BD simulations. In polar high-dielectric (aqueous) surroundings, the lid does not always open up in simulations of up to 900 ns duration, but it does exhibit some gating motion, suggesting that the enzyme molecule may exist in a partially active form before the catalytic reaction. The activation is controlled by the charged residues ARG86 and ASP91. In the inactive conformation, ASP91 experiences repulsive forces and pushes the lid toward the open conformation. Upon activation ARG86 approaches ASP61, and in the active conformation, these residues form a salt bridge that stabilizes the open conformation.  相似文献   

8.
Electron density profiles calculated from molecular dynamics trajectories are used to deduce the orientation and conformation of Thermomyces lanuginosa lipase and a mutant adsorbed at an air-water interface. It is demonstrated that the profiles display distinct fine structures, which uniquely characterize enzyme orientation and conformation. The density profiles are, on the nanosecond timescale, determined by the average enzyme conformation. We outline a computational scheme that from a single molecular dynamics trajectory allows for extraction of electron density profiles referring to different orientations of the lipase relative to an implicit interface. Profiles calculated for the inactive and active conformations of the lipase are compared with experimental electron density profiles measured by x-ray reflectivity for the lipase adsorbed at an air-water interface. The experimental profiles contain less fine structural information than the calculated profiles because the resolution of the experiment is limited by the intrinsic surface roughness of water. Least squares fits of the calculated profiles to the experimental profiles provide areas per adsorbed enzyme and suggest that Thermomyces lanuginosa lipase adsorbs to the air-water interface in a semiopen conformation with the lid oriented away from the interface.  相似文献   

9.
The structure and membrane topology of the antimicrobial peptide temporin L (FVQWFSKFLGRIL- NH(2)) were studied using liposomes as model bilayers. Circular dichroic spectra revealed temporin L to adopt an alpha-helical conformation when bound to liposomes. Binding of temporin L to liposomes induced significant blue shifts of the emission spectra of the single Trp residue (Trp(4)) and also changed its quantum yield. The observed changes in the characteristics of the Trp(4) fluorescence are in keeping with the insertion of this residue into the hydrophobic region of the liposomal bilayers. Access of the aqueous quencher acrylamide to Trp(4) decreased in the sequence 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC)/cholesterol (X(chol) = 0.1) > SOPC > SOPC/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG, X(POPG) = 0.1) > SOPC/POPG (X(POPG) = 0.2) approximately SOPC/POPG (X(POPG) = 0.4), where X represents molar fraction of the indicated lipid. Whereas quenching of Trp(4) by brominated phospholipids was significant in SOPC liposomes, the quenching efficiency was enhanced when the vesicles contained POPG. The depth of insertion of Trp(4) into lipid bilayers was calculated by both the parallax method and distribution analysis and revealed this residue to reside at an average distance of d approximately 8.0 +/- 0.5 A from the center of both SOPC and SOPC/POPG bilayers. However, in the presence of cholesterol, d was increased to 9.5 +/- 0.5 A, thus revealing Trp(4) to become accommodated more superficially in the bilayer. The above data suggest the presence of two populations of temporin L in SOPC- and POPG-containing membranes with parallel and perpendicular orientation with respect to the plane of the membrane surface.  相似文献   

10.
The binding orientation of the interfacially activated Thermomyces lanuginosa lipase (TLL, EC 3.1.1.3) on phospholipid vesicles was investigated using site-directed spin labeling and electron spin resonance (ESR) relaxation spectroscopy. Eleven TLL single-cysteine mutants, each with the mutation positioned at the surface of the enzyme, were selectively spin labeled with the nitroxide reagent (1-oxyl-2,2,5,5-tetramethyl-Delta(3)-pyrroline-3-methyl) methanethiosulfonate. These were studied together with small unilamellar vesicles (SUV) consisting of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG), to which TLL has previously been shown to bind in a catalytically active form [Cajal, Y., et al. (2000) Biochemistry 39, 413-423]. The orientation of TLL with respect to the lipid membrane was investigated using a water-soluble spin relaxation agent, chromium(III) oxalate (Crox), and a recently developed ESR relaxation technique [Lin, Y., et al. (1998) Science 279, 1925-1929], here modified to low microwave amplitude (<0.36 G). The exposure to Crox for the spin label at the different positions on the surface of TLL was determined in the absence and presence of vesicles. The spin label at positions Gly61-Cys and Thr267-Cys, closest to the active site nucleophile Ser146 of the positions analyzed, displayed the lowest exposure factors to the membrane-impermeable spin relaxant, indicating the proximity to the vesicle surface. As an independent technique, fluorescence spectroscopy was employed to measure fluorescence quenching of dansyl-labeled POPG vesicles as exerted by the protein-bound spin labels. The resulting Stern-Volmer quenching constants showed excellent agreement with the ESR exposure factors. An interfacial orientation of TLL is proposed on the basis of the obtained results.  相似文献   

11.
The interfacial activation of many lipases at water/lipid interface is mediated by large conformational changes of a so‐called lid subdomain that covers up the enzyme active site. Here we investigated using molecular dynamic simulations in different explicit solvent environments (water, octane and water/octane interface) the molecular mechanism by which the lid motion of Burkholderia cepacia lipase might operate. Although B. cepacia lipase has so far only been crystallized in open conformation, this study reveals for the first time the major conformational rearrangements that the enzyme undergoes under the influence of the solvent, which either exposes or shields the active site from the substrate. In aqueous media, the lid switches from an open to a closed conformation while the reverse motion occurs in organic environment. In particular, the role of a subdomain facing the lid on B. cepacia lipase conformational rearrangements was investigated using position‐restrained MD simulations. Our conclusions indicate that the sole mobility of α9 helix side‐chains of B. cepacia lipase is required for the full completion of the lid conformational change which is essentially driven by α5 helix movement. The role of selected α5 hydrophobic residues on the lid movement was further examined. In silico mutations of two residues, V138 and F142, were shown to drastically modify the conformational behavior of B. cepacia lipase. Overall, our results provide valuable insight into the role played by the surrounding environment on the lid conformational rearrangement and the activation of B. cepacia lipase. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
We have designed synthetic peptides that mimic the primary and secondary structure of the cationic lipopeptide antibiotic polymyxin B (PxB) in order to determine the structural requirements for membrane action and to assess possible therapeutic potential. Two analogues with related sequences to that of PxB, but including synthetic simplifications (disulphide bridge between two cysteines in positions 4 and 10, N-terminal nonanoic acid), have been synthesized. Peptide-lipid interactions have been studied by fluorescence resonance energy transfer between pyrene and 4,4-difluoro-5-methyl-4-bora-3alpha,4alpha-diaza-s-indacene-3-dodecanoyl (BODIPY)probes covalently linked to phospholipids, and the possibility of membrane disruption or permeabilization has been assessed by light scattering and fluorescence quenching assays. The synthetic peptide sP-B, which closely mimics the primary and secondary structures of PxB, binds to vesicles of anionic 1-palmitoyl-2-oleoylglycero-sn-3-phosphoglycerol (POPG) or of lipids extracted from Escherichia coli membranes, and induces apposition of the vesicles and selective lipid exchange without permeabilization of the membrane. We conclude that sP-B forms functional vesicle-vesicle contacts that are selective, as previously described for PxB. The second analogue, sP-C, has a permutation of two amino acids that breaks the hydrophobic patch formed by D-Phe and Leu residues on the cyclic part of the sequence. sP-C lipopeptide is more effective than sP-B in inducing lipid mixing, but shows no selectivity for the lipids that exchange through the vesicle-vesicle contacts, and at high concentrations has a membrane-permeabilizing effect. The deacylated and non-antibiotic derivative PxB-nonapeptide (PxB-NP) does not induce the formation of functional intervesicle contacts in the range of concentrations studied.  相似文献   

13.
The effect of sphingomyelin (SM), one of the main lipids in the external monolayer of erythrocyte plasma membrane, on the ability of the hemolytic peptide melittin to permeabilize liposomes was investigated. The peptide induced contents efflux in large unilamellar vesicles (LUV) composed of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC)/SM (1:1 mole ratio), at lower (>1:10,000) peptide-to-lipid mole ratios than in pure POPC (>1:1000) or POPC/1-palmitoyl-2-oleoylphosphatidylglycerol (POPG) (1:1 mole ratio) (>1:300) vesicles. Analysis of the leakage data according to a kinetic model of pore formation showed a good fit for hexameric-octameric pores in SM-containing vesicles, whereas mediocre fits and lower surface aggregation constants were obtained in POPC and POPC/POPG vesicles. Disturbance of lateral separation into solid (s(o)) and liquid-disordered (l(d)) phases in POPC/SM mixtures increased the peptide-dose requirements for leakage. Inclusion of cholesterol (Chol) in POPC/SM mixtures under conditions inducing lateral separation of lipids into liquid-ordered (l(o)) and l(d) phases did not alter the number of melittin peptides required to permeabilize a single vesicle, but increased surface aggregation reversibility. Partitioning into liposomes or insertion into lipid monolayers was not affected by the presence of SM, suggesting that: (i) melittin accumulated at comparable doses in membranes with different SM content, and (ii) differences in leakage were due to promotion of melittin transmembrane pores under coexistence of s(o)-l(d) and l(o)-l(d) phases. Our results support the notion that SM may regulate the stability of size-defined melittin pores in natural membranes.  相似文献   

14.
The binding of the positively charged antimicrobial peptide cyclo[VKLdKVdYPLKVKLdYP] (GS14dK4) to various lipid bilayer model membranes was investigated using isothermal titration calorimetry. GS14dK4 is a diastereomeric lysine ring-size analogue of the naturally occurring antimicrobial peptide gramicidin S which exhibits enhanced antimicrobial and markedly reduced hemolytic activities compared with GS itself. Large unilamellar vesicles composed of various zwitterionic (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphorylcholine [POPC]) and anionic phospholipids {1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(glycerol)] [POPG] and 1-palmitoyl-2-oleoyl-sn-glycero-3-[phosphoserine] [POPS]}, with or without cholesterol, were used as model membrane systems. Dynamic light scattering results indicate the absence of any peptide-induced major alteration in vesicle size or vesicle fusion under our experimental conditions. The binding of GS14dK4 is significantly influenced by the surface charge density of the phospholipid bilayer and by the presence of cholesterol. Specifically, a significant reduction in the degree of binding occurs when three-fourths of the anionic lipid molecules are replaced with zwitterionic POPC molecules. No measurable binding occurs to cholesterol-containing zwitterionic vesicles, and a dramatic drop in binding is observed in the cholesterol-containing anionic POPG and POPS membranes, indicating that the presence of cholesterol markedly reduces the affinity of this peptide for phospholipid bilayers. The binding isotherms can be described quantitatively by a one-site binding model. The measured endothermic binding enthalpy (DeltaH) varies dramatically (+6.3 to +26.5 kcal/mol) and appears to be inversely related to the order of the phospholipid bilayer system. However, the negative free energy (DeltaG) of binding remains relatively constant (-8.5 to -11.5 kcal/mol) for all lipid membranes examined. The relatively small variation of negative free energy of peptide binding together with a pronounced variation of positive enthalpy produces an equally strong variation of TDeltaS (+16.2 to +35.0 kcal/mol), indicating that GS14dK4 binding to phospholipids bilayers is primarily entropy driven.  相似文献   

15.
In most lipases, a mobile lid covers the substrate binding site. In this closed structure, the lipase is assumed to be inactive. Upon activation of the lipase by contact with a hydrophobic solvent or at a hydrophobic interface, the lid opens. In its open structure, the substrate binding site is accessible and the lipase is active. The molecular mechanism of this interfacial activation was studied for three lipases (from Candida rugosa, Rhizomucor miehei, and Thermomyces lanuginosa) by multiple molecular dynamics simulations for 25 ns without applying restraints or external forces. As initial structures of the simulations, the closed and open structures of the lipases were used. Both the closed and the open structure were simulated in water and in an organic solvent, toluene. In simulations of the closed lipases in water, no conformational transition was observed. However, in three independent simulations of the closed lipases in toluene the lid gradually opened. Thus, pathways of the conformational transitions were investigated and possible kinetic bottlenecks were suggested. The open structures in toluene were stable, but in water the lid of all three lipases moved towards the closed structure and partially unfolded. Thus, in all three lipases opening and closing was driven by the solvent and independent of a bound substrate molecule.  相似文献   

16.
Tetrahydrolipstatin is a specific lipase inhibitor derived from lipstatin, a lipid produced by Streptomyces toxytricini. In addition to pancreatic lipase, it is shown in the present study that tetrahydrolipstatin also inhibits human gastric lipase, carboxyl ester lipase (cholesterol esterase) of pancreatic origin and the closely related bile-salt-stimulated lipase of human milk. It does not inhibit the exocellular lipase from Rhizopus arrhizus or a lipase recently isolated from Staphylococcus aureus. In the presence of a water-insoluble substrate, such as tributyrin, the inhibition has the characteristics of an irreversible inactivation of the uncompetitive type, thus indicating that an enzyme.substrate.inhibitor complex is formed, which cannot undergo further reaction to yield the normal product. This reaction probably takes place at the aqueous/oil interface of the substrate. In aqueous solution, in the absence of substrate, the inhibition of carboxyl ester lipase by tetrahydrolipstatin has the characteristics of being reversible, and finally becomes of a temporary nature analogues to the trypsin-trypsin inhibitor system. It is suggested that an enzyme-inhibitor complex of an acyl-enzyme type is formed that is slowly hydrolysed, with water as the final acceptor, leaving an intact enzyme and an inactive form of the inhibitor. The enzyme thus consumes the inhibitor, which undergoes a chemical conversion, as indicated by a change in mobility in an appropriate thin-layer chromatographic system, indicating an increase in hydrophilicity. Evidence is presented that the reaction product is an acid and that the functional group of tetrahydrolipstatin is the beta-lactone reacting with the active site of the enzyme.  相似文献   

17.
In several lipases access to the enzyme active site is regulated by the position of a mobile structure named the lid. The role of this region in modulating lipase function is reviewed in this paper analysing the results obtained with three different recombinant lipases modified in the lid sequence: Candida rugosa lipase isoform 1 (CRL1), Pseudomonas fragi lipase (PFL) and Bacillus subtilis lipase A (BSLA). A CRL chimera enzyme obtained by replacing its lid with that of another C. rugosa lipase isoform (CRL1LID3) was found to be affected in both activity and enantioselectivity in organic solvent. Variants of the PFL protein in which three polar lid residues were replaced with amino acids strictly conserved in homologous lipases displayed altered chain length preference profile and increased thermostability. On the other hand, insertion of lid structures from structurally homologous enzymes into BSLA, a lipase that naturally does not possess such a lid structure, caused a reduction in the enzyme activity and an altered substrate specificity. These results strongly support the concept that the lid plays an important role in modulating not only activity but also specifity, enantioselectivity and stability of lipase enzymes.  相似文献   

18.
Human gastric lipase (HGL) is a lipolytic enzyme that is secreted by the chief cells located in the fundic part of the stomach. HGL plays an important role in lipid digestion, since it promotes the subsequent hydrolytic action of pancreatic lipase in duodenal lumen. Physiological studies have shown that HGL is able of acting not only in the highly acid stomach environment but also in the duodenum in synergy with human pancreatic lipase (HPL). Recombinant HGL (r-HGL) was expressed in the baculovirus/insect cell system in the form of an active protein with a molecular mass of 45 kDa. The specific activities of r-HGL were found to be similar to that of the native enzyme when tested on various triacylglycerol (TG) substrates. The 3-D structure of r-HGL was the first solved within the mammalian acid lipase family. This globular enzyme (379 residues) shows a new feature, different from the other known lipases structures, which consists of a core domain having the alpha/beta hydrolase fold and a cap domain including a putative 'lid' of 30 residues covering the active site of the lipase (closed conformation). HPL is the major lipolytic enzyme involved in the digestion of dietary TG. HPL is a 50 kDa glycoprotein which is directly secreted as an active enzyme. HPL was the first mammalian lipase to be solved structurally, and it revealed the presence of two structural domains: a large N-terminal domain (residues 1-336) and a smaller C-terminal domain (residues 337-449). The large N-terminal domain belongs to the alpha/beta hydrolase fold and contains the active site. A surface loop called the lid domain (C237-C261) covers the active site in the closed conformation of the lipase. The 3-D structure of the lipase-procolipase complex illustrates how the procolipase might anchor the lipase at the interface in the presence of bile salts: procolipase binds to the C-terminal domain of HPL and exposes the hydrophobic tips of its fingers at the opposite site of its lipase-binding domain. These hydrophobic tips help to bring N-terminal domain into close conformation with the interface where the opening of the lid domain probably occurs. As a result of all these conformational changes, the open lid and the extremities of the procolipase form an impressive continuous hydrophobic plateau, extending over more than 50 A. This surface might able to interact strongly with a lipid-water interface. The biochemical, histochemical and clinical studies as well as the 3-D structures obtained will be a great help for a better understanding of the structure-function relationships of digestive lipases.  相似文献   

19.
The interaction was studied between the mitochondrial enzyme thiosulfate sulfurtransferase and liposomes, in the form of large unilamellar vesicles (LUV), prepared from either cardiolipin (CL), PtdCho or PtdSer. At equivalent concentrations of lipid, more partially folded thiosulfate sulfurtransferase bound to CL/LUV than to PtdSer/LUV, and only traces were bound to PtdCho/LUV. Native thiosulfate sulfurtransferase did not bind to any of these LUV. We show that CL/LUV-sequestered thiosulfate sulfurtransferase is inactive but may be reactivated (approximately 56%) with the aid of detergents, thiosulfate, beta-mercaptoethanol and phosphate buffer. Reactivations in the presence of PtdSer/LUV or PtdCho/LUV was only 9% or 1%, respectively. Analysis of the complex by protease digestion and fluorescence spectroscopy indicated that thiosulfate sulfurtransferase was held by CL/LUV and PtdSer/LUV as a folding intermediate. Data presented here suggest that detergents may not interact directly with the protein, but, rather, their primary role in reactivation is to disrupt the LUV, allowing flexibility to the anchored thiosulfate sulfurtransferase molecule, thereby promoting folding. These studies complement other reports which imply a possible role for CL in protein translocation across the mitochondria, since we find that CL binds to thiosulfate sulfurtransferase and sequesters it in a translocation-competent prefolded conformation, which may readily lead to a correctly folded enzyme.  相似文献   

20.
Action of pig pancreatic phospholipase A2 on vesicles and micelles of homologous anionic phospholipids is examined in the absence of additives. As shown elsewhere (Jain et al. (1986) Biochim. Biophys. Acta 860, 435-447), hydrolysis of anionic vesicles occurs by interfacial catalysis in the scooting mode, i.e., the catalytic turnover is fast relative to the off-rate of the enzyme from the interface. When the rate of intervesicle exchange of the enzyme is negligibly slow, it hydrolyses only the substrate molecules in the outer monolayer of the vesicle to which it is bound. Interfacial catalysis in the scooting mode with a high processivity occurs on vesicles of anionic phospholipids, and under these conditions the dynamics and order of the substrate in the interface influences the catalytic turnover only moderately, i.e., about 2- to 10-fold. Similarly, anomalous kinetic effects of the thermotropic gel-fluid phase transition or of a change in the general disorder of the bilayer organization (fluidity) has a minor effect on the kinetics of hydrolysis in the scooting mode. Similarly, higher unsaturation and shorter acyl chains in the substrate modestly increase the rate of catalytic turnover by the low-calcium form of the enzyme without noticeably influencing the affinity of the enzyme for the interface. On the other hand, perturbation of the charge distribution in the substrate interface can shift the proportion of the bound enzyme by several orders of magnitude. For example, the membrane perturbing amphiphiles (e.g., mepacrine, indomethacin, compound 48/80, aristolochic acid, local anesthetics, and the products of hydrolysis) do not influence the catalytic turnover of the bound enzyme but the proportion of the bound enzyme. Short-chain anionic phospholipids are readily hydrolyzed by phospholipase A2. Now no anomalous increase in the rate of hydrolysis is observed at the critical micelle as is the case with the zwitterionic analogs. This is because with anionic (but not with zwitterionic) substrates the enzyme forms an aggregated complex below the cmc of the monomer. The stability of these micellar complexes does not appear to change noticeably with the acyl chain length of the monomers. These observations show that the factors regulating the quality of interface substantially influence the binding of the enzyme, but not the catalytic turnover in the interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号