首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The Friend spleen focus-forming virus (SFFV) encodes a unique envelope glycoprotein, gp55, which allows erythroid cells to proliferate and differentiate in the absence of erythropoietin (Epo). SFFV gp55 has been shown to interact with the Epo receptor complex, causing constitutive activation of various signal-transducing molecules. When injected into adult mice, SFFV induces a rapid erythroleukemia, with susceptibility being determined by the host gene Fv-2, which was recently shown to be identical to the gene encoding the receptor tyrosine kinase Stk/Ron. Susceptible, but not resistant, mice encode not only full-length Stk but also a truncated form of the kinase, sf-Stk, which may mediate the biological effects of SFFV infection. To determine whether expression of SFFV gp55 leads to the activation of sf-Stk, we expressed sf-Stk, with or without SFFV gp55, in hematopoietic cells expressing the Epo receptor. Our data indicate that sf-Stk interacts with SFFV gp55 as well as gp55(P), the biologically active form of the viral glycoprotein, forming disulfide-linked complexes. This covalent interaction, as well as noncovalent interactions with SFFV gp55, results in constitutive tyrosine phosphorylation of sf-Stk and its association with multiple tyrosine-phosphorylated signal-transducing molecules. In contrast, neither Epo stimulation in the absence of SFFV gp55 expression nor expression of a mutant of SFFV that cannot interact with sf-Stk was able to induce tyrosine phosphorylation of sf-Stk or its association with any signal-transducing molecules. Covalent interaction of sf-Stk with SFFV gp55 and constitutive tyrosine phosphorylation of sf-Stk can also be detected in an erythroleukemia cell line derived from an SFFV-infected mouse. Our results suggest that SFFV gp55 may mediate its biological effects in vivo by interacting with and activating a truncated form of the receptor tyrosine kinase Stk.  相似文献   

2.
Infection of erythroid progenitor cells by Friend spleen focus-forming virus (SFFV) leads to acute erythroid hyperplasia and eventually to erythroleukemia in susceptible strains of mice. The viral envelope protein, SFFV gp55, forms a complex with the erythropoietin receptor (EpoR) and a short form of the receptor tyrosine kinase Stk (sf-Stk), activating both and inducing Epo-independent proliferation. Recently, we discovered that coexpression of SFFV gp55 and sf-Stk is sufficient to transform NIH 3T3 and primary fibroblasts. In the current study, we demonstrate that sf-Stk and its downstream effectors are critical to this transformation. Unlike SFFV-derived erythroleukemia cells, which depend on PU.1 expression for maintenance of the transformed phenotype, SFFV gp55-sf-Stk-transformed fibroblasts are negative for PU.1. Underscoring the importance of sf-Stk to fibroblast transformation, knockdown of sf-Stk abolished the ability of these cells to form anchorage-independent colonies. Like SFFV-infected erythroid cells, SFFV gp55-sf-Stk-transformed fibroblasts express high levels of phosphorylated MEK, ERK, phosphatidylinositol 3-kinase (PI3K), Gab1/2, Akt, Jun kinase (JNK), and STAT3, but unlike virus-infected erythroid cells they fail to express phosphorylated STATs 1 and 5, which may require involvement of the EpoR. In addition, the p38 mitogen-activated protein kinase (MAPK) stress response is suppressed in the transformed fibroblasts. Inhibition of either JNK or the PI3K pathway decreases both monolayer proliferation and anchorage-independent growth of the transformed fibroblasts as does the putative kinase inhibitor luteolin, but inhibition of p38 MAPK has no effect. Our results indicate that sf-Stk is a molecular endpoint of transformation that could be targeted directly or with agents against its downstream effectors.  相似文献   

3.
Infection of erythroid cells by Friend spleen focus-forming virus (SFFV) leads to acute erythroid hyperplasia in mice due to expression of its unique envelope glycoprotein, gp55. Erythroid cells expressing SFFV gp55 proliferate in the absence of their normal regulator, erythropoietin (Epo), because of interaction of the viral envelope protein with the erythropoietin receptor and a short form of the receptor tyrosine kinase Stk (sf-Stk), leading to constitutive activation of several signal transduction pathways. Our previous in vitro studies showed that phosphatidylinositol 3-kinase (PI3-kinase) is activated in SFFV-infected cells and is important in mediating the biological effects of the virus. To determine the role of PI3-kinase in SFFV-induced disease, mice deficient in the p85α regulatory subunit of class IA PI3-kinase were inoculated with different strains of SFFV. We observed that p85α status determined the extent of erythroid hyperplasia induced by the sf-Stk-dependent viruses SFFV-P (polycythemia-inducing strain of SFFV) and SFFV-A (anemia-inducing strain of SFFV) but not by the sf-Stk-independent SFFV variant BB6. Our data also indicate that p85α status determines the response of mice to stress erythropoiesis, consistent with a previous report showing that SFFV uses a stress erythropoiesis pathway to induce erythroleukemia. We further showed that sf-Stk interacts with p85α and that this interaction depends upon sf-Stk kinase activity and tyrosine 436 in the multifunctional docking site. Pharmacological inhibition of PI3-kinase blocked proliferation of primary erythroleukemia cells from SFFV-infected mice and the erythroleukemia cell lines derived from them. These results indicate that p85α may regulate sf-Stk-dependent erythroid proliferation induced by SFFV as well as stress-induced erythroid hyperplasia.The Friend spleen focus-forming virus (SFFV) is a highly pathogenic retrovirus that induces rapid erythroblastosis in susceptible strains of mice (for a review, see reference 42). Friend SFFV is a replication-defective virus with deletions in its env gene, giving rise to a unique glycoprotein, SFFV gp55. This unique glycoprotein confers pathogenicity to the virus; a vector encoding SFFV gp55 alone is sufficient to induce erythroblastosis in susceptible strains of mice (49). The Fv-2 gene encodes one of the key susceptibility factors for SFFV-induced erythroid disease (18, 37), as follows: the receptor tyrosine kinase Stk/RON, a member of the Met family of receptor tyrosine kinases (11-12). Susceptibility to SFFV-induced disease is associated with expression of a short form of the receptor tyrosine kinase Stk, termed sf-Stk, that is transcribed from an internal promoter within the Stk gene of Fv-2-susceptible (Fv-2ss) mice but not Fv-2-resistant (Fv-2rr) mice (37) and is abundantly expressed in erythroid cells (11). Infection of erythroid cells with the polycythemia-inducing strain of SFFV (SFFV-P) induces erythropoietin (Epo)-independent proliferation and differentiation, whereas erythroid cells infected with the anemia-inducing strain of SFFV (SFFV-A) proliferate in the absence of Epo but still require Epo for differentiation (42). Previous studies demonstrated that this Epo-independent erythroblastosis is due to the cell surface interaction of the SFFV envelope protein with the Epo receptor (EpoR) and sf-Stk (31). While interaction with the EpoR appears to be responsible mainly for the induction of Epo-independent differentiation (52), Epo-independent erythroid cell proliferation depends upon activation of sf-Stk. We recently demonstrated that sf-Stk covalently interacts with SFFV-P gp55 in hematopoietic cells that express the EpoR and that this interaction induces sf-Stk activation (31). Furthermore, exogenous expression of sf-Stk, but not a kinase-inactive mutant of sf-Stk, in bone marrow cells from sf-Stk null mice can restore Epo-independent erythroid colony formation in response to SFFV infection (5, 41). Thus, the SFFV envelope glycoprotein induces Epo-independent proliferation of erythroid cells mainly by activating sf-Stk. While sf-Stk is a key susceptibility factor for erythroblastosis induced by both SFFV-P and SFFV-A (18), it is not required for the induction of erythroblastosis by the SFFV mutant BB6, which encodes an envelope glycoprotein, gp42, that is deleted in the membrane-proximal extracellular domain (19) and does not induce sf-Stk activation (31). gp42 of SFFV-BB6 appears to exert its biological effects on erythroid cells by efficiently interacting with the EpoR (9). Compared with wild-type SFFV, SFFV-BB6 causes a relatively indolent and slowly developing disease in mice (19).A number of signaling pathways normally activated in erythroid cells after erythropoietin (Epo) binds to its cell surface receptor (40) are constitutively activated in erythroid cells infected with SFFV. These include JAK/STAT, Ras/Raf/mitogen-activated protein kinase (MAPK), Jun N-terminal kinase, and the phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathways (24, 25, 28-30, 32). SFFV gp55 is thought to activate these pathways by interacting with either the EpoR or sf-Stk (17, 31, 43). In several in vitro systems, class IA PI3-kinase has been shown to be activated by Epo through the EpoR (8, 20, 21) or by SFFV through sf-Stk (5, 14). We and others have shown that the PI3-kinase pathway is important for the induction of Epo independence by SFFV (5, 29). The class IA subclass of PI3-kinase is a heterodimer comprising the p110 (α, β, δ) catalytic unit and one of five regulatory subunits (85α, p55α, p50α, 85β, and 55γ) (15). The first 3 regulatory subunits are all splice variants of the same gene (pik3r1). Deletion of pik3r1, which encodes p85α, p55α, and p50α, is lethal (6, 7), and these regulatory subunits of PI3-kinase are required for normal murine fetal erythropoiesis in mice (10).To determine the role of p85α in SFFV-induced erythroleukemia, we used a distinct nonlethal pik3r1 knockout mouse which lacks only the p85α regulatory subunit of PI3-kinase (45, 47), allowing the study of SFFV-induced erythroleukemia in adult mice. Our results indicate that p85α regulates SFFV-induced erythroid hyperplasia induced in vivo by sf-Stk-dependent, but not sf-Stk-independent, isolates of the virus as well as stress-induced erythropoiesis and suggest that this regulation may occur through the interaction of sf-Stk with p85α.  相似文献   

4.
Members of the mitogen-activated protein kinase (MAPK) family, including Jun amino-terminal kinase (JNK) and extracellular signal-related kinase (ERK), play an important role in the proliferation of erythroid cells in response to erythropoietin (Epo). Erythroid cells infected with the Friend spleen focus-forming virus (SFFV) proliferate in the absence of Epo and show constitutive activation of Epo signal transduction pathways. We previously demonstrated that the ERK pathway was constitutively activated in Friend SFFV-infected erythroid cells, and in this study JNK is also shown to be constitutively activated. Pharmacological inhibitors of both the ERK and JNK pathways stopped the proliferation of primary erythroleukemic cells from Friend SFFV-infected mice, with little induction of apoptosis, and furthermore blocked their ability to form Epo-independent colonies. However, only the JNK inhibitor blocked the proliferation of erythroleukemia cell lines derived from these mice. The JNK inhibitor caused significant apoptosis in these cell lines as well as an increase in the fraction of cells in G(2)/M and undergoing endoreduplication. In contrast, the growth of erythroleukemia cell lines derived from Friend murine leukemia virus (MuLV)-infected mice was inhibited by both the MEK and JNK inhibitors. JNK is important for AP1 activity, and we found that JNK inhibitor treatment reduced AP1 DNA-binding activity in primary erythroleukemic splenocytes from Friend SFFV-infected mice and in erythroleukemia cell lines from Friend MuLV-infected mice but did not alter AP1 DNA binding in erythroleukemia cell lines from Friend SFFV-infected mice. These data suggest that JNK plays an important role in cell proliferation and/or the survival of erythroleukemia cells.  相似文献   

5.
6.
Interaction of erythropoietin (Epo) with its cell surface receptor activates signal transduction pathways which result in the proliferation and differentiation of erythroid cells. Infection of erythroid cells with the Friend spleen focus-forming virus (SFFV) leads to the interaction of the viral envelope glycoprotein with the Epo receptor and renders these cells Epo independent. We previously reported that SFFV induces Epo independence by constitutively activating components of several Epo signal transduction pathways, including the Jak-Stat and the Raf-1/mitogen-activated protein kinase (MAPK) pathways. To further evaluate the mechanism by which SFFV activates the Raf-1/MAPK pathway, we investigated the effects of SFFV on upstream components of this pathway, and our results indicate that SFFV activates Shc and Grb2 and that this leads to Ras activation. While studies with a dominant-negative Ras indicated that Ras was required for Epo-induced proliferation of normal erythroid cells, the Epo-independent growth of SFFV-infected cells can still occur in the absence of Ras, although at reduced levels. In contrast, protein kinase C (PKC) was shown to be required for the Epo-independent proliferation of SFFV-infected cells. Further studies indicated that PKC, which is thought to be involved in the activation of both Raf-1 and MAPK, was required only for the activation of MAPK, not Raf-1, in SFFV-infected cells. Our results indicate that Ras and PKC define two distinct signals converging on MAPK in both Epo-stimulated and SFFV-infected erythroid cells and that activation of only PKC is sufficient for the Epo-independent proliferation of SFFV-infected cells.  相似文献   

7.
The erythroleukemia-inducing Friend spleen focus-forming virus (SFFV) encodes a unique envelope glycoprotein which allows erythroid cells to proliferate and differentiate in the absence of erythropoietin (Epo). In an effort to understand how SFFV causes Epo independence, we have been examining erythroid cells rendered factor independent by SFFV infection for constitutive activation of signal-transducing molecules. Previous studies from our laboratory showed that various signal-transducing molecules known to be activated by Epo, including Stat proteins and components of the Raf-1/MAP kinase pathway, are constitutively activated in SFFV-infected erythroid cells in the absence of Epo. Since another signal transduction pathway involving activation of phosphatidylinositol 3-kinase (PI 3-kinase) after Epo stimulation plays an important role in erythroid cell proliferation and differentiation, we carried out studies to determine if this pathway was also activated in SFFV-infected cells in the absence of Epo. Our studies show that PI 3-kinase is constitutively activated in erythroid cells rendered factor independent by infection with SFFV and that PI 3-kinase activity, but not Epo receptor tyrosine phosphorylation, is required for the proliferation of these cells in the absence of Epo. We further show that in SFFV-infected erythroid cells grown in the absence of Epo, PI 3-kinase associates with the insulin receptor substrate (IRS)-related adapter molecules IRS-2, Gab1, and Gab2, which are constitutively tyrosine phosphorylated in SFFV-infected cells. Finally, Akt, a protein kinase that is one of the downstream effectors of PI 3-kinase, and SHIP, a lipid phosphatase that is important for Akt activation through PI 3-kinase, are both tyrosine phosphorylated in SFFV-infected cells grown in the absence of Epo. Our results indicate that induction of Epo independence by SFFV requires the activation of PI 3-kinase and suggest that constitutive activation of this kinase in SFFV-infected cells may occur primarily through interaction of PI 3-kinase with constitutively phosphorylated IRS-related adapter molecules.  相似文献   

8.
gp55-P is a dimeric membrane protein with a single transmembrane helix that is coded by the env gene of the polycythemic strain of the spleen focus forming virus. gp55-P activates the erythropoietin (Epo) receptor through specific transmembrane helix interactions, leading to Epo-independent growth of erythroid progenitors and eventually promoting erythroleukemia. We describe the use of magic angle spinning deuterium NMR to establish the structure of the transmembrane dimer of gp55-P in model membranes. Comparison of the deuterium lineshapes of leucines in the center (Leu(396-399)) and at the ends (Leu(385), Leu(407)) of the transmembrane sequence shows that gp55-P has a right-handed crossing angle with Leu(399) packed in the dimer interface. We discuss the implications of the structure of the gp55-P transmembrane dimer for activation of the Epo receptor.  相似文献   

9.
The proliferation and differentiation of erythroid cells is a highly regulated process that is controlled primarily at the level of interaction of erythropoietin (Epo) with its specific cell surface receptor (EpoR). However, this process is deregulated in mice infected with the Friend spleen focus-forming virus (SFFV). Unlike normal erythroid cells, erythroid cells from SFFV-infected mice are able to proliferate and differentiate in the absence of Epo, resulting in erythroid hyperplasia and leukemia. Over the past 20 years, studies have been carried out to identify the viral genes responsible for the pathogenicity of SFFV and to understand how expression of these genes leads to the deregulation of erythropoiesis in infected animals. The studies have revealed that SFFV encodes a unique envelope glycoprotein which interacts specifically with the EpoR at the cell surface, resulting in activation of the receptor and subsequent activation of erythroid signal transduction pathways. This leads to the proliferation and differentiation of erythroid precursor cells in the absence of Epo. Although the precise mechanism by which the viral protein activates the EpoR is not yet known, it has been proposed that it causes dimerization of the receptor, resulting in constitutive activation of Epo signal transduction pathways. While interaction of the SFFV envelope glycoprotein with the EpoR leads to Epo-independent erythroid hyperplasia, this is not sufficient to transform these cells. Transformation requires the viral activation of the cellular gene Sfpi-1, whose product is thought to block erythroid cell differentiation. By understanding how SFFV can deregulate erythropoiesis, we may gain insights into the causes and treatment of related diseases in man.  相似文献   

10.
Co-infection of neonatal BALB/c mice with Friend virus (FV) complex (containing defective spleen focus-forming virus [SFFV] and endogenous N-tropic leukemia-inducing helper virus [LLV-F]) and B-tropic Tennant leukemia virus (TenLV) resulted in the inhibition of LLV-F by the Fv-1(b) gene and recovery of a TenLV pseudotype of SFFV, abbreviated SFFV(TenLV). The host range of this pseudotype was B-tropic, since SFFV(TenLV) was 10 to 100 times more infectious for B-type (Fv-1(bb)) than for N-type (Fv-1(nn)) mice. The similar patterns of neutralization of N-tropic and B-tropic SFFV by type-specific murine antisera suggested that the difference in infectivity between these two SFFV preparations did not reside in envelope determinants. Rather, helper control of SFFV's host range was only apparent and dependent upon the ability of associated virus to provide a helper function for late stages in SFFV synthesis. Early stages in SFFV's infectious cycle were shown to be helper independent. The Fv-1 gene did not act at the level of the cell membrane to effectively restrict SFFV infection, since SFFV-induced transformed cells could be detected in the absence of spleen focus formation and SFFV synthesis. Further, the generation of these transformed cells by SFFV followed a one-hit, dose-response pattern, suggesting that SFFV-induced cell transformation is helper independent. Finally, restriction of helper function by Fv-1 may be an intracellular event, because both SFFV and its associated LLV-F helper share common envelope determinants and presumably adsorb onto and penetrate target cells with equal efficiency.  相似文献   

11.
The env gene of Friend spleen focus-forming virus (SFFV) encodes a membrane glycoprotein (gp55) that is inefficiently (3 to 5%) processed from the rough endoplasmic reticulum to form a larger dimeric plasma membrane derivative (gp55p). Moreover, the SFFV env glycoprotein associates with erythropoietin receptors (EpoR) to cause proliferation of infected erythroblasts [J.-P. Li, A. D. D'Andrea, H. F. Lodish, and D. Baltimore, Nature (London) 343:762-764, 1990]. Interestingly, the mitogenic effect of SFFV is blocked in mice homozygous for the Fv-2r resistance gene, but mutant SFFVs can overcome this resistance. Recent evidence suggested that these mutants contain partial env deletions that truncate the membrane-proximal extracellular domain of the encoded glycoproteins (M. H. Majumdar, C.-L. Cho, M. T. Fox, K. L. Eckner, S. Kozak, D. Kabat, and R. W. Geib, J. Virol. 66:3652-3660, 1992). Mutant BB6, which encodes a gp42 glycoprotein that has a large deletion in this domain, causes erythroblastosis in DBA/2 (Fv-2s) as well as in congenic D2.R (Fv-2r) mice. Analogous to gp55, gp42 is processed inefficiently as a disulfide-bonded dimer to form cell surface gp42p. Retroviral vectors with SFFV and BB6 env genes have no effect on interleukin 3-dependent BaF3 hematopoietic cells, but they cause growth factor independency of BaF3/EpoR cells, a derivative that contains recombinant EpoR. After binding 125I-Epo to surface EpoR on these factor-independent cells and adding the covalent cross-linking reagent disuccinimidyl suberate, complexes that had immunological properties and sizes demonstrating that they consisted of 125I-Epo-gp55p and 125I-Epo-gp42p were isolated from cell lysates. Contrary to a previous report, SFFV or BB6 env glycoproteins did not promiscuously activate other members of the EpoR superfamily. Although the related env glycoproteins encoded by dualtropic murine leukemia viruses formed detectable complexes with EpoR, strong mitogenic signalling did not ensue. Our results indicate that the SFFV and BB6 env glycoproteins specifically activate EpoR; they help to define the glycoprotein properties important for its functions; and they strongly suggest that the Fv-2 leukemia control gene encodes an EpoR-associated regulatory factor.  相似文献   

12.
J P Li  H O Hu  Q T Niu    C Fang 《Journal of virology》1995,69(3):1714-1719
The leukemogenic membrane glycoprotein gp55, encoded by Friend spleen focus-forming virus (SFFV), induces erythroid cell proliferation through its interaction with the erythropoietin receptor (EPO-R). There are two forms of gp55 in SFFV-infected cells: an intracellular form (more than 95% of the total protein), which is localized within the endoplasmic reticulum (ER) membranes, and a cell surface form (about 3 to 5%). Because both forms of the viral proteins bind to EPO-R, it is not clear whether the viral protein induces mitogenesis intracellularly or at the cell surface. To address this question, we constructed an EPO-R mutant that contained a 6-amino-acid (DEKKMP) C-terminus ER retention signal. Biochemical and functional analyses with this mutant indicated that it was completely retained in the ER and not expressed at the cell surface. Further analysis showed that the mutant, like the wild-type EPO-R, interacted with SFFV gp55. However, this apparent intracellular interaction between the two proteins failed to induce growth factor-independent proliferation of Ba/F3 cells. Furthermore, spontaneous variants of the ER-retained EPO-R selected on the basis of their ability to induce cell proliferation when coexpressed with gp55 were exclusively expressed at the cell surface. Thus, our results support the hypothesis that the mitogenic activation of the EPO-R by gp55 requires the interaction of the two proteins at the cell surface.  相似文献   

13.
H Amanuma  N Watanabe  M Nishi    Y Ikawa 《Journal of virology》1989,63(11):4824-4833
In order to obtain evidence for the essential role of the single base insertion occurring at the 3' end of the env-related gene of Friend spleen focus-forming virus (SFFV) encoding the leukemogenic glycoprotein (gp55) a mutant SFFV genome was constructed in which the segment of the gp55 gene of the polycythemia-inducing strain of SFFV containing the single base insertion and the 6-base-pair duplication was replaced by the corresponding sequence of the Friend murine leukemia virus env gene. The mutant SFFV-Friend murine leukemia virus complex did not induce symptoms of the erythroproliferative disease in adult DBA/2 mice. During passage through newborn DBA/2 mice, the mutant virus complex invariably gave rise to weakly pathogenic variant SFFVs. All of the variant SFFVs induced in adult DBA/2 mice a transient mild splenomegaly associated with normal or slightly low hematocrit value, and they produced gp55 with a molecular weight similar to that of gp55 of the wild-type SFFV. For the two isolates of variant SFFV, the 3' portion of the viral DNA intermediate containing the 3' portion of the gp55 gene was molecularly cloned. Nucleotide sequences of these biologically active cloned DNAs were determined and showed that the variant SFFV genomes arose from the mutant SFFV genome by regaining the single base insertion, indicating that the single base insertion is essential for the biological activity of gp55. Evidence is presented indicating that the single base insertion which causes a loss of the cytoplasmic domain of the env-related protein is not related to the localization of the further-glycosylated form of gp55 in the plasma membrane but is involved with the release of gp55 from cells.  相似文献   

14.
The Friend spleen focus-forming virus (SFFV) gp55 glycoprotein binds to the erythropoietin receptor (EPO-R), causing constitutive receptor signaling and the first stage of Friend erythroleukemia. We have used three independent strategies to further define this transforming molecular interaction. First, using a retroviral selection strategy, we have isolated the cDNAs encoding three fusion polypeptides containing regions of both EPO-R and gp55. These fusion proteins, like full-length gp55, transformed the Ba/F3 factor-dependent hematopoietic cell line and localized the transforming activity of gp55 to its transmembrane domain. Second, we have isolated a mutant of gp55 (F-gp55-M1) which binds, but fails to activate, EPO-R. We have compared the transforming activity of this gp55 mutant with the EPO-R-gp55 fusion proteins and with other variants of gp55, including wild-type polycythemia Friend gp55 and Rauscher gp55. All of the fusion polypeptides and mutant gp55 polypeptides were expressed at comparable levels, and all coimmunoprecipitated with wild-type EPO-R, but only the Friend gp55 and the EPO-R-gp55 fusion proteins constitutively activated wild-type EPO-R. Third, we have examined the specificity of the EPO-R-gp55 interaction by comparing the differential activation of murine and human EPO-R by gp55. Wild-type gp55 had a highly specific interaction with murine EPO-R; gp55 bound, but did not activate, human EPO-R.  相似文献   

15.
Although the Friend virus-encoded membrane glycoprotein (gp55) activates erythropoietin receptors (EpoR) to cause erythroblastosis only in certain inbred strains of mice but not in other species, mutant viruses can overcome aspects of mouse resistance. Thus, mice homozygous for the resistance allele of the Fv-2 gene are unaffected by gp55 but are susceptible to mutant glycoproteins that have partial deletions in their ecotropic domains. These and other results have suggested that proteins coded for by polymorphic Fv-2 alleles might directly or indirectly interact with EpoR and that changes in gp55 can overcome this defense. A new viral mutant with an exceptionally large deletion in its ecotropic domain is now also shown to overcome Fv-2rr resistance. In all cases, the glycoproteins that activate EpoR are processed to cell surfaces as disulfide-bonded dimers. To initiate analysis of nonmurine resistances, we expressed human EpoR and mouse EpoR in the interleukin 3-dependent mouse cell line BaF3 and compared the abilities of Friend virus-encoded glycoproteins to convert these cells to growth factor independence. Human EpoR was activated in these cells by erythropoietin but was resistant to gp55. However, human EpoR was efficiently activated in these cells by the same viral mutants that overcome Fv-2rr resistance in mice. By construction and analysis of human-mouse EpoR chimeras, we obtained evidence that the cytosolic domain of human EpoR contributes to its resistance to gp55 and that this resistance is mediated by accessory cellular factors. Aspects of host resistance in both murine and nonmurine species are targeted specifically against the ecotropic domain of gp55.  相似文献   

16.
Friend virus induces an erythroleukemia in susceptible mice that is initiated by the interaction of the Friend virus-encoded glycoprotein gp55 with the erythropoietin (Epo) receptor and the product of the host Fv2 gene, a naturally occurring truncated form of the Stk receptor tyrosine kinase (Sf-Stk). We have previously demonstrated that the activation of Sf-Stk, recruitment of a Grb2/Gab2/Stat3 signaling complex, and induction of Pu.1 expression by Stat3 are required for the development of the early stage of Friend disease both in vitro and in vivo. Here we demonstrate that the interaction of gp55 with Sf-Stk is dependent on cysteine residues in the ecotropic domain of gp55 and the extracellular domain of Sf-Stk. Point mutation of these cysteine residues or deletion of these domains inhibits the ability of gp55 to interact with Sf-Stk, resulting in the inability of these proteins to promote the Epo-independent growth of erythroid progenitor cells. We also demonstrate that the interaction of gp55 with Sf-Stk does not promote dimerization of Sf-Stk but results in enhanced phosphorylation of Sf-Stk and the relocalization of Sf-Stk from the cytosol to the plasma membrane. Finally, we demonstrate that a constitutively active form of Sf-Stk (Sf-StkM330T), as well as its human counterpart, Sf-Ron, promotes Epo-independent colony formation in the absence of gp55 and that this response is also dependent on the cysteines in the extracellular domains of Sf-StkM330T and Sf-Ron. These data suggest that the cysteines in the extracellular domains of Sf-Stk and Sf-Ron may also mediate the interaction of these truncated receptors with other cellular factors that regulate their ability to promote cytokine-independent growth.Since Friend disease was first reported in 1957 (19), the acute erythroleukemia induced by the various strains of Friend virus have provided an excellent model to study multistage carcinogenesis (5). In the first stage, the virus infects erythroid progenitor cells and a viral glycoprotein, gp55, interacts with both the erythropoietin receptor (EpoR) and a naturally occurring truncated form of the stem cell-derived tyrosine kinase (Stk), Sf-Stk, resulting in the Epo-independent (Epoind) expansion of erythroid progenitor cells. The late stage of erythroleukemia in Friend disease is marked by inactivation of the p53 locus (6, 28, 38, 39, 51) and proviral integration into the Spi-1 locus (36, 43, 44), resulting in enhanced expression of Pu.1, which causes a block in erythroid differentiation and promoting the onset of acute erythroleukemia.Friend virus is a complex of two viruses, the spleen focus-forming virus (SFFV), which is a replication-defective C-type retrovirus, and the ecotropic Friend murine leukemia virus (F-MuLV). SFFV is responsible for the rapid splenomegaly and acute erythroleukemia induced by Friend virus infection (7, 64, 65, 67), while F-MuLV provides helper function and can be substituted for by other murine leukemia viruses (35). Specifically, the glycoprotein gp55, encoded by the SFFV env gene, acts as the transforming viral oncoprotein (2, 65).Several loci in the mouse genome that control Friend virus susceptibility have been identified. Fv1, Fv3, and Fv4 affect the ability of Friend virus to infect early erythroid progenitor cells. The Fv1 gene product inhibits Friend virus infection by interacting with the viral capsid protein (60). The Fv3 gene encodes cytidine deaminase Apobec3, which broadly inhibits retrovirus infection (42, 53, 57). The Fv4 gene product affects viral binding by competing for receptors on the cell membrane (59). Another set of genes, W, Sl, f, and Fv2, are required for the development or expansion of infected progenitor cells. Our previous work demonstrated that W, Sl, and f, which encode the kit receptor, its ligand SCF, and Smad5, respectively, also play key roles in the BMP4-dependent stress erythropoiesis pathway(46, 47, 55). Analysis of those mutants showed that Friend virus activates this pathway, leading to acute amplification of stress progenitors, which are targets of Friend virus in the spleen, and resulting in rapid onset of disease.The Friend virus susceptibility gene Fv2 encodes the stem cell-derived tyrosine kinase (Stk) receptor (48). A naturally occurring N-terminally truncated form of Stk, short-form Stk (Sf-Stk), is required for Friend virus susceptibility. Fv2r/r mice, including C57BL/6, lack expression of Sf-Stk and are resistant to Friend virus infection, while full-length Stk expression is unaffected in these mice. An internal promoter within the Stk locus drives Sf-Stk expression, and Fv2r/r mice harbor mutations in the internal promoter. Sf-Stk lacks the N-terminal ligand binding domain of full-length Stk but retains the transmembrane and tyrosine kinase domains. In vitro and in vivo expression of Sf-Stk in C57BL/6 bone marrow cells has been shown to confer Friend virus susceptibility to Fv2r/r mice (18).Sf-Stk covalently interacts with gp55, resulting in constitutive activation of Sf-Stk (41). However, the mechanism by which this occurs is currently unknown. Here, we identify cysteines in the extracellular domains of Sf-Stk and gp55 that mediate this interaction. Furthermore, we demonstrate that while the association with gp55 is not required for the dimerization of Sf-Stk, the interaction of gp55 with Sf-Stk promotes tyrosine phosphorylation of Sf-Stk. In addition, while the extracellular cysteines in Sf-Stk promote retention of Sf-Stk in the cytoplasm in the absence of gp55, the interaction of Sf-Stk with gp55 through these cysteines results in enhanced cell surface localization of Sf-Stk. These changes in receptor activation and subcellular localization mediate the ability of Sf-Stk to induce gene expression and promote the Epoind growth of primary erythroblasts.  相似文献   

17.
The spleen focus forming virus (SFFV) gp55-P envelope glycoprotein specifically binds to and activates murine erythropoietin receptors (EpoRs) coexpressed in the same cell, triggering proliferation of erythroid progenitors and inducing erythroleukemia. Here we demonstrate specific interactions between the single transmembrane domains of the two proteins that are essential for receptor activation. The human EpoR is not activated by gp55-P but by mutation of a single amino acid, L238, in its transmembrane sequence to its murine counterpart serine, resulting in its ability to be activated. The converse mutation in the murine EpoR (S238L) abolishes activation by gp55-P. Computational searches of interactions between the membrane-spanning segments of murine EpoR and gp55-P provide a possible explanation: the face of the EpoR transmembrane domain containing S238 is predicted to interact specifically with gp55-P but not gp55-A, a variant which is much less effective in activating the murine EpoR. Mutational studies on gp55-P M390, which is predicted to interact with S238, provide additional support for this model. Mutation of M390 to isoleucine, the corresponding residue in gp55-A, abolishes activation, but the gp55-P M390L mutation is fully functional. gp55-P is thought to activate signaling by the EpoR by inducing receptor oligomerization through interactions involving specific transmembrane residues.  相似文献   

18.
R Anand  R A Steeves  F Lilly 《Microbios》1989,58(235):71-82
The interaction between defective spleen focus-forming virus (SFFV) and helper virus(es) in Friend virus (FV) complex has been assumed to be one-way, with the helper virus complementing SFFV by supplying necessary virion components. To test this assumption the expression of both SFFV and helper virus in partially congenic mice which differ at the Fv-2 locus, a gene that specifically controls susceptibility to SFFV, was analysed. When the mice were infected with LLV (a strain of Friend SFFV-free helper virus), there was no detectable effect of Fv-2 genotype on LLV expression as tested by virus infectivity in the XC plaque assay or by quantitative viral antigen analysis in an immunoprecipitation assay. However, after infection with FV complex there was an amplification of LLV (as well as SFFV) synthesis in Fv-2s as compared with Fv-2r hosts. To determine whether the increased LLV synthesis in Fv-2s mice was due to an increased population of susceptible target cells as a result of SFFV infection and/or transformation, the ratios of LLV-infected cells in the spleens of LLV- and FV-infected Fv-2s hosts in an infectious centre assay, were compared. Since the percentage of LLV-infected cells was equivalent in both instances, the higher rate of LLV synthesis after infection with FV complex was presumably due to intrinsic properties of SFFV-infected erythroid cells.  相似文献   

19.
Previous studies in our laboratory and others have been consistent with the hypothesis that the envelope (env) gene of the spleen focus-forming virus (SFFV) is the only gene essential for the induction of acute erythroleukemia. However, no studies have been carried out with the SFFV env gene in the complete absence of other SFFV sequences. To accomplish this goal, we isolated the sequences that encode the envelope glycoprotein, gp52, of SFFVA and expressed them in a Moloney murine leukemia virus-based double-expression vector containing the neomycin resistance gene. The method used to produce retrovirus stocks in tissue culture cells affected the expression of the gp52 gene in the vector and the subsequent pathogenicity of the vector in mice. Highly pathogenic virus stocks were obtained by cotransfection of vector and helper virus DNAs into fibroblasts, followed by virus replication and spread through the cell population. Mice infected with this stock developed a rapid erythroid disease that was indistinguishable from that induced by the entire SFFV genome, and the virus stock transformed erythroid cells in vitro. Spleen cells from the diseased mice expressed the SFFV env gene product but not the SFFV gag gene product. As expected, mice given the virus containing the SFFV env gene in the reverse orientation did not express the SFFV env gene product or develop erythroleukemia. This study, therefore, demonstrated (i) that double-expression retroviral vectors can be used under specific conditions to produce viruses expressing high levels of a particular gene and (ii) that incorporation of the SFFV env gene into such a vector in the absence of other SFFV sequences results in a retrovirus which is as pathogenic as the original SFFV.  相似文献   

20.
Erythroid cells from mice infected with the polycythemia-inducing strain of Friend spleen focus-forming virus (SFFVP), unlike normal erythroid cells, can proliferate and differentiate in apparent absence of the erythroid hormone erythropoietin (Epo). The unique envelope glycoprotein encoded by SFFV has been shown to be responsible for this biological effect. The recent isolation of an Epo-dependent erythroleukemia cell line, HCD-57, derived from a mouse infected at birth with Friend murine leukemia virus, afforded us the opportunity to study the direct effect of SFFVP on a homogeneous population of factor-dependent cells. The introduction of SFFVP in complex with various helper viruses into these Epo-dependent cells efficiently and reproducibly gave rise to lines which expressed high levels of SFFV and were factor independent. SFFV appears to be unique in its ability to abrogate the factor dependence of Epo-dependent HCD-57 cells, since infection of these cells with retroviruses carrying a variety of different oncogenes had no effect. The induction of Epo independence by SFFV does not appear to involve a classical autocrine mechanism, since there is no evidence that the factor-independent cells synthesize or secrete Epo or depend on it for their growth. However, the SFFV-infected, factor-independent cells had significantly fewer receptors available for binding Epo than their factor-dependent counterparts had, raising the possibility that the induction of factor independence by the virus may be due to the interaction of an SFFV-encoded protein with the Epo receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号