首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examines a novel sample preparation method for the determination of 11 hydroxy metabolites of polychlorinated biphenyls (PCBs) in plasma and organ tissues, followed by gas chromatography with mass spectrometric detection (GC/MS). The clean-up method was optimized to eliminate the interference matter by using a silica column and 10 mL of n-hexane/dichloromethane (4:6, v/v) as an eluent. Solid-phase and solvent extraction procedures were used for the plasma and tissues samples, respectively. Compared to C(18) and C(8) solid-phase, C(2) showed higher extraction efficiency with n-hexane as the eluent for plasma. The hydroxy-PCB extraction recoveries achieved with this combined extraction and clean-up procedure from plasma ranged from 87 to 117%, while those from tissues ranged from 82 to 111%. The linear detector responses for propyl derivatives of hydroxy-PCBs were obtained with the coefficients of determination varying from 0.992 to 0.998 in the concentration range of 0.1-20 ng mL(-1). The method detection limits ranged from 0.1 to 0.5 ng mL(-1) in 1 mL of plasma and from 0.1 to 0.5 ng g(-1) in 1g of tissues. This procedure was successfully applied to the study of 3-OH-2,3',4,4',5-PeCB in rat plasma and liver samples after intraperitoneal injection (20 mg/kg) of 2,3',4,4',5-PeCB.  相似文献   

2.
An original method is described for the determination in human plasma of 4-hydroxy-4-androstene-3,17-dione (4-OHA), a potent aromatase inhibitor, by isotope dilution mass-spectrometry using 7,7-[2H2]-4-OHA as internal standard. This compound was synthesized starting from 7,7-[2H2]-4-androstene-3,17-dione. The procedure includes an extraction step using an Extrelut 1 column and a derivatization with N,o-bis(trimethylsilyl)trifluoroacetamide (BSTFA). The minimum detection level of the method is 0.650 pg and the coefficients of variation for the 0.5 ng/ml (plasma) and 5 ng/ml (plasma) concentrations are 3.2% (within assay) and 6.7% (between assay) and 1.86% (within assay) and 2.3% (between assay) respectively.  相似文献   

3.
Peptide leukotriene (LT) such as LTC4, LTD4, LTE4 have been considered to be major mediators of immediate type hypersensitivity reaction such as asthma. We have developed a rapid and simple extraction method using a Sep-Pak C18 cartridge for the measurement of LTC4 by radioimmunoassay (i-LTC4). In this extraction method, 91% LTC4 was recovered in a final methanol fraction. The identity was confirmed by the recovery test and by the dilution method. The amount of i-LTC4 in plasma from asthmatic patients was determined by radioimmunoassay after the extraction. The order of the plasma level of i-LTC4 was; severe asthma greater than slight or moderate asthma greater than asthmatic patient without attack greater than healthy adult. The highest level of LTC4 was 0.27 +/- 0.11 pmol/ml in severe asthmatic plasma.  相似文献   

4.
Convenient extraction and radioimmunoassay methods for measurement of leukotrienes C4 and D4 (LTC4 and LTD4) in biological fluids are described. LTC4 or LTD4 in plasma was extracted with acetonitrile, and the extract was washed with dichloromethane then adjusted to pH 3.5 or 6.0, respectively. Each leukotriene was partially purified by using a C18-bonded silica cartridge and quantitated by radioimmunoassay. Amounts of LTC4 and LTD4 in the range of 0.025-1.6 ng could be assayed in plasma. This procedure was employed to examine the increase in plasma LTC4 (0.249 +/- 0.036 ng/ml) and LTD4 (1.399 +/- 0.235 ng/ml) of guinea pigs during intravenous challenge-induced anaphylactic bronchoconstriction, and the suppression of the increase of bronchoconstriction and leukotrienes by the administration of 5-lipoxygenase inhibitors such as E6080 (6-hydroxy-2-(4-sulfamoylbenzyl-amino)- 4,5,7-trimethylbenzothiazole hydrochloride), AA861 (2,3,5-trimethyl-6-(12-hydroxy-5,10-dodecadiynyl)-1,4-benzoquinone ) and phenidone. On the other hand, LTC4 and LTD4 were not detected in plasma after an inhaled challenge, though significant bronchoconstriction was provoked. It was concluded that the present study validates a new technique for quantitating plasma leukotrienes on the basis of pH and a suitable method for evaluating the pharmacological efficacy of 5-lipoxygenase inhibitors.  相似文献   

5.
A simple and rapid procedure for extraction of oxymetholone in human plasma using gas chromatography coupled with quadrupole mass spectrometric was evaluated. The method involves analyte extraction with tert.-butylmethylether after alkalinization of the plasma and derivatization with MSTFA-NH(4)I-2-mercaptoethanol before the high resolution gas chromatographic-mass spectrometry separation. Methyltestosterone was used as internal standard. The calibration curves were linear, with typical r(2) values >0.995 and F(table)>F(calculated) (alpha=0.05). Recovery from plasma proved to be more than 70%. The method was accurate and reproducible, and was successfully applied to determine the pharmacokinetic parameters of oxymetholone for healthy volunteers after oral administration of 50 mg of the compound. The (C(max)) and (T(max)) were 18.8 +/- 0.4 ng/ml and 210 +/- 42.4 min, respectively.  相似文献   

6.
A HPLC method with UV detection was developed and validated for the determination of thiorphan in human plasma. Nevirapine was used as the internal standard. Separation was performed by a Waters sunfire C18 reversed-phase column maintained at 35 degrees C. The mobile phase was a mixture of 0.05 M phosphate buffer with the pH adjusted to 2.6 and acetonitrile (74:26, v/v) at a flow rate of 1.0 mL/min. The UV detector was set at 210 nm. An original pre-treatment of plasma samples was developed, based on solid-phase extraction (SPE) with solid-phase extraction cartridges (Oasis HLB 3 mL, 60 mg). The extraction recovery for plasma samples of thiorphan at 0.1, 0.4 and 2.0 microg/mL was 93.5%, 98.2% and 97.8%, respectively. The calibration curve was linear with the correlation coefficient (r) above 0.9998. Linearity was verified over the range of 0.05-4 microg/mL thiorphan in plasma. The limit of quantification (LOQ) is 0.05 microg/mL. The mean accuracy was 92.7-99.6%. The coefficient of variation (precision) in the within- and between-batch was 2.2-8.4% and 4.1-8.1%, respectively. This method is simple, economical and specific, and has been used successfully in a pharmacokinetic study of thiorphan.  相似文献   

7.
Reliable MS-based methods have been developed for the measurement of free and esterified F2-isoprostanes. However, prior to sample analysis several steps of purification, including solid-phase extraction followed by TLC or HPLC, are usually required, making it tedious to analyze large sample numbers, e.g., for population studies. We report a quick sample purification method using anion exchange solid phase extraction (SPE), which is highly selective for acidic compounds. Urine and hydrolyzed plasma of healthy individuals were acidified before SPE extraction, washed with 4 different solvent mixtures and finally eluted with ethyl acetate. The eluted samples were first derivatized with pentafluorobenzyl bromide followed by a second derivatization with bis-(trimethylsilyl)trifluoroacetamide. F2-isoprostanes were analyzed by GC-MS-NCI. The method was highly sensitive; the limit of detection at 5:1 signal-to-noise ratio was 0.037 ng/ml and 0.007 ng/mg creatinine for plasma and urine, respectively. Anion exchange SPE extraction for F2-isoprostane showed recovery of 55-65% and high linearity for concentration 0-1.0 ng/ml for urine (CV=4.08%, r2=0.990) and 0-0.5 ng/ml for plasma (CV=4.07%, r2=0.998). Fasting for 6h significantly increased plasma F2-isoprostanes levels, which has implications for the design of intervention studies using this biomarker.  相似文献   

8.
A simple and rapid analytical method is presented for the determination of amitraz in canine plasma samples using solid-phase microextraction (SPME) and gas chromatography with thermionic specific detection (GC-TSD). The best conditions for the SPME procedure were: direct extraction on a polydimethlysiloxane (PDMS) fiber with 100-microm film thickness; 400 µl of sample plasma matrix modified with 4 ml sodium borate solution (0.01 mol l(-1), pH 6.5); extraction temperature 70 degrees C, with stirring at 2500 rpm for 45 min. The method was linear between 20 and 400 ng ml(-1) with regression coefficients corresponding to 0.998 and coefficient of the variation of the points of the calibration curve lower than 15%. The lowest limit of quantification (LOQ) for amitraz in plasma was 20 ng ml(-1). This LOQ was determined as the lowest concentration on the calibration curve in which the coefficient of variation was lower than 15%. The proposed method was applied to determine amitraz concentrations in canine plasma to look for toxicity after treatment with amitraz in a dipping bath.  相似文献   

9.
A selective and sensitive high-performance liquid chromatography method has been developed and validated for determination of mitiglinide (MGN) in rat plasma using 2-(4-biphenylyl) propionic acid (BPA) as internal standard. Liquid-liquid extraction was used for sample preparation. Chromatographic separation was achieved on a C(18) column using acetonitrile and 0.02 mol/l KH(2)PO(4) buffer (pH 4.0) (45:55, v/v) as mobile phase delivered at 1.0 ml/min. The UV detector was set at 210 nm. The assay was linear over the range 0.1-20 microg/ml for MGN. The average extraction recoveries of MGN and BPA from rat plasma were 98.6 and 97.4%, respectively. The developed method has been applied to the pharmacokinetic study of MGN in rats.  相似文献   

10.

Background

MicroRNAs (miRNAs) represent new and potentially informative diagnostic targets for disease detection and prognosis. However, little work exists documenting the effect of TRIzol, a common viral inactivation and nucleic acid extraction reagent, on miRNA purification. Here, we developed an optimized protocol for miRNA extraction from plasma samples by evaluating five different RNA extraction kits, TRIzol phase separation, purification additives, and initial plasma sample volume. This method was then used for downstream profiling of plasma miRNAs found in archived samples from one nonhuman primate (NHP) experimentally challenged with Ebola virus by the aerosol route.

Results

Comparison of real-time RT-PCR results for spiked-in and endogenous miRNA sequences determined extraction efficiencies from five different RNA purification kits. These experiments showed that 50 μL plasma processed using the QIAGEN miRNeasy Mini Kit with 5 μg of glycogen as a co-precipitant yielded the highest recovery of endogenous miRNAs. Using this optimized protocol, miRNAs from archived plasma samples of one rhesus macaque challenged with aerosolized Ebola virus was profiled using a targeted real-time PCR array. A total of 519 of the 752 unique miRNAs assayed were present in the plasma samples at day 0 and day 7 (time of death) post-exposure. Statistical analyses revealed 25 sequences significantly up- or down-regulated between day 0 and day 7 post infection, validating the utility of the extraction method for plasma miRNA profiling.

Conclusions

This study contributes to the knowledgebase of circulating miRNA extraction methods and expands on the potential applications of cell-free miRNA profiling for diagnostics and pathogenesis studies. Specifically, we optimized an extraction protocol for miRNAs from TRIzol-inactivated plasma samples that can be used for highly pathogenic viruses.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1299-5) contains supplementary material, which is available to authorized users.  相似文献   

11.
An HPLC assay for DMP 811, 4-ethyl-2-propyl-1-[(2′-(1H-tetrazol-5-yl)biphenyl-4-yl)-methyl]imidazole-5-carboxylic acid (I) in rat and dog plasma has been developed. Compound I was isolated from plasma using a liquid—liquid back extraction procedure. The extraction recovery was greater than 81%. Separation of I from endogenous components in plasma was achieved on an E. Merck C8 column using a mobile phase of 0.05 M ammonium acetate, brought to pH 3.75 with acetic acid, and acetonitrile (78:22, v/v). The eluent was monitored by fluorescence with excitation and emission set at 235 and 370 nm, respectively. The assay was linear from 2 to 2000 ng/ml. Inter- and intra-day coefficients of variation for the rat-plasma assay ranged from 0.9 to 5.2% (5–2000 ng/ml) and 2.7 to 16.5% (2–2000 ng/ml), respectively. The respective coefficients of variation for the dog-plasma assay were 1.9 to 5.6% and 1.2 to 14.0%. The percent differences from the accuracy results were 12% or less. Using 0.5 ml of plasma for extraction, the minimum quantifiable limit was 2 ng/ml. This method has been used to quantify plasma levels of I in rats or dogs following 3–10 mg/kg i.v. or p.o. doses.  相似文献   

12.
Physiological increases in circulating insulin level significantly increase myocardial glucose uptake in vivo. To what extent this represents a direct insulin action on the heart or results indirectly from reduction in circulating concentrations of free fatty acids (FFA) is uncertain. To examine this, we measured myocardial glucose, lactate, and FFA extraction in 10 fasting men (ages 49-76 yr) with stable coronary artery disease during sequential intracoronary (10 mU/min, coronary plasma insulin = 140 +/- 20 microU/ml) and intravenous (100 mU/min, systemic plasma insulin = 168 +/- 26 microU/ml) insulin infusion. Basally, hearts extracted 2 +/- 2% of arterial glucose and extracted 27 +/- 6% of FFA. Coronary insulin infusion increased glucose extraction to 5 +/- 3% (P < 0.01 vs. basal) without changing plasma FFA or heart FFA extraction. Conversion to intravenous infusion lowered plasma FFA by approximately 50% and heart FFA extraction by approximately 75%, increasing heart glucose extraction still further to 8 +/- 3% (P < 0. 01 vs. intracoronary). This suggests the increase in myocardial glucose extraction observed in response to an increment in systemic insulin concentration is mediated equally by a reduction in circulating FFA and by direct insulin action on the heart itself. Coronary insulin infusion increased myocardial lactate extraction as well (from 20 +/- 10% to 29 +/- 9%, P < 0.05), suggesting the local action may include stimulation of a metabolic step distal to glucose transport and glycolysis.  相似文献   

13.
A method for the analysis of tamoxifen and its metabolites in plasma from tamoxifen treated breast cancer patients, by capillary GC-MS using selected ion monitoring has been developed. Metabolite extraction was carried out on a Sep-pak C18 cartridge and metabolite purification by selective ion exchange chromatographic steps. Satisfactory recovery of radioactive standards through the extraction and purification steps was obtained. The method was shown to be accurate and precise with precision coefficient of variation values ranging from 4.3-11% for tamoxifen and its metabolites. Tamoxifen, 4-hydroxytamoxifen, metabolite Y and N-desmethyltamoxifen were identified with certainty in patient plasma on the basis of GC relative retention times and mass spectral comparison with authentic standards; because of their low abundance in plasma cis-metabolite E and 3,4-dihydroxytamoxifen could only be tentatively identified but identical GC behaviour and a satisfactory comparison of the abundance of key fragment ions was achieved. The tamoxifen and metabolite concentration ranges (ng X ml-1) in the group of patients who received 40 or 80 ng tamoxifen for 14 days were tamoxifen, 307-745; N-desmethyltamoxifen, 185-491; 4-hydroxytamoxifen, 1.4-2.5; 3,4-dihydroxytamoxifen, 0.7-2.0; metabolite Y, 19.0-112; and metabolite E1, 0.9-2.0.  相似文献   

14.
A sensitive and specific method for the quantitative determination of a new antitumor agent, 1-(2-chloroethyl)-3-(2,6-dioxo-3-piperidyl)-1-nitrosourea, (PCNU) has been developed for the analysis of plasma. This assay involves extraction of the plasma sample, separation of the drug by thin-layer chromatography and mass spectrometric detection of the negative ions derived from the unchanged drug and its 2H4-labeled analog. Ion current profile peaks are obtained when drug samples are introduced into the heated source using a desorption chemical ionization probe. Detection limits are below 1.0 ng ml-1 of plasma. This method has been applied to determine the in vitro rate of decomposition of PCNU in plasma and the plasma clearance of this drug from a cancer patient.  相似文献   

15.
To prevent in vitro generation of angiotensins, the renin inhibitor CGP 29287 (CGP) was added to blood sampling tubes. Plasma immunoreactive angiotensin (ir-ANG) I and II were simultaneously measured by radioimmunoassay after rapid and quantitative extraction from a single plasma sample on phenylsilylsilica (Bondelut PH). True plasma ANG-(1-8)octapeptide was determined after additional separation of the different angiotensins by high performance liquid chromatography. Ir-ANG II/CGP showed the known linear relationship with ANG-(1-8)octapeptide (r = 0.87, n = 23), but - in contrast to studies without addition of CGP - the y-axis intercept which presumably represents cross-reacting angiotensins other than ANG II was very small. Ir-ANG II/CGP concentrations fell below 1 fmol/ml after converting enzyme inhibition. The results suggest that CGP 29287 prevents in vitro generation of ANG I and ANG II as well as the ANG-metabolites. Ir-ANG I/CGP measured after Bondelut PH extraction of the plasma was strongly correlated with ir-ANG I obtained after blood ethanol extraction (r = 0.97, n = 23). Thus, it is now possible to measure reliably both ANG I and ANG II within the same plasma extract after a simple extraction procedure.  相似文献   

16.
The method presented here is a high-performance liquid chromatography (HPLC)-UV detection method for the determination of baclofen R-(-)- and S-(+)-enantiomers in human plasma using a chiral separation technique. Baclofen enantiomers were extracted from human plasma with a reversed-phase solid-phase extraction (SPE) cartridge. The extract was then injected onto a HPLC system with a UV detection system set at 220 nm. The separation was achieved by using a 150x4.6 mm, 5 microm Phenomenex chirex 3216 chiral column with a mobile phase consisting of 0.4 mM CuSO(4) in acetonitrile-20 mM sodium acetate (17:83). The calibration curves were linear for both R-(-)- and S-(+)-enantiomers of baclofen in the concentration range of 20-5000 ng/ml. The average regressions were 0.9980 and 0.9991 for R-(-)- and S-(+)-baclofen, respectively. Inter-day precision was 3.3-5.2% for R-(-)-baclofen and 3.5-3.9% for S-(+)-baclofen at a concentration range of 60-4000 ng/ml. Intra-day precisions were 0.6-4.4 and 0.5-3.5% for R-(-)-baclofen and S-(+)-baclofen, respectively. The average extraction recovery was 81.6% for R-(-)-baclofen, 83.0% for S-(+)-baclofen and 94.0% for the internal standard (p-aminobenzoic acid). The limit of quantitation for both R-(-)- and S-(+)-baclofen in human plasma was 20 ng/ml. The method is simple and easy to operate with accuracy and reproducibility and it is suitable for pharmacokinetic studies.  相似文献   

17.
A simple and sensitive method for quantitation of HSR-609 (I) in human plasma and urine was developed using HPLC with the fluorescence labelling reagent 4-(N,N-dimethylaminosulfonyl)-7-N-piperazino-2,1,3-benzoxadiazole (DBD-PZ). Compound I was extracted from human plasma and urine, and derivatized by reaction with DBD-PZ in the presence of Mukaiyama reagent A, an equimolar solution of 2,2′-dipyridyl disulfide (DPDS) and triphenylphosphine (TPP) in acetonitrile. The reaction mixture was cleaned up by liquid-liquid extraction following the derivatization. The conjugate was analyzed by ion-pair HPLC with fluorometric detection. The quantitation limits for I were 0.5 ng/ml in plasma and 5 ng/ml in urine. Using this method, plasma concentration and urinary excretion of I were studied after oral administration of I to human volunteers.  相似文献   

18.
An HPLC-MS/MS assay for the determination of an HIV integrase inhibitor, 5-(1,1-dioxido-1,2-thiazinan-2-yl)-N-(4-fluorobenzyl)-8-hydroxy-1,6-naphthyridine-7-carboxamide (I) in human plasma has been developed and validated. Compound I and a stable isotope labeled internal standard (II) were isolated from 0.5 mL plasma samples by solid phase extraction using an Ansys SPEC C-8 96-well plate. Extracts were separated on a Hypersil BDS C-18 HPLC column (3.0 mmx50 mm, 3 microm) with a mobile phase consisting of 25 mM ammonium formate pH 3.0:acetonitrile (60:40) vol%/vol% pumped at 0.5 mL/min. A Sciex API 365 mass spectrometer equipped with an atmospheric pressure chemical ionization source was operated in selected reaction monitoring (SRM) mode with the precursor-to-product ion transitions m/z 431-->109 (I) and m/z 437-->115 (II) used for quantitation. The assay was validated over the concentration range of 10-5000 ng/mL and was found to have acceptable accuracy, precision, linearity, and selectivity. The mean extraction recovery from spiked plasma samples was 69%. The intra-day accuracy of the assay was within 4% of nominal and intra-day precision was better than 4% C.V. Following a 200 mg dose of the compound administered to human subjects, concentrations of I ranged from 21.1 to 1500 ng/mL in plasma samples collected up to 12 h after dosing. Inter-day accuracy and precision results for quality control samples run over a 3-month period alongside clinical samples showed mean accuracies of within 6% of nominal and precision better than 3.5% C.V.  相似文献   

19.
The potent opioid peptide dynorphin (DYN) is found in posterior pituitary vasopressinergic neurones and in adrenal medullary cells suggesting that secretion into plasma is likely. We have developed a sensitive radioimmunoassay in order to study plasma DYN in man. It transpired that extraction prior to assay was essential since unextracted plasma caused gross and non-parallel inhibition of binding of tracer. Plasma extracted using leached silica glass ( Vycor ) caused inhibition of tracer binding which diluted in parallel to synthetic DYN suggesting the presence of substantial amounts of DYN-like immunoreactivity ( irDYN ) in plasma. Further investigation however demonstrated that this irDYN was artifactual and caused by enzymatic degradation of tracer. Although use of Seppak C18 cartridges resulted in reliable extraction of synthetic porcine DYN from acidified plasma, we have not detected irDYN in any plasma so far studied using this technique. However, extraction of non-acidified plasma using our antibody coupled to Sepharose CNBr-activated 4B followed by gel filtration chromatography demonstrated a single peak of irDYN of molecular size similar to DYN. These data suggested that a small amount of a DYN-like peptide does circulate in human plasma although this is not identical to porcine DYN(1-17). The implication of our results for the measurement of other similar peptides in plasma is discussed.  相似文献   

20.
We attempted to improve the extraction procedures to determine the F(2)-isoprostanes in plasma of umbilical cord arterial and venous blood by gas chromatography mass spectrometry. Plasma samples were deproteinized and hydrolyzed; free and esterified F(2)-isoprostanes were extracted by solid-phase extraction columns with citric acid/methanol/cyclohexane and ammonia solution/methanol and then derivatized by PFBBr and BSTFA. Concentrations of total plasma F(2)-isoprostanes eluted at the retention time of an internal standard of 8-iso-prostaglandin F(2alpha)-D(4) were quantified. The absolute recovery was 83+/-1.9% (95% confidence). Intraassay precision and interassay precision were lower than 1.0%. Analytical accuracy was 99.0+/-0.4% (95% confidence). Linearity, r(2), over the concentration range of 10 to 5000 pg/ml of spiked 8-iso-prostaglandin F(2alpha) in plasma was 0.9985. The method detection limit was 21 pg/ml (99% confidence) and the limit of quantitation was approximately 4 pg/ml. Analysis of 200 neonatal cord blood samples revealed few overlapping peaks causing interference in the elution of the F(2)-isoprostanes. With the use of an autosampler and one technician, 48 samples can be completed within 24h with 6h of actual hands-on work. This method could be potentially employed for routine analysis of plasma F(2)-isoprostanes in clinical laboratories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号