首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Movement biomechanics goes upwards: from the leg to the arm   总被引:8,自引:0,他引:8  
  相似文献   

2.
Highly reliable information on the range of motion (ROM) required to perform activities of daily living (ADL) is important to allow rehabilitation professionals to make appropriate clinical judgments of patients with limited ROM of the upper extremity joints. There are, however, no data available that take full account of corrections for gimbal-lock and soft tissue artifacts, which affect estimation errors for joint angles. We used an electromagnetic three-dimensional tracking system (FASTRAK) to measure the three-dimensional ROM of the upper extremity joints of healthy adults (N=20, age range 18–34) during 16 ADL movement tasks. The ROM required for the performance of each movement was shown in terms of the joint angle at the completion of the task, using a new definition of joint angle and regression analysis to compensate for estimation errors. The results of this study may be useful in setting goals for the treatment of upper extremity joint function.  相似文献   

3.
In animal models, hundreds of repetitions of upper extremity (UE) task practice promote neural adaptation and functional gain. Recently, we demonstrated improved UE function following a similar intervention for people after stroke. In this secondary analysis, computerized measures of UE task performance were used to identify movement parameters that changed as function improved. Ten people with chronic poststroke hemiparesis participated in high-repetition UE task-specific training 3 times per week for 6 weeks. Before and after training, we assessed UE function with the Action Research Arm Test (ARAT), and evaluated motor performance using computerized motion capture during a reach-grasp-transport-release task. Movement parameters included the duration of each movement phase, trunk excursion, peak aperture, aperture path ratio, and peak grip force. Group results showed an improvement in ARAT scores (p = .003). Although each individual changed significantly on at least one movement parameter, across the group there were no changes in any movement parameter that reached or approached significance. Changes on the ARAT were not closely related to changes in movement parameters. Since aspects of motor performance that contribute to functional change vary across individuals, an individualized approach to upper extremity motion analysis appears warranted.  相似文献   

4.
Quantification of rehabilitation progress is necessary for accurately assessing clinical treatments. A three-dimension (3D) upper extremity (UE) kinematic model was developed to obtain joint angles of the trunk, shoulder and elbow using a Vicon motion analysis system. Strict evaluation confirmed the system's accuracy and precision. As an example of application, the model was used to evaluate the upper extremity movement of eight hemiparetic stroke patients with spasticity, while completing a set of reaching tasks. Main outcome measures include kinematic variables of movement time, range of motion, peak angular velocity, and percentage of reach where peak velocity occurs. The model computed motion patterns in the affected and unaffected arms. The unaffected arm showed a larger range of motion and higher angular velocity than the affected arm. Frequency analysis (power spectrum) demonstrated lower frequency content for elbow angle and angular velocity in the affected limb when compared to the unaffected limb. The model can accurately quantify UE arm motion, which may aid in the assessment and planning of stroke rehabilitation, and help to shorten recovery time.  相似文献   

5.
6.
Although arm movements play an important role in everyday life, there is still a lack of procedures for the analysis of upper extremity movement. The main problems for standardizing the procedure are the variety of arm movements and the difficult assessment of external hand forces. The first problem requires the predefinition of motions, and the second one is the prerequisite for calculation of net joint forces and torques arising during motion. A new methodology for measuring external forces during prespecified, reproducible upper extremity movement has been introduced and validated. A robot-arm has been used to define the motion and 6 degrees of freedom (DoF) force sensor has been attached to it for acquiring the external loads acting on the arm. Additionally, force feedback has been used to help keeping external loads constant. Intra-individual reproducibility of joint angles was estimated by using correlation coefficients to compare a goal-directed movement with robot-guided task. Inter-individual reproducibility has been evaluated by using the mean standard deviation of joint angles for both types of movement. The results showed that both inter- and intra-individual reproducibility have significantly improved by using the robot. Also, the effectiveness of using force feedback for keeping a constant external load has been shown. This makes it possible to estimate net joint forces and torques which are important biomechanical information in motion analysis.  相似文献   

7.
Cervical spinal cord injury and acquired brain injury commonly imply a reduction in the upper extremity function which complicates, or even constrains, the performance of basic activities of daily living. Neurological rehabilitation in specialised hospitals is a common treatment for patients with neurological disorders. This study presents a practical methodology for the objective and quantitative evaluation of the upper extremity motion during an activity of daily living of those subjects. A new biomechanical model (with 10 rigid segments and 20 degrees of freedom) was defined to carry out kinematic, dynamic and energetic analyses of the upper extremity motion during a reaching task through data acquired by an optoelectronic system. In contrast to previous upper extremity models, the present model includes the analysis of the grasp motion, which is considered as crucial by clinicians. In addition to the model, we describe a processing and analysis methodology designed to present relevant summaries of biomechanical information to rehabilitation specialists. As an application case, the method was tested on a total of four subjects: three healthy subjects and one pathological subject suffering from cervical spinal cord injury. The dedicated kinematic, dynamic and energetic analyses for this particular case are presented. The resulting set of biomechanical measurements provides valuable information for clinicians to achieve a thorough understanding of the upper extremity motion, and allows comparing the motion of healthy and pathological cases.  相似文献   

8.
The aim of this study was to investigate the contribution of upper extremity, trunk, and lower extremity movements in overarm throwing in team handball. In total, 11 joint movements during the throw were analyzed. The analysis consists of maximal angles, angles at ball release, and maximal angular velocities of the joint movements and their timing during the throw. Only the elbow angle (extension movement range) and the level of internal rotation velocity of the shoulder at ball release showed a significant relationship with the throwing performance. Also, a significant correlation was found for the timing of the maximal pelvis angle with ball velocity, indicating that better throwers started to rotate their pelvis forward earlier during the throw. No other significant correlations were found, indicating that the role of the trunk and lower limb are of minor importance for team handball players.  相似文献   

9.
Changes in limb dynamics during the practice of rapid arm movements   总被引:4,自引:0,他引:4  
In our study we examined Bernstein's hypothesis that practice alters the motor coordination among the muscular and passive joint moments. In particular, we conducted dynamical analyses of a human multisegmental movement during the practice of a task involving the upper extremity. Seven male human volunteers performed maximal-speed, unrestrained vertical arm movements whose upward and downward trajectories between two target endpoints required the hand to round a barrier, resulting in complex shoulder, elbow, and wrist joint movements. These movements were recorded by high-speed ciné film, and myopotentials from selected upper-extremity muscles were recorded. The arm was modeled as interconnected rigid bodies, so that dynamical interactions among the upper arm, forearm, and hand could be calculated. With practice, subjects achieved significantly shorter movement times. As movement times decreased, all joint-moment components (except gravity) increased, and the moment-time and EMG profiles were changed significantly. Particularly during reversals in movement direction, the changes in moment-time and EMG profiles were consistent with Bernstein's hypothesis relating practice effects and intralimb coordination: with practice, motor coordination was altered so that individuals employed reactive phenomena in such a way as to use muscular moments to counterbalance passive-interactive moments created by segment movements.  相似文献   

10.
Manual wheelchair propulsion places considerable physical demand on the upper extremity and is one of the primary activities associated with the high prevalence of upper extremity overuse injuries and pain among wheelchair users. As a result, recent effort has focused on determining how various propulsion techniques influence upper extremity demand during wheelchair propulsion. However, an important prerequisite for identifying the relationships between propulsion techniques and upper extremity demand is to understand how individual muscles contribute to the mechanical energetics of wheelchair propulsion. The purpose of this study was to use a forward dynamics simulation of wheelchair propulsion to quantify how individual muscles deliver, absorb and/or transfer mechanical power during propulsion. The analysis showed that muscles contribute to either push (i.e., deliver mechanical power to the handrim) or recovery (i.e., reposition the arm) subtasks, with the shoulder flexors being the primary contributors to the push and the shoulder extensors being the primary contributors to the recovery. In addition, significant activity from the shoulder muscles was required during the transition between push and recovery, which resulted in increased co-contraction and upper extremity demand. Thus, strengthening the shoulder flexors and promoting propulsion techniques that improve transition mechanics have much potential to reduce upper extremity demand and improve rehabilitation outcomes.  相似文献   

11.
Stroke remains the leading cause of adult disability, with upper extremity motor impairments being the most prominent functional deficit in surviving stroke victims. The development of animal models of upper extremity dysfunction after stroke has enabled investigators to examine the neural mechanisms underlying rehabilitation-dependent motor recovery as well as the efficacy of various adjuvant therapies for enhancing recovery. Much of this research has focused on rat models of forelimb motor function after experimentally induced ischemic or hemorrhagic stroke. This article provides a review of several different methods for inducing stroke, including devascularization, photothrombosis, chemical vasoconstriction, and hemorrhagia. We also describe a battery of sensorimotor tasks for assessing forelimb motor function after stroke. The tasks range from measures of gross motor performance to fine object manipulation and kinematic movement analysis, and we offer a comparison of the sensitivity for revealing motor deficits and the amount of time required to administer each motor test. In addition, we discuss several important methodological issues, including the importance of testing on multiple tasks to characterize the nature of the impairments, establishing stable baseline prestroke motor performance measures, dissociating the effects of acute versus chronic testing, and verifying lesion location and size. Finally, we outline general considerations for conducting research using rat models of stroke and the role that these models should play in guiding clinical trials.  相似文献   

12.
Successful surgical reconstruction of the upper extremities paralyzed by poliomyelitis depends largely on the careful analysis of the individual problem and replacement of critical motions of the upper extremity. These replacements or substitutions may be gained by muscle transposition, tendon transplantation, tenodesis, bone block, or arthrodesis.  相似文献   

13.
Chronic upper extremity arterial insufficiency is rare. Consequently, major reports specifically limited to the topic are scarce, and the clinical experience is small. In addition, symptomatology, diagnostic criteria, and guidelines for surgical management remain ill-defined. In the lower extremities, however, in situ vein bypass has been attempted for nearly three decades. This technique offers many advantages over traditional revascularization methods. Although the procedure has become popular for the lower extremity, no report of its use in the upper extremity is found in the literature. We report what may be the first case in which in situ bypass was used in the upper extremity for a threatened limb secondary to diabetic occlusive vascular disease complicated by a previous shunt used for hemodialysis. Revascularization of the upper extremity using the in situ vein bypass technique may offer a new alternative to traditional methods of revascularization.  相似文献   

14.
B Gutnik  R Degabriele  K Bailey  G Hudson 《HOMO》2006,57(1):51-71
The aim of this work was to investigate possible lateralisation in the behaviour of periodic motion of the human upper limb, during normal walking at a comfortable speed of locomotion. Ten healthy pre-adolescent, strongly right-handed, 12-year-old males participated in the experiment. Participants were walking on a treadmill with a standardised velocity of 1.1m/s (comfortable speed for all of them). A video analysis system with Silicon software was used to synchronically measure various angles of arms and forearms. The initial, final and interim angular positions of both arms and forearms in 10 cycles of each participant were compared in terms of variations (cycle to cycle) between both upper extremities at corresponding phases of each cycle for distal and proximal segments, respectively. We compared the coefficients of variation in relation to the spatial and temporal data of both limbs and their angular velocities. In addition we investigated the level of cycle-to-cycle regularity (constancy) of behaviour in relation to various positions, periods and velocities of movement of upper extremities (specifically arms and forearms) using the Eta non-linear method of correlation. All participants exhibited a lower level of regularity for the distal segments. The spatial and temporal variations in the dominant limb were also greater than the non-dominant limb for all participants. This may be due to a larger contribution from the right-sided muscles that are considered to be the main contributing factor to the motion of the dominant upper limb during walking, rather than simply gravity force acting alone. A possible practical application of this information may be useful in the objective clinical identification of the level of dominance of the upper extremity (arm plus forearm), in addition to 'traditional' handedness.  相似文献   

15.
The occurrence of distal upper extremity injuries resulting from forward falls (approximately 165,000 per year) has remained relatively constant for over 20 years. Previous work has provided valuable insight into fall arrest strategies, but only symmetric falls in body postures that do not represent actual fall scenarios closely have been evaluated. This study quantified the effect of asymmetric loading and body postures on distal upper extremity response to simulated forward falls. Twenty participants were suspended from the Propelled Upper Limb fall ARest Impact System (PULARIS) in different torso and leg postures relative to the ground and to the sagittal plane (0°, 30° and 45°). When released from PULARIS (hands 10 cm above surface, velocity 1 m/s), participants landed on two force platforms, one for each hand. Right forearm impact response was measured with distal (radial styloid) and proximal (olecranon) tri-axial accelerometers and bipolar EMG from seven muscles. Overall, the relative height of the torso and legs had little effect on the forces, or forearm response variables. Muscle activation patterns consistently increased from the start to the peak activation levels after impact for all muscles, followed by a rapid decline after peak. The impact forces and accelerations suggest that the distal upper extremity is loaded more medial-laterally during asymmetric falls than symmetric falls. Altering the direction of the impact force in this way (volar-dorsal to medial-lateral) may help reduce distal extremity injuries caused when landing occurs symmetrically in the sagittal plane as it has been shown that volar-dorsal forces increase the risk of injury.  相似文献   

16.
Healthy humans are able to place light and heavy objects in small and large target locations with remarkable accuracy. Here we examine how dexterity demand and physical demand affect flexibility in joint coordination and end-effector kinematics when healthy young adults perform an upper extremity reaching task. We manipulated dexterity demand by changing target size and physical demand by increasing external resistance to reaching. Uncontrolled manifold analysis was used to decompose variability in joint coordination patterns into variability stabilizing the end-effector and variability de-stabilizing the end-effector during reaching. Our results demonstrate a proportional increase in stabilizing and de-stabilizing variability without a change in the ratio of the two variability components as physical demands increase. We interpret this finding in the context of previous studies showing that sensorimotor noise increases with increasing physical demands. We propose that the larger de-stabilizing variability as a function of physical demand originated from larger sensorimotor noise in the neuromuscular system. The larger stabilizing variability with larger physical demands is a strategy employed by the neuromuscular system to counter the de-stabilizing variability so that performance stability is maintained. Our findings have practical implications for improving the effectiveness of movement therapy in a wide range of patient groups, maintaining upper extremity function in old adults, and for maximizing athletic performance.  相似文献   

17.
Motor dysfunction of the upper extremity can result from stroke, cortical injury and neurological diseases and causes significant disruption of activities of daily living. While some spontaneous recovery in terms of compensatory movements does occur after injury to cortical motor areas, full recovery is rare. The distinction between complete recovery and compensatory recovery is important as the development of compensatory movements in the upper extremity may not translate into full functional use in human patients. However, current animal models of stroke do not distinguish full recovery from compensatory recovery. We have developed a Non-Human Primate Grasp Assessment Scale (GRAS) to quantify the precise recovery of composite movement, individual digit action, and finger-thumb pinch in our rhesus monkey model of cortical injury. To date, we have applied this GRAS scale to assess the recovery of fine motor function of the hand in young control and cell-therapy treated monkeys with cortical injury confined to the hand representation in the dominant primary motor cortex. We have demonstrated that with this scale we can detect and quantify significant impairments in fine motor function of the hand, the development of compensatory function during recovery and finally a return to full fine motor function of the hand in monkeys treated with a cell therapy.  相似文献   

18.
Slips are frequently the cause of fall-related injuries. Identifying modifiable biomechanical requirements for successful recovery is a key prerequisite to developing task-specific fall preventive training programs. The purpose of this study was to quantify the biomechanical role of the upper extremities during the initial phase of a slip resulting in trunk motion primarily in the sagittal plane. Two groups of adults were examined: adults over age 65 who fell and adults aged 18–40 who avoided falling after slipping. We hypothesized that rapid shoulder flexion could significantly reduce trunk extension velocity, that adults who slipped would implement this as a fall avoidance strategy, and that younger adults who avoided falling would use this strategy more effectively than older adults who fell. The kinematics of the 12 younger adults and eight older adults were analyzed using a three-segment conservation of momentum model developed to represent the trunk, head, and upper extremities. The model was used to estimate the possible contribution of the upper extremities to reducing trunk extension velocity. The model showed that upper extremity motion can significantly reduce trunk extension velocity. Although the upper extremities significantly reduced the trunk extension velocity of both young and older adults (p<0.027), the reduction found for the young adults, 13.6±11.4%, was significantly larger than that of the older adults (5.8±3.4%, p=0.045). Given the potential for trunk extension velocity to be reduced by rapid shoulder flexion, fall prevention interventions focused on slip-related falls may benefit from including upper extremity motion as an outcome whether through conventional or innovative strategies.  相似文献   

19.
Functional data analysis techniques provide an alternative way of representing movement and movement variability as a function of time. In particular, the registration of functional data provides a local normalization of time functions. This normalization transforms a set of curves, records of repeated trials, yielding a new set of curves that only vary in terms of amplitude. Therefore, main events occur at the "same time" for all transformed curves and interesting features of individual recordings remain after averaging processes. This paper presents an application of the registration process to the analysis of the vertical forces exerted on the ground by both feet during the sit-to-stand movement. This movement is particularly interesting in functional evaluations related to balance control, lower extremity dysfunction or low-back pain.  相似文献   

20.
A comparative study of subcutaneous adiposity and relative fat patterning in adult White (n=262) and migrant Indian (n=39) and Pakistani (n=100) males living in Peterborough, Cambridgeshire revealed no significant difference in the level of generalised adiposity (measured as body mass index) between the ethnic groups. However, Asians had significantly higher means for all five truncal skinfolds; for all upper body: upper extremity, upper body: lower extremity, central body: upper extremity and central body: lower extremity skinfold rations; more total subcutaneous adiposity; and significantly more subcutaneous fat in subscapular, suprailiac and abdomen regions relative to total subcutaneous fat. However, Asian men had significantly less subcutaneous fat in all the extremity sites relative to total subcutaneous adiposity and lower mean forearm subcutaneous adiposity. Discriminant analysis revealed that 80.6% of all individuals were correctly classfied, with Whites being grouped more correctly than Asians. Suprailiac/forearm and suprailiac/triceps skinfold ratios, height, weight, age, body mass index, and subscapular, midauxillary, chest and medial calf skinfolds were among the most important discriminating variables/ratios of the three ethnic groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号