首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have shown that the arbuscular mycorrhizal fungus (AMF) Glomus deserticola (Trappe, Bloss and Menge) can diminish the negative effect of Verticillium dahliae Kleb. on pepper yield. On the other hand, it is known that AMF can be more beneficial for plant growth and physiology under dry conditions than when soil moisture is plentiful. Therefore, our objective was to assess if a moderate water deficit imposed on pepper plants before their inoculation with V. dahliae could improve the effectiveness of G. deserticola as biocontrol agent. In the present experiment, the delay in disease development in Verticillium-inoculated plants associated with AMF did not occur under well watered conditions. In addition, the establishment of mycorrhizal symbiosis and the development of structures by AMF were delayed when both symbiotic and pathogenic fungi infected the same root. Therefore, it is suggested that the equilibrium between pepper plant, G. deserticola and V. dahliae is so complex that small changes in competition between symbiotic and pathogenic fungi for host resources can modify the efficiency of AMF as a biocontrol agent. On the other hand, water deficit enhanced the deleterious effect of V. dahliae on fruit set and yield only when pepper plants were not associated with G. deserticola, which reinforces the idea that AMF may be more important for host plants subjected to stressful conditions. However, comparing well watered non-mycorrhizal and predroughted mycorrhizal plants, we found that moderate water deficit imposed before inoculation with V. dahliae did not improve the effectiveness of G. deserticola as a biocontrol agent.  相似文献   

2.
Previous studies have described that arbuscular mycorrhizal fungi (AMF) can reduce the deleterious effect of Verticillium dahliae Kleb. on pepper growth and yield. In mycorrhizal plants, the bioprotection against soil-borne pathogens can result from the preactivation of defence responses that include some structural modifications and the accumulation of Pathogenesis-Related (PR) proteins. Our first objective was to study if V. dahliae induced defence mechanisms in roots before infected pepper developed visible symptoms of disease. The second aim was to determine if AMF induced defence-related enzymatic activities in pepper roots before or after pathogen’s attack. Results showed that the colonization of pepper roots by Glomus deserticola (Trappe, Bloss and Menge) induced the appearance of new isoforms of acidic chitinases, superoxide dismutase (SOD) and, at early stages, peroxidases. In contrast, V. dahliae neither stimulated the phenylpropanoid pathway nor elicited hydrolytic activities in infected pepper roots. Only in mycorrhizal plants, the inoculation with V. dahliae slightly increased both phenylalanine ammonia-lyase (PAL) and peroxidase activities two weeks later. Mycorrhizal-specific induction of new isoforms of acidic chitinases and SOD together with enhanced peroxidase and PAL activities 2 weeks after pathogen inoculation could be involved in the biocontrol of Verticillium-induced wilt in pepper by AMF.  相似文献   

3.
R. Utkhede 《BioControl》2006,51(3):393-400
The arbuscular mycorrhizal fungi Glomus monosporum, G. vesiculiferum, G. deserticola, G. intraradices, G. mosseae, and two unidentified species were tested to determine their effect on plant growth and fruit production of tomato (Lycopersicon esculentum Mill.) cv. Trust inoculated with Fusarium oxysporum f. sp. radicis-lycopersici (FORL) under near-commercial greenhouse conditions. Inoculation with G. monosporum and G. mosseae significantly increased fruit yield and fruit number of tomato plants grown hydroponically in sawdust. Plant height and plant dry weight increased significantly when inoculated with G. monosporum and G. mosseae. Further, plants inoculated with G. monosporum and G. mosseae showed significantly lower FORL root infection than the untreated control plants.  相似文献   

4.
We studied the role of modification in root exudation induced by colonization with Glomus intraradices and Glomus mosseae in the growth of Phytophthora nicotianae in tomato roots. Plants were grown in a compartmentalized plant growth system and were either inoculated with the AM fungi or received exudates from mycorrhizal plants, with the corresponding controls. Three weeks after planting, the plants were inoculated or not with P. nicotianae growing from an adjacent compartment. At harvest, P. nicotianae biomass was significantly reduced in roots colonized with G. intraradices or G. mosseae in comparison to non-colonized roots. Conversely, pathogen biomass was similar in non-colonized roots supplied with exudates collected from mycorrhizal or non-mycorrhizal roots, or with water. We cannot rule out that a mycorrhiza-mediated modification in root exudation may take place, but our results did not support that a change in pathogen chemotactic responses to host root exudates may be involved in the inhibition of P. nicotianae.  相似文献   

5.
Summary The influence of vesicular-arbuscular mycorrhizal symbiosis on cytokinin activity in Citrus jambhiri Lush, seedlings was investigated. C. jambhiri inoculated with cultures of Glomus caledonium (Nicol. and Gerd.), G. epigaeum (Dan. and Trappe), G. etunicatum (Becker and Gerd.), G. fasciculatum Thaxt. (Gerd, and Trappe) or G. mosseae (Nicol and Gerd.) was grown from seed for 105 days in a glasshouse. Cytokinin activity in roots and leaves of seedlings was analyzed using high-performance liquid chromatography, mass spectrometry and a bioassay. Seedling leaf tissue had greater cytokinin activity than root tissue. Zeatin, zeatin riboside, and their dihydro- and glucoside derivatives were isolated from leaves of 105-day-old seedlings inoculated with G. fasciculatum and G. mosseae. Cytokinin activity in roots and leaves was associated with differences in seedling total dry weight and vesicular-arbuscular mycorrhizal colonization. The ribose moiety and the saturated side chain apparently influence cytokinin transport and physiological activity in Citrus seedlings.  相似文献   

6.
The interaction of arbuscular mycorrhizal fungi (Glomus etunicatum, Glomus intraradices, and Glomus versiforme) with a wilt-causing soil-borne pathogen, Verticillium dahliae, was studied in cotton. It was found that establishment by arbuscular mycorrhizal fungi reduced disease index. In diseased cotton plants colonised by G. etunicatum, the disease index was less than other diseased mycorrhizal and non-mycorrhizal ones. In diseased cotton plants, chlorophyll content was lower than others. Three Glomus species significantly increased content of sugar and protein in shoot and root. Pathogen-infected plants had higher proline concentration in shoot and root than healthy plants. On the other hand, the increased content of proline as stress sensor showed that Verticillium accelerates senescence and reduces yield. These results suggest that the beneficial effects of mycorrhiza can alleviate the pathogenesis effects of V. dahliae partly, and also there is a competitive interaction between the pathogenic and symbiotic fungi.  相似文献   

7.
Summary Shoot water relations and carbohydrate levels were compared for droughted nonmycorrhizal and vesicular-arbuscular (VA) mycorrhizalRosa hybrida L. cv ‘Samantha’ plants grown with high and low phosphorus fertilization. Leaf diffusive conductance (g i ) of plants colonized byGlomus intraradices Schenk and Smith andGlomus deserticola Trappe, Bloss and Menge were 2 × and 1.5× greater, respectively, than in nonmycorrhizal plants. Regardless of P fertilization, leaf osmotic and bulk water potentials were 0.5 to 1.1 MPa higher in mycorrhizal than in nonmycorrhizal plants. Leaf starch, chlorophyll and water contents while fructose, glucose and total soluble carbohydrates were lower. Level of P fertilization had no effect on water relations or soluble carbohydrate content of nonmycorrhizal roses. The water status of droughted rose was impoved more byG. intraradices than byG. deserticola. Washington State University College of Agriculture and Home Economics Research Center Scientific Paper No. 7375.  相似文献   

8.
New information on N uptake and transport of inorganic and organic N in arbuscular mycorrhizal fungi is reviewed here. Hyphae of the arbuscular mycorrhizal fungus Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe (BEG 107) were shown to transport N supplied as 15N-Gly to wheat plants after a 48 h labelling period in semi-hydroponic (Perlite), non-sterile, compartmentalised pot cultures. Of the 15N supplied to hyphae in pot cultures over 48 h, 0.2 and 6% was transported to plants supplied with insufficient N or sufficient N, respectively. The increased 15N uptake at the higher N supply was related to the higher hyphal length density at the higher N supply. These findings were supported by results from in vitro and monoxenic studies. Excised hyphae from four Glomus isolates (BEG 84, 107, 108 and 110) acquired N from both inorganic (15NH4 15NO3, 15NO3 or 15NH4 +) and organic (15N-Gly and 15N-Glu, except in BEG 84 where amino acid uptake was not tested) sources in vitro during short-term experiments. Confirming these studies under sterile conditions where no bacterial mineralisation of organic N occurred, monoxenic cultures of Glomus intraradices Schenk and Smith were shown to transport N from organic sources (15N-Gly and 15N-Glu) to Ri T-DNA transformed, AM-colonised carrot roots in a long-term experiment. The higher N uptake (also from organic N) by isolates from nutrient poor sites (BEG 108 and 110) compared to that from a conventional agricultural field implied that ecotypic differences occur. Although the arbuscular mycorrhizal isolates used contributed to the acquisition of N from both inorganic and organic sources by the host plants/roots used, this was not enough to increase the N nutritional status of the mycorrhizal compared to non-mycorrhizal hosts. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
The effects of 17 Paenibacillus strains on root colonization by Glomus intraradices or Glomus mosseae and plant growth parameters (shoot and root weight) of mycorrhizal cucumber plants were examined. The Paenibacillus strains were originally isolated from mycorrhizal (G. intraradices) and non-mycorrhizal cucumber rhizosphere and/or hyphosphere, except for strain EJP73, which originated from a Pinus sylvestris-Lactarius rufus ectomycorrhiza. Root colonization of cucumber plants by G. intraradices or G. mosseae was unaffected by all seven strains of Paenibacillus polymyxa, but was decreased or increased by four strains of Paenibacillus macerans and strain EJP73 of Paenibacillus sp. Overall, shoot dry weight of cucumber grown in symbioses with either G intraradices or G. mosseae was unaffected by inoculation with all of the Paenibacillus strains, except for strain MB02-429 of P. macerans, which increased the shoot dry weight in the cucumber-G. mosseae symbiosis. On the other hand, several Paenibacillus strains caused altered root growth. Three strains of P. polymyxa and four strains of P. macerans increased the root fresh weight of the cucumber–G. intraradices symbiosis, whereas three strains of P. polymyxa and one strain of P. macerans as well as Paenibacillus sp. EJP73, decreased the root fresh weight of the cucumber–G. mosseae symbiosis. In conclusion, our results show that bacteria from several species of Paenibacillus differentially affect cucumber mycorrhizas.  相似文献   

10.
A field study to determine the endomycorrhizal inoculum carry-over effect of the first crop [maize inoculated with Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe] on the succeeding crop (mungbean) was carried out in fumigated and nonfumigated acidic soil (pH 5.3) with moderate extractable P (Olsen 23 ppm). G. mosseae inoculation increased maize dry matter and grain yield over the uninoculated control in the nonfumigated soil. The maize inoculation failed to carry the effective inoculum over to the mungbean crop planted immediately after maize harvest and thus did not increase root colonization and grain yield of the succeeding crop. Fresh inoculation of the mungbean with G. mosseae increased grain yield over the uninoculated control.  相似文献   

11.
In order to evaluate host plant performance relative to different soil arbuscular mycorrhizal fungal (AMF) communities, Andropogon gerardii seedlings were grown with nine different AMF communities. The communities consisted of 0, 10, or 20 spores of Glomus etunicatum and 0, 10, or 20 spores of Glomus intraradices in all possible combinations. Spores were produced by fungal cultures originating on A. gerardii in a serpentine plant community; seeds of A. gerardii were collected at the same site. The experiment was performed in the greenhouse using a mixture of sterilized serpentine soil and sand to which naturally occurring non-mycorrhizal microbes were added. There was no difference in root AMF colonization rates between single species communities of either G. etunicatum or G. intraradices, but G. intraradices enhanced plant growth and G. etunicatum did not. However, plants grew larger with some combinations of G.␣intraradices plus G. etunicatum than with the same quantity of G. intraradices alone. These results suggest the potential for niche complementarity in the mycorrhizal fungi. That G. etunicatum only increased plant growth in the presence of G. intraradices could be illustrative of why AMF that appear to be parasitic or benign when examined in isolation are maintained within multi-species mycorrhizal communities in nature.  相似文献   

12.
We studied the influence of inoculation with a mixture of three exotic arbuscular mycorrhizal (AM) fungi, Glomus intraradices Schenck & Smith, Glomus deserticola Trappe, Bloss. & Menge and Glomus mosseae (Nicol & Gerd.) Gerd. & Trappe, and the addition of composted sewage sludge (SS) on the activities of the antioxidant enzymes superoxide dismutase (SOD, EC 1.15.1.1) and total peroxidase (POX) and of shoot and root nitrate reductase (NR, EC 1.6.6.1) in Juniperus oxycedrus L. seedlings, an evergreen shrub, grown in a non-sterile soil under well-watered and drought-stress conditions. Both the inoculation with exotic AM fungi and the addition of composted SS stimulated significantly growth and the N and P contents in shoot tissues of J. oxycedrus with respect to the plants neither inoculated nor treated with composted SS that were either well-watered or droughted. Under drought-stress conditions, only inoculation with exotic AM fungi increased shoot and root NR activity (about 188% and 38%, respectively, with respect to the plants neither inoculated nor treated with composted SS). Drought increased the POX and SOD activities in both shoots of J. oxycedrus seedlings inoculated with exotic AM fungi and grown with composted SS, but the increase was less than in the plants neither inoculated nor treated with SS. Both the plants inoculated with exotic AM fungi and the plants grown with composted SS developed additional mechanisms to avoid oxidative damage produced under water-shortage conditions.  相似文献   

13.
A. Schubert  P. Wyss 《Mycorrhiza》1995,5(6):401-404
Root extracts of leek (Allium porrum L.) and soybean (Glycine max L. Merr.) showed trehalase activity which was inhibited by phloridzin and was several times higher than the activity of general -glucosidase. The activity had an acidic optimum. Trehalase activity in extracts of sporocarps and extraradical mycelium of the arbuscular mycorrhizal fungus Glomus mosseae Nicol. & Gerd. (Trappe & Gerd.) was higher than in root extracts and had an optimum at pH 7. Following inoculation with G. mosseae, trehalase activity increased in mycorrhizal roots above the levels observed in nonmycorrhizal roots. Irrespective of fungal colonization, root trehalase activity increased in the presence of Mg2+, decreased in the presence of Mn2+ and Zn2+, and was unaffected by Na2EDTA.  相似文献   

14.
This study investigated the influence of inoculation with a plant growth-promoting rhizobacterium, Pseudomonas mendocina Palleroni, alone or in combination with an arbuscular mycorrhizal (AM) fungus, Glomus intraradices (Schenk & Smith) or Glomus mosseae (Nicol & Gerd.) Gerd. & Trappe, on antioxidant enzyme activities (catalase and total peroxidase), phosphatase activity, solute accumulation, growth and mineral nutrient uptake in leaves of Lactuca sativa L. cv. Tafalla affected by three different levels of salt stress. Salinity decreased lettuce growth, regardless of the biological treatment and of the salt stress level. The plants inoculated with P. mendocina had significantly greater shoot biomass than the control plants at both salinity levels, whereas the mycorrhizal inoculation treatments only were effective in increasing shoot biomass at the medium salinity level. At the highest salinity level, the water content was greater in leaves of plants treated with P. mendocina or G. mosseae. At the medium salinity level, G. intraradices- or G. mosseae-colonised plants showed the highest concentrations of foliar P. The P. mendocina- and G. mosseae-colonised plants presented higher concentrations of foliar K and lower concentrations of foliar Na under high salt conditions. Salt stress decreased sugar accumulation and increased foliar proline concentration, particularly in plants inoculated with the PGPR. Increasing salinity stress raised significantly the antioxidant enzyme activities, including those of total peroxidase and catalase, of lettuce leaves compared to their respective non-stressed controls. The PGPR strain induced a higher increase in these antioxidant enzymes in response to severe salinity. Inoculation with selected PGPR could serve as a useful tool for alleviating salinity stress in salt-sensitive plants.  相似文献   

15.
Changes in gene expression were studied during the establishment of arbuscular mycorrhizal symbiosis in tobacco roots from an amphidiploid hybrid Nicotiana glutinosa x N. debneyi. Polypeptide patterns from control roots and from roots infected by Glomus mosseae or G. intraradices were resolved by two-dimensional polyacrylamide gel electrophoresis and followed in a time-course analysis. Arbuscular mycorrhizal infection led to significant modifications in polypeptide patterns with: (a) decreased amounts of some polypeptides, (b) increased accumulation of others, and (c) appearance of newly-induced polypeptides. Comparisons made during infection development by the two Glomus species demonstrated that protein modifications changed in relation to the mycorrhizal state of the tobacco roots.  相似文献   

16.
Rooted cuttings ofRosa multiflora ‘Brooks 56’ were grown in a medium of 1 mineral soil: 1 sand (v/v) or bark: 1 sand (v/v) inoculated with the VA-mycorrhizal (VAM) fungiGlomus mosseae (Nicol. and Gerd.) Gerd. and Trappe andG. fasciculatum (Thaxt. sensu Gerd.) Gerd. and Trappe or left as noninoculated controls. The slow release fertilizer osmocote was applied at rates of either 0, 1.2, or 4.2 kg/m3 (18N-6P-12K) and incorporated into the container medium. After 180 days plants were evaluated for growth, development and chemical leaf analysis. Greatest growth responses occurred after the highest fertilizer application of 4.2 kg/m3, and the poorest one after 0 kg/m3. Combination bark: sand medium was superior to mineral soil: sand medium for growth of mycorrhizal plants. At 0 kg/m3, mycorrhizal plants in bark: sand medium had longer shoots than other treatments. At 1.2 kg/m3, VAM plants compared to nonmycorrhizal plants in park:sand medium had greater effect on growth parameters. At the highest fertilizer application of 4.2 kg/m3, greatest growth responses occurred with VAM plants in bark:sand medium. Mycorrhizal plants compared to nonmycorrhizal plants in bark:sand medium had greater K and Zn uptake at 0 kg/m3, and greater K, Ca, S, Mn and Zn uptake at 1.2 kg/m3. Texas Agr. Expt. Sta. Journal Series No. TA-22264.  相似文献   

17.
M. Niemi  M. Vestberg 《Plant and Soil》1992,144(1):133-142
The effect of inoculation with VA mycorrhizal fungi on the productivity of commercially grown strawberry, cv. Senga Sengana, was studied in a field experiment in southern Finland. Micropropagated certified strawberry plants were inoculated at planting with different strains of Glomus spp. Although none of the inoculants raised the level of root infection above the natural infection level, all inoculated plants produced more runners in the first year than the control plants. Glomus intraradix Schenck & Smith (GI), G. etunicatum Becker & Gerdemann (GE) and Glomus sp. E3 (GF) significantly increased the number of runners by 57%, 69% and 76%, respectively. However, there was no significant increase in runner production in the second year, nor in fruit production in the third year. Of the strains tested, E3 was the most effective, increasing runner production by 30% over the first two years. Plants inoculated with G. mosseae (Nicol. & Gerd.) Gerdemann & Trappe (GM) produced fewer but larger runners than the control plants, and had a higher capacity for runner production relative to the plant size.The possibility of establishing mycorrhizal infection in micropropagated strawberries directly after the in-vitro phase under standard nursery conditions was studied in two glasshouse experiments. Three (GE, GF and GM) of five Glomus spp. caused mycorrhizal infection in plants of all four strawberry cultivars studied. In practical strawberry farming greater benefit of the mycorrhizal symbiosis may be achieved by using pretransplant-inoculated plants and adjusting the fertilizer regimes.  相似文献   

18.
Zinnia (Zinnia elegans) was inoculated with four arbuscular mycorrhizal fungi (AMF) i.e. Gigaspora margarita, Gigaspora rosea, Glomus intraradices, and Glomus mosseae, either singly or mixture of two species of Gigaspora and Glomus. Results indicated that Glomus significantly enhanced the leaf size and the shoot biomass. G. mosseae was more effective than G. intraradices. Only G. mosseae increased number and size of flowers. Mixed inoculations were not much effective in the growth-promotion than the corresponding singly inoculation with Glomus. Comparison of colonization percent demonstrated that the highest colonization by G. mosseae, and followed by G. intraradices and Gigaspora species. In semi-quantitative PCR amplifications, Glomus was dominant in the roots. Our results suggest that G. mosseae is good for inoculation to zinnia and the interaction between different AMF species should be given full consideration in the application.  相似文献   

19.
Abstract Soybean (Glycine max (L.) Men) plants were grown under controlled conditions in an experiment designed as a 4 × 4 factorial. The factors were N or P nutrition, with different strains of Rhizobium japonicum or N-fertilization as levels of the first factor and different species of vesicular-arbuscular mycorrhizal (VAM) fungi or P fertilization as levels of the other. Organisms used were R. japonicum strains USDA 110, USDA 136, and 61A118, and the VAM fungi Glomus versiforme (Karst.) Berch, Glomus fasciculatum (Thaxt. sensu Gerd.) Gerd. and Trappe, and Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe. There were 16 treatments: nine Rhizobium + Glomus combinations, three Rhizobium + V and three Glomus+ N combinations, and one non-symbiotic set of plants supplied with N + P. The tripartite symbioses were evaluated by analysis of variance against the Rhizobium + P and Glomus + N comparison treatments for effects on root and leaf dry mass, root N and P content, nodule mass and activity, and VAM colinization. Significant to highly significant main effects and interactions were found in virtually all evaluations due to both Rhizobium strain and VAM–fungal species. We conclude that different endophyte isolates affect not only the host plant, but also the development and function of their co-endophytes. These findings establish the existence of inter-endophyte compatibility, an important consideration when selecting or engineering for desirable endophyte traits.  相似文献   

20.
New chitosanase acidic isoforms have been shown in Glomus mosseae-colonized tomato roots and their induction, together with the previously described mycorrhiza-related chitinase isoform, has been further corroborated in plants colonized with another Glomus species (G. intraradices),as well as in tomato roots colonized in vitro by Giaspora rosea. The induction of these chitosanase isoforms appears as a specific response to the arbuscular mycorrhizal (AM) symbiosis, and does not correspond to unspecific defence mechanisms, since these isoforms were not induced by the pathogen Phytophthora parasitica. Analysis by isoelectrofocusing showed two closely migrating chitinase isoforms, specific to mycorrhizal plants colonized either with G. mosseae or G. intraradices, and their isoelectric points were estimated to be 4.5 and 4.7. The estimated molecular mass of chitosanases was 20 kDa, and after isoelectrofocusing, the chitosanase activities were detected along the acidic pH range (6.5-3.5). Constitutive and induced isoforms were also investigated during a time-course study. In some experiments, chitin and chitosan were embedded together as substrates in polyacrylamide gels with the aim of studying the capacity of some isoforms to display both chitinase and chitosanase activities. In extracts from plants colonized with either G. mosseae or G. intraradices, some constitutive chitinases and the previously described mycorrhiza-related chitinase isoform, appeared to display chitosanase activity, while this bifunctional character was not found for the chitinases from non-mycorrhizal tissue, nor in Phytophthora-infected plants. These results suggest some diversity in the chitinase activities concerning substrate specificity in mycorrhizal plants. The possible implications of these observations in the functioning of the symbiosis is discussed.Key words: Arbuscular mycorrhizas, chitinases, chitosanases, Phytophthora parasitica, tomato, Lycoperiscon esculentum.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号