首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract. Spatial heterogeneity, an important characteristic in semi‐arid grassland vegetation, may be altered through grazing by large herbivores. We used Moran's I, a measure of autocorrelation, to test the effect of livestock grazing on the fine scale spatial heterogeneity of dominant plant species in the shortgrass steppe of northeastern Colorado. Autocorrelation in ungrazed plots was significantly higher than in grazed plots for the cover of the dominant species Bouteloua gracilis, litter cover and density of other bunchgrasses. No species had higher autocorrelation in grazed compared to ungrazed sites. B. gracilis cover was significantly auto‐correlated in seven of eight 60‐yr ungrazed exclosures, four of six 8‐yr exclosures, and only three of eight grazed sites. Autocorrelograms showed that B. gracilis cover in ungrazed sites was frequently and positively spatially correlated at lag distances less than 5 m. B. gracilis cover was rarely autocorrelated at any sampled lag distance in grazed sites. The greater spatial heterogeneity in ungrazed sites appeared linked to patches characterized by uniformly low cover of B. gracilis and high cover of C3 grasses. This interpretation was supported by simple simulations that modified data from grazed sites by reducing the cover of B. gracilis in patches of ca. 8 m diameter and produced patterns quite similar to those observed in ungrazed sites. In the one exclosure where we intensively sampled soil texture, autocorrelation coefficients for sand content and B. gracilis cover were similar at lag distances up to 12 m. We suggest that the negative effect of sand content on B. gracilis generates spatial heterogeneity, but only in the absence of grazing. An additional source of heterogeneity in ungrazed sites may be the negative interaction between livestock exclusion and B. gracilis recovery following patchy disturbance.  相似文献   

2.
Abstract. The separate and combined effects of fire and cattle grazing on structure and diversity of productive Mediterranean grasslands in northern Israel were examined within a set of climatically and edaphically similar sites. Cover and height of green and dry plants in winter, and species richness and diversity in spring, were measured in paired transects on both sides of cattle fences, and on both sides of boundaries of both incidental and experimentally lit fires. Early in the first growing season after a fire, plant cover as well as height of green plants were reduced, compared to unburnt grassland. These structural effects of fire were similar to the effects of grazing, but they were greater in ungrazed than in grazed grasslands, indicating a fire-grazing interaction. The effects of fire were considerably attenuated in the second growing season after the fire. Species richness and diversity tended to be higher in grazed than in adjacent ungrazed grasslands. Richness consistently increased after a fire only in grazed grasslands with a strong perennial component. In ungrazed grasslands, and in predominantly annual grasslands, fires reduced species richness and diversity at least as often as they increased it. Fire and grazing should be regarded as two agents with distinct and interactive effects on the community, rather than as two alternative mechanisms of a general disturbance factor.  相似文献   

3.
Anthropogenic nutrient enrichment of mountain grasslands has boosted grasses and fast‐growing unpalatable plants at the expense of slow‐growing species, resulting in a significant loss in biodiversity. A potential tool to reduce nutrient availability and aboveground productivity without destroying the perennial vegetation is carbon (C) addition. However, little is known about its suitability under severe climatic conditions. Here, we report the results of a 3‐year field study assessing the effects of sawdust addition on soil nutrients, aboveground productivity, and vegetational composition of 10 grazed and ungrazed mountain grasslands. Of particular interest was the effect of C addition on grasses and on the tall unpalatable weed Veratrum album. After 3 years, soil pH, ammonium, and plant‐available phosphorus were not altered by sawdust application, and nitrate concentrations were marginally higher in treatment plots. However, the biomass of grasses and forbs (without V. album) was 20–25% lower in sawdust‐amended plots, whereas the biomass of V. album was marginally higher. Sawdust addition reduced the cover of grasses but did not affect evenness, vegetation diversity, or plant species richness, although species richness generally increased with decreasing biomass at our sites. Our results suggest that sawdust addition is a potent tool to reduce within a relatively short time the aboveground productivity and grass cover in both grazed and ungrazed mountain grasslands as long as they are not dominated by tall unpalatable weeds. The technique has the advantage that it preserves the topsoil and the perennial soil seed bank.  相似文献   

4.
It is widely believed that wild and domestic herbivores have modified the structure and composition of arid and semi-arid plant communities of western North America, but these beliefs have rarely been tested in long-term, well-replicated studies. We examined the effects of removing large herbivores from semi-arid shrublands for 40–50 years using 17 fenced exclosures in western Colorado, USA. Shrub cover was greater (F=5.87, P=0.0020) and cover (F=3.01, P=0.0601) and frequency (F=3.89, P=0.0211) of forbs was less inside the exclosures (protected) relative to grazed plots. However, we found no significant effects (minimum P=0.18) of protection from grazing on cover or frequency of grasses, biotic crusts, or bare soil. Although mean species richness and diversity were similar between treatments, protected areas had much higher dominance by fewer species, primarily sagebrush. Exclusion of herbivores changed the relationship between species richness and evenness. Consistent with theoretical expectations, species evenness was positively correlated with richness in protected plots (r 2=0.54). However, contrary to theory, evenness and richness were inversely related in grazed plots (r 2 adjacent=0.72, r 2 distant=0.84). We suggest that these differences resulted because grazing acts as a stressor promoting facilitative relationships between plant species that might compete for resources in the absence of grazing. We conclude that exclusion of grazing in the sites we studied caused minor changes in cover and diversity of herbaceous plants, but caused a clear increase in the cover of shrubs. Importantly, the exclusion of ungulates changed the relationship between evenness and richness.  相似文献   

5.
Summary Grasshopper densities were compared between grazed and ungrazed semidesert grassland sites in southeastern Arizona. Bouteloua-dominated perennial grass cover was about 1.5 times greater on the livestock exclosure. Grasshoppers were 3.7 times more abundant on the protected area in the summers of 1983 and 1984, when dominant species were grass-feeding members of the subfamily Gomphocerinae. In fall 1984, grasshoppers were 3.8 times more common on the grazed site, when dominants were mainly herb-feeders in the subfamily Melanoplinae. These results indicate important seasonal and taxonomic differences in the responses of grasshoppers to the activities of vertebrate grazers.  相似文献   

6.
Abstract. Grazing by domestic livestock in native woodlands can have major effects on ecosystem functioning by the removal of plant species that form important functional groups. This paper documents the changes in floristics in a large group of remnants of native woodland left after agricultural clearing in southwestern Australia. Species richness and diversity were significantly reduced in remnants and the proportion of exotic species increased. Detrended Correspondence Analysis (DCA) was used to identify floristic and environmental patterns among plots and identified two distinct groups based on grazing intensity. This indicated that the significance of the relationship between grazing effects and DCA floristic axes was greater than edaphic characteristics that normally influence floristic patterns. Floristic characteristics of sites that were influencing the position of plots on the ordination diagram included proportion of exotic species and proportion of native perennial shrubs and herbs. Numbers of species of native shrubs and perennial herbs were significantly reduced in grazed plots and numbers of exotic annual grasses and herbs were significantly higher. Other life form groups such as native perennial grasses and geophytes were not significantly affected by grazing. Reproductive strategies of perennial species showed a significant decrease in numbers of resprouters and a significant increase in numbers of facultative seeder/sprouters. Exclosure plots showed increases in number and cover of perennial shrubs and herbs after three years whereas number and cover of exotic species did not change. Time series DCA showed that the floristic composition of exclosure plots in grazed sites became closer to that of the ungrazed sites.  相似文献   

7.

Naturalistic grazing by large herbivores is an increasingly practiced way of managing habitats with conservational value. It has the potential to restore and enhance biodiversity, creating self-sustainable environments vital for organisms requiring regular disturbances to moderate and/or reverse successional changes. European bison, Exmoor pony, and Tauros cattle were introduced in 2015 to a former military training area in Milovice, Czech Republic. The prevailing vegetation type is a forest-steppe savanna with Bromus erectus-dominated xeric grasslands mixed with deciduous shrubs and trees. After the cessation of military use, the area was abandoned which led to successional changes, including the dominance of tall grasses, litter accumulation, and bush encroachment. In 2017–2021, we monitored grassland vegetation in 30 grazed permanent plots (2?×?2 m) and 5 control plots representative of ungrazed, abandoned vegetation adjacent to the grazed areas. Naturalistic grazing increased species richness and the cover of forbs, while the cover of grasses and legumes was minimally affected. Grazing increased functional diversity of plant community, promoted a compositional change to small statured species and an increased incidence of red-list species. Seven years of continuous grazing increased the conservation value of this forest-steppe vegetation, a habitat type rapidly declining in Europe.

  相似文献   

8.
9.
Abstract. The biodiversity of species‐rich semi‐natural meadows is declining across Europe due to ceased management. In this study we aimed to find out how successfully the local species richness of an overgrown semi‐natural mesic meadow could be restored by sheep grazing after a long period of abandonment. The cover of vascular plant species in grazed plots and ungrazed exclosures was studied for five years and the responses of different functional plant groups were followed (herbs vs grasses, tall vs short species, species differing in flowering time, species representing different Grime's CSR strategies and species indicative of rich vs poor soil). Grazing increased species number by nearly 30%. On grazed plots the litter cover practically disappeared, favouring small herbs such as Rhinanthus minor, Ranunculus acris, Trifolium pratense and the grass Agrostis capillaris. Grazing decreased the cover of the late flowering tall herb Epilobium angustifolium but had no effect on the abundance of the early flowering tall herbs Anthriscus sylvestris or Geranium sylvaticum. We suggest that to succeed in restoration it is useful to determine the responses of different functional plant groups to grazing. Grassland managers need this information to optimize the methods and timing of management used in restoration. Additional management practices, such as mowing, may be needed in mesic meadows to decrease the dominance of tall species. The availability of propagules seemed to restrict further increase of species richness in our study area.  相似文献   

10.
Questions: Does species richness and abundance accumulate with grazing protection in low productivity ecosystems with a short evolutionary history of grazing, as predicted by emerging theory? How do responses to grazing protection inform degradation history? Location: Mulga (Acacia aneura) dry forest, eastern Australia, generally considered chronically degraded by livestock grazing. Methods: Three paired exclosures (ungrazed, and macropod‐grazed) were compared with open‐grazed areas after 25 years using quadrats located on either side of the fences. Additionally, the regional flora for mulga dry forest was assessed to identify species that may have declined and could be threatened by grazing. Results: Low herbaceous biomass accumulation (<1.3 t ha?1) with full grazing protection confirmed a low productivity environment. For most plant life forms the highest species richness was in macropod‐grazed exclosures, an intermediate grazing disturbance that best approximates the evolutionary history of the environment. This was the net outcome of species that both declined and increased in response to grazing. Regeneration and subsequent self‐thinning of mulga was promoted with grazing protection, but did not confound interpretation of species richness and abundance responses. At the regional scale only 11 native species out of 407 comprising the mulga dry forest flora were identified as rare and potentially threatened by grazing. Conclusions: Significant increases in richness or abundance of native plants with grazing protection, persistence of perennial grasses, regeneration of mulga and scant evidence of a major decline in the regional flora are not consistent with established assertions that long‐grazed mulga dry forest has crossed functional thresholds that limit recovery. Further, a peak in species richness under intermediate (macropod) grazing is counter to the shape of the response predicted by emerging theory for recovery of species richness in a low productivity environment. The finding prompts a more thorough understanding of the distinction between environments with inherently low productivity and those degraded by grazing.  相似文献   

11.
Our study examines the effects of grazing exclusion on low-productive subalpine and alpine grasslands of the Central Alps (UNESCO Biosphere Park Gurgler Kamm, Obergurgl, Austria). A long-term exclusion experiment was established in 2000 in the subalpine, the lower, and the upper alpine zone. With exception of the subalpine zone, domestic herbivores have been grazing during the whole growing season. In grazed and exclosure plots species frequencies were recorded for 7 years. We analysed exclosure effects on species number, community composition, life forms, and functional groups.Species richness did not decrease significantly within the exclosures, but changes in species composition occurred in each zone, although some were transitory in nature. The dynamic trends of the plots were significantly explained by the ‘treatment×year’ effect along the whole altitudinal gradient, but the effects decreased considerably with altitude. In the subalpine and upper alpine exclosures, stress-tolerators, species of low or no nutritive value, and mosses showed a decreasing trend, whereas tall grasses (subalpine exclosures), competitors, and species with high or medium nutritive values (lower alpine exclosures) tended to increase.Overall, our 7-year study revealed that several functional groups reacted to grazing, according to our main expectations. We suggest that these effects will intensify in the long term.  相似文献   

12.
Degradation of semiarid ecosystems from overgrazing threatens a variety of ecosystem services. Rainfall and nitrogen commonly co-limit production in semiarid grassland ecosystems; however, few studies have reported how interactive effects of precipitation and nitrogen addition influence the recovery of grasslands degraded by overgrazing. We conducted a 6-year experiment manipulating precipitation (natural precipitation and simulated wet year precipitation) and nitrogen (0, 25 and 50 kg N ha?1) addition at two sites with different histories of livestock grazing (moderately and heavily grazed) in Inner Mongolian steppe. Our results suggest that recovery of plant community composition and recovery of production can be decoupled. Perennial grasses provide long-term stability of high-quality forage production in this system. Supplemental water combined with exclosures led, in the heavily grazed site, to the strongest recovery of perennial grasses, although widespread irrigation of rangeland is not a feasible management strategy in many semiarid and arid regions. N fertilization combined with exclosures, but without water addition, increased dominance of unpalatable annual species, which in turn retarded growth of perennial species and increased inter-annual variation in primary production at both sites. Alleviation of grazing pressure alone allowed recovery of desired perennial species via successional processes in the heavily grazed site. Our experiments suggest that recovery of primary production and desirable community composition are not necessarily correlated. The use of N fertilization for the management of overgrazed grassland needs careful and systematic evaluation, as it has potential to impede, rather than aid, recovery.  相似文献   

13.
Grasslands and their grazers provide some of the most compelling examples for studying the relationship between diversity, productivity, and disturbance. In this study, we analyzed the impact of grazing-induced changes in species composition and community structure upon the productivity of a grassland in the Campos region, Uruguay. We compared three treatments: a continuously grazed area, a 9-year old exclosure to domestic herbivores, and grazing-simulated plots inside the exclosure, which were clipped so that their standing biomass resembled that of the grazed area. We studied the community composition of the grazed and ungrazed situations, and determined biomass and above-ground net primary production (ANPP) of the three treatments during 1 year. Grazed plots had higher species richness and diversity than the exclosure. Grazing resulted in the replacement of some cool-season, tussock grasses by warm-season, prostrate grasses. ANPP was 51% higher under grazing than in the exclosure, but the grazing-simulated plots inside the exclosure were the most productive treatment, 29% higher than the grazed plots. Thus, two components of grazing effect may be postulated for this grassland. The structural component resulted in higher ANPP, probably due to the elimination of standing dead biomass. The species composition component resulted in lower ANPP once the structural component was controlled, probably due to the shift to warm-season phenology and prostrate habit. Our findings contrast with a similar experiment carried out in the neighbouring Flooding Pampa region, which suggests that the relationship between grazing and community structure and function is difficult to generalize.  相似文献   

14.
Fahnestock  Jace T.  Detling  James K. 《Plant Ecology》1999,144(2):145-157
We investigated the effects of short- and long-term ungulate grazing on plant species cover and composition in arid lowland and more mesic upland communities of the Pryor Mountain Wild Horse Range (PMWHR). Measurements were taken over two years which differed significantly in growing season precipitation. Interannual differences in plant cover were significantly greater than differences between grazed and ungrazed communities. In the arid lowlands total plant cover decreased from 47% in 1993, a relatively wet year, to 29% in 1994, a relatively dry year. In the more mesic uplands total plant cover decreased from 107% in 1993 to 56% in 1994. The magnitude of change in cover was greatest in the grasses, especially for Pseudoroegneria spicata, the most abundant species in the lowland communities, which decreased from 21% cover in 1993 to 11% in 1994. There was not a consistent effect of herbivory on plant cover across sites, but its effects, particularly on the dominant perennial grasses, were conspicuous at some sites. For instance, in the lowlands cover of P. spicata was 3–12% in long-term grazed sites and 9–28% in short- to long-term ungrazed sites. Our study indicates that abiotic factors (e.g., precipitation) are more likely than grazing to affect abundances of key plant species, and hence ecosystem dynamics, in the PMWHR, and that the effects of herbivory are more localized and more prevalent in the lowland grasses than in the other plant functional groups.  相似文献   

15.
16.
Abstract Patch formation is common in grazed grasslands but the mechanisms involved in the formation and maintenance of patches are not clear. To increase our knowledge on this subject we examined possible reasons for patch formation and the influence of management on changes between patch states in three experiments in native pasture communities in the Crows Nest district, south‐east Queensland. In these communities, small‐scale patches (tall grassland (dominated by large and medium tussock grasses), short swards (dominated by short tussock grasses and sedges), and lawns (dominated by stoloniferous and/or rhizomatous grasses)) are readily apparent. We hypothesized that the formation of short sward and lawn patches in areas of tall grassland was due to combinations of grazing and soil fertility effects. This was tested in Experiment 1 by applying a factorial combination of defoliation, nutrient application and transplants of short tussock and stoloniferous species to a uniform area of tall grassland. Total species density declined during the experiment, was lower with high nutrient applications, but was not affected by defoliation. There were significant changes in abundance of species that provided support for our hypotheses. With light defoliation and low nutrients, the tall grassland remained dominated by large tussock grasses and contained considerable amounts of forbs. With heavy defoliation, the pastures were dominated by medium tussock grasses and there were significant decreases in forbs and increases in sedges (mainly with low nutrients) and stoloniferous grasses (mainly with high nutrients). Total germinable seed densities and those of most species groups were significantly lower in the heavy defoliation than the light defoliation plots. Total soil seed numbers were not affected by nutrient application but there were fewer seeds of the erect forbs and more sedge seeds in plots with high nutrients. The use of resting from grazing and fire to manage transitions between patches was tested. In Experiment 2 , changes in species density and abundance were measured for 5 years in the three patch types with and without grazing. Experiment 3 examined the effects of fire, grazing and resting on short sward patches over 4 years. In Experiment 2 , total species density was lower in lawn than short sward or tall grassland patches, and there were more species of erect forbs than other plant groups in all patch types. The lawn patches were originally dominated by Cynodon spp. This dominance continued with grazing but in ungrazed patches the abundance of Cynodon spp. declined and that of forbs increased. In the short sward patches, dominance of short tussock grasses continued with grazing but in ungrazed plots their abundance declined while that of large tussock grasses increased. The tall grassland patches remained dominated by large and medium tussock species. In Experiment 3 , fire had no effect on species abundance. On the grazed plots the short tussock grasses remained dominant but where the plots were rested from grazing the small tussock grasses declined and the large tussock grasses increased in abundance. The slow and relatively small changes in these experiments over 4 or 5 years showed how stable the composition of these pastures is, and that rapid changes between patch types are unlikely.  相似文献   

17.
This paper documents changes in the floristic composition of Eucalyptus marginata Donn (jarrah) woodlands over 7 years of recovery from continual, intensive livestock grazing. In remnants of native woodland left after agricultural clearing, which have been subjected to livestock grazing, comparisons were made between the floristics of fenced exclosure plots and open plots that continued to be grazed. The vegetation in nearby remnants, which had not been subjected to livestock grazing, was also surveyed. An initial increase in annual exotic pasture species after grazing relief was only temporary and highly influenced by fluctuations in annual climatic patterns, particularly rainfall distribution and abundance. Subsequent years saw a decrease in exotic annuals in exclosure plots and an increase in native perennials, in a trend towards becoming more floristically similar to the ungrazed sites. Germination of overstorey species was observed in the exclosure plots, however, development of seedlings and saplings was sparse. Results indicate that for jarrah woodland in southwestern Australia, natural regeneration is possible after the removal of livestock, with the return (within 6 years) of native species richness to levels similar to those found in ungrazed vegetation. Re‐establishment of cover, however, appears to take longer. The floristic dynamics are described in terms of a nonequilibrium model. Two vegetation states exist, degraded remnants with an understorey dominated by annual species, and ungrazed vegetation with an understorey dominated by perennial shrubs and herbs. The former state is maintained by continual heavy grazing by livestock. Upon relief from grazing, the vegetation undergoes a transition towards floristic similarity to ungrazed vegetation. After 6 years, vegetation change in the exclosure plots appears to be continuing and therefore it is still in transition.  相似文献   

18.
Reestablishment of perennial vegetation is often needed after wildfires to limit exotic species and restore ecosystem services. However, there is a growing body of evidence that questions if seeding after wildfires increases perennial vegetation and reduces exotic plants. The concern that seeding may not meet restoration goals is even more prevalent when native perennial vegetation is seeded after fire. We evaluated vegetation cover and density responses to broadcast seeding native perennial grasses and mountain big sagebrush (Artemisia tridentata Nutt. spp. vaseyana [Rydb.] Beetle) after wildfires in the western United States in six juniper (Juniperus occidentalis ssp. occidentalis Hook)‐dominated mountain big sagebrush communities for 3 years postfire. Seeding native perennial species compared to not seeding increased perennial grass and sagebrush cover and density. Perennial grass cover was 4.3 times greater in seeded compared to nonseeded areas. Sagebrush cover averaged 24 and less than 0.1% in seeded and nonseeded areas at the conclusion of the study, respectively. Seeding perennial species reduced exotic annual grass and annual forb cover and density. Exotic annual grass cover was 8.6 times greater in nonseeded compared to seeded areas 3 years postfire. Exotic annual grass cover increased over time in nonseeded areas but decreased in seeded areas by the third‐year postfire. Seeded areas were perennial‐dominated and nonseeded areas were annual‐dominated at the end of the study. Establishing perennial vegetation may be critical after wildfires in juniper‐dominated sagebrush steppe to prevent the development of annual‐dominated communities. Postwildfire seeding increased perennial vegetation and reduced exotic plants and justifies its use.  相似文献   

19.
The size and dynamics of seed banks were studied in grazed and ungrazed Mediterranean pastures at different altitudes and topography positions. The soil samples were collected in autumn and spring and the seed banks composition was determined by greenhouse germination over a 9-month period. The percentage of bare ground and the presence of new seedlings were recorded monthly from October to July in the field. A fall in seed density and species richness in the banks and a tendency for seeds to remain in the banks were linked to a rise in altitude. Germination in lower pastures mainly occurred in October in the numerous gaps left by the summer drought. At higher altitudes, the scarcity of gaps and the harsh climate led to an autumn–spring segregation of germination. On a local scale, the low slope positions and the ungrazed plots had a larger number of persistent seed bank species and a lower percentage of bare ground where seeds could germinate than their respective plots in the upper positions and grazed plots. A higher seed density in ungrazed than grazed plots was only detected in the three highest plots. No seed bank species richness trend was detected. In populations of the same species in different types of environments, the seasonal variation of seed numbers was environment-dependent for the majority of the species. In general, perennial grassland and its related low gaps availability appear to favour persistent seed banks.  相似文献   

20.
Herbivores influence spatial heterogeneity in soil resources and vegetation in ecosystems. Despite increasing recognition that spatial heterogeneity can drive species richness at different spatial scales, few studies have quantified the effect of grazing on spatial heterogeneity and species richness simultaneously. Here we document both these variables in a rabbit-grazed grassland. We measured mean values and spatial patterns of grazing intensity, rabbit droppings, plant height, plant biomass, soil water content, ammonia and nitrate in sites grazed by rabbits and in matched, ungrazed exclosures in a grassland in southern England. Plant species richness was recorded at spatial scales ranging between 0.0001 and 150 m(2). Grazing reduced plant height and plant biomass but increased levels of ammonia and nitrate in the soil. Spatial statistics revealed that rabbit-grazed sites consisted of a mixture of heavily grazed patches with low vegetation and nutrient-rich soils (lawns) surrounded by patches of high vegetation with nutrient-poor soils (tussocks). The mean patch size (range) in the grazed controls was 2.1 +/- 0.3 m for vegetation height, 3.8 +/- 1.8 m for soil water content and 2.8 +/- 0.9 m for ammonia. This is in line with the patch sizes of grazing (2.4 +/- 0.5 m) and dropping deposition (3.7 +/- 0.6 m) by rabbits. In contrast, patchiness in the ungrazed exclosures had a larger patch size and was not present for all variables. Rabbit grazing increased plant species richness at all spatial scales. Species richness was negatively correlated with plant height, but positively correlated to the coefficient of variation of plant height at all plot sizes. Species richness in large plots (<25 m(2)) was also correlated to patch size. This study indicates that the abundance of strong competitors and the nutrient availability in the soil, as well as the heterogeneity and spatial pattern of these factors may influence species richness, but the importance of these factors can differ across spatial scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号