首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
l-aspartate dehydrogenase (EC 1.4.1.21; l-AspDH) is a rare member of amino acid dehydrogenase superfamily and so far, two thermophilic enzymes have been reported. In our study, an ORF PA3505 encoding for a putative l-AspDH in the mesophilic bacterium Pseudomonas aeruginosa PAO1 was identified, cloned, and overexpressed in Escherichia coli. The homogeneously purified enzyme (PaeAspDH) was a dimeric protein with a molecular mass of about 28 kDa exhibiting a very high specific activity for l-aspartate (l-Asp) and oxaloacetate (OAA) of 127 and 147 U mg−1, respectively. The enzyme was capable of utilizing both nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) as coenzyme. PaeAspDH showed a T m value of 48°C for 20 min that was improved to approximately 60°C by the addition of 0.4 M NaCl or 30% glycerol. The apparent K m values for OAA, NADH, and ammonia were 2.12, 0.045, and 10.1 mM, respectively; comparable results were observed with NADPH. The l-Asp production system B consisting of PaeAspDH, Bacillus subtilis malate dehydrogenase and E. coli fumarase, achieved a high level of l-Asp production (625 mM) from fumarate in fed-batch process with a molar conversion yield of 89.4%. Furthermore, the fermentative production system C released 33 mM of l-Asp after 50 h by using succinate as carbon source. This study represented an extensive characterization of the mesophilic AspDH and its potential applicability for efficient and attractive production of l-Asp. Our novel production systems are also hopeful for developing the new processes for other compounds production.  相似文献   

2.
Rhodopseudomonas acidophila strain 7050 assimilated ammonia via a constitutive glutamine synthetase/glutamate synthase enzyme system.Glutamine synthetase had a K m for NH 4 + of 0.38 mM whilst the nicotinamide adenine dinucleotide linked glutamate synthase had a K m for glutamine of 0.55 mM. R. acidophila utilized only a limited range of amino acids as sole nitrogen sources: l-alanine, glutamine and asparagine. The bacterium did not grow on glutamate as sole nitrogen source and lacked glutamate dehydrogenase. When R. acidophila was grown on l-alanine as the sole nitrogen source in the absence of N2 low levels of a nicotinamide adenine dinucleotide linked l-alanine dehydrogenase were produced. It is concluded, therefore, that this reaction was not a significant route of ammonia assimilation in this bacterium except when glutamine synthetase was inhibited by methionine sulphoximine. In l-alanine grown cells the presence of an active alanine-glyoxylate aminotransferase and, on occasions, low levels of an alanine-oxaloacetate aminotransferase were detected. Alanine-2-oxo-glutarate aminotransferase could not be demonstrated in this bacterium.Abreviations ADH alanine dehydrogenase - GDH glutamate dehydrogenase - GS glutamine synthetase - GOGAT glutamate synthase - MSO methionine sulphoximine  相似文献   

3.
Dye-linked l-proline dehydrogenase (ProDH) catalyzes the oxidation of l-proline to ∆1-pyrroline-5-carboxylate (P5C) in the presence of artificial electron acceptors. The enzyme is known to be widely distributed in bacteria and eukarya, together with nicotinamide adenine dinucleotide (phosphate)-dependent P5C dehydrogenase, and to function in the metabolism of l-proline to l-glutamate. In addition, over the course of the last decade, three other types of ProDH with molecular compositions completely different from previously known ones have been identified in hyperthermophilic archaea. The first is a heterotetrameric αβγδ-type ProDH, which exhibits both ProDH and reduced nicotinamide adenine dinucleotide dehydrogenase activity and includes two electron transfer proteins. The second is a heterooctameric α4β4-type ProDH, which uses flavin adenine dinucleotide, flavin mononucleotide, adenosine triphosphate, and Fe as cofactors and creates a new electron transfer pathway. The third is a recently identified homodimeric ProDH, which exhibits the greatest thermostability among these archaeal ProDHs. This minireview focuses on the functional and structural properties of these three types of archaeal ProDH and their distribution in archaea. In addition, we will describe the specific application of hyperthermostable ProDH for use in a biosensor and for DNA sensing.  相似文献   

4.
Methanobacterium thermoautotrophicum (strain Marburg) was found to contain two malate dehydrogenases, which were partially purified and characterized. One was specific for NAD+ and catalyzed the dehydrogenation of malate at approximately one-third of the rate of oxalacetate reduction, and the other could equally well use NAD+ and NADP+ as coenzyme and catalyzed essentially only the reduction of oxalacetate. Via the N-terminal amino acid sequences, the encoding genes were identified in the genome of M. thermoautotrophicum (strain ΔH). Comparison of the deduced amino acid sequences revealed that the two malate dehydrogenases are phylogenetically only distantly related. The NAD+-specific malate dehydrogenase showed high sequence similarity to l-malate dehydrogenase from Methanothermus fervidus, and the NAD(P)+-using malate dehyrogenase showed high sequence similarity to l-lactate dehydrogenase from Thermotoga maritima and l-malate dehydrogenase from Bacillus subtilis. A function of the two malate dehydrogenases in NADPH:NAD+ transhydrogenation is discussed. Received: 29 December 1997 / Accepted: 4 March 1998  相似文献   

5.
The l-alanine dehydrogenase (ADH) of Anabaena cylindrica has been purified 700-fold. It has a molecular weight of approximately 270000, has 6 sub-units, each of molecular weight approximately 43000, and shows activity both in the aminating and deaminating directions. The enzyme is NADH/NAD+ specific and oxaloacetate can partially substitute for pyruvate. The K m app for NAD+ is 14 M and 60 M at low and high NAD+ concentrations, respectively. The K m app for l-alanine is 0.4 mM, that for pyruvate is 0.11 mM, and that for oxaloacetate is 3.0 mM. The K m app for NH 4 + varies from 8–133 mM depending on the pH, being lowest at high pH levels (pH 8.7 or above). Alanine, serine and glycine inhibit ADH activity in the aminating direction. The enzyme is active both in heterocysts and vegetative cells and activity is higher in nitrogen-starved cultures than in N2-fixing cultures. The data suggest that although alanine is formed by the aminating activity of ADH, entry of newly fixed ammonia into organic combination does not occur primarily via ADH in N2-fixing cultures of A. cylindrica. Ammonia assimilation via ADH may be important in cultures with an excess of available nitrogen. The deaminating activity of the enzyme may be important under conditions of nitrogen-deficiency.Abbreviations ADH alanine dehydrogenase - DEAE diethylamino ethyl cellulose - EDTA ethylenediamine tetraacetic acid - GDH glutamic dehydrogenase - GS glutamine synthetase - GOT aspartate-glutamate aminotransferase - NAD+ nicotinamide adenine dinucleotide - NADH reduced nicotinamide adenine dinucleotide - NADP+ nicotinamide adenine dinucleotide phosphate - NADPH reduced nicotinamide adenine dinucleotide phosphate - SDS sodium dodecyl sulphate - Tris tris(hydroxymethyl) aminomethane  相似文献   

6.
Threonine dehydrogenase from Clostridium sticklandii has been purified 76-fold from cells grown in a defined medium to a homogeneous preparation of 234 units · mg-1 protein. Purification was obtained by chromatography on Q-Sepharose fast flow and Reactive green 19-Agarose. The native enzyme had a molecular mass of 67 kDa and consisted of two identical subunits (33 kDa each). The optimum pH for catalytic activity was 9.0. Only l-threo-threo-nine, dl--hydroxynorvaline and acetoin were substrates; only NAD was used as the natural electron acceptor. The apparent K m values for l-threonine and NAD were 18 mM and 0.1 mM, respectively. Zn2+, Co2+ and Cu2+ ions (0.9 mM) inhibited enzyme activity. The N-terminal amino acid sequence revealed similarities to the class of non-metal short-chain alcohol dehydrogenases, whereas the threonine dehydrogenase from Escherichia coli belongs to the class of medium chain, zinc-containing alcohol dehydrogenases.Abbreviations PMSF phenylmethylsulfonyl fluoride - Dea diethanolamine - Tris tris-(hydroxy-methyl)-aminomethane - Nbs 2 5,5-dithiobis-(2-nitrobenzoic acid) - ApADN 3-acetylpyridine adenine diucleotide - thio-NAD thionicotinamide adenine dinucleotide - NBT nitro blue tetrazolium chloride  相似文献   

7.
The pH dependence of the 13C chemical shifts for nicotinamide adenine dinucleotide (NAD+), thionicotinamide adenine dinucleotide (TNAD+), pyridine adenine dinucleotide (PyrAD+), N-methyl-nicotinamide adenine dinucleotide (N-Me-NAD+), acetylpyridine adenine dinucleotide (AcPyAD+), nicotinamide hypoxanthine dinucleotide (NHD+), and nicotinamide adenine dinucleotide phosphate (NADP+) are reported. In these analogs the 13C chemical shifts of the pyridinium moiety reflect the pKa of the opposing purine base, while the 13C chemical shift dependence on pD for the pyridinium carbons of nicotinamide mononucleotide (NMN+) and adenosine monophosphate (AMP), 1,4-dihydronicotinamide adenine dinucleotide (NADH), 1,4-dihydronicotinamide adenine dinucleotide phosphate (NADPH), and nicotinic acid adenine dinucleotide (N(a)AD+) are not influenced by the adenine ring in the pD range tested. Through the use of 13C-labeled NAD+, the source of the pH dependence of the 13C chemical shifts was shown to be intramolecular in origin. However, serious doubt is cast on the utility of employing the pD dependence of chemical shift data to determine the nature of solution conformers or their relative populations.  相似文献   

8.
Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are tryptophan-degrading enzymes. Mammalian IDO expression is induced by cytokines and has antimicrobial and immunomodulatory effects. A major role of mammalian TDO is to supply nicotinamide adenine dinucleotide (NAD+). In fungi, the IDO homologue is thought to be expressed constitutively and supply NAD+, as TDO is absent from their genomes. Here, we reveal the distribution of IDO genes among fungal species and characterize their enzymatic activity. The yeast, Saccharomyces cerevisiae has only one IDO gene, whereas the koji-mold, Aspergillus oryzae has two genes, IDOα and IDOβ. The A. oryzae IDOα showed more similar enzymatic properties to those of S. cerevisiae IDO than IDOβ, suggesting that the A. oryzae IDOα is a functional homologue of the S. cerevisiae IDO. From the IDOβ gene, two isoforms, IDOβ and IDOβ+ could be generated by alternative splicing. The latter contained a 17 amino acids insertion which were encoded by the first intron of IDOβ gene. In comparison to IDOβ+, bacterially expressed IDOβ showed much lower K m value and more than five-times faster V max value, resulting in 85 times higher catalytic efficiency; i.e., the removal of the domain encoded by the first intron from IDOβ+ increases its enzymatic activity drastically. This might be a unique regulation mechanism of the l-Trp metabolism in the A. oryzae. The levo-1-methyl tryptophan (l-1MT) is a good inhibitor of both IDO1 and IDO2. However, the activity of fungal IDOs tested was not inhibited at all by l-1MT.  相似文献   

9.
10.
Escherichia coli W was genetically engineered to produce l-alanine as the primary fermentation product from sugars by replacing the native d-lactate dehydrogenase of E. coli SZ194 with alanine dehydrogenase from Geobacillus stearothermophilus. As a result, the heterologous alanine dehydrogenase gene was integrated under the regulation of the native d-lactate dehydrogenase (ldhA) promoter. This homologous promoter is growth-regulated and provides high levels of expression during anaerobic fermentation. Strain XZ111 accumulated alanine as the primary product during glucose fermentation. The methylglyoxal synthase gene (mgsA) was deleted to eliminate low levels of lactate and improve growth, and the catabolic alanine racemase gene (dadX) was deleted to minimize conversion of l-alanine to d-alanine. In these strains, reduced nicotinamide adenine dinucleotide oxidation during alanine biosynthesis is obligately linked to adenosine triphosphate production and cell growth. This linkage provided a basis for metabolic evolution where selection for improvements in growth coselected for increased glycolytic flux and alanine production. The resulting strain, XZ132, produced 1,279 mmol alanine from 120 g l−1 glucose within 48 h during batch fermentation in the mineral salts medium. The alanine yield was 95% on a weight basis (g g−1 glucose) with a chiral purity greater than 99.5% l-alanine. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Acetone was found to form a dead-end ternary complex with horse liver alcohol dehydrogenase and oxidized nicotinamide adenine dinucleotide (NAD+) when the reactants were incubated for a long time at relatively high concentrations. The complex formation was demonstrated by measuring the increase in absorbance at 320 nm, the quenching of protein fluorescence, and the loss of enzyme activity. Since acetone is a substrate of liver alcohol dehydrogenase, and the presence of acetaldehyde or pyrazole prevents acetone from forming the dead-end complex with liver alcohol dehydrogenase and NAD+, the acetone molecule in the complex may be bound to the substrate binding site of liver alcohol dehydrogenase. The dissociation of the complex was demonstrated by prolonged dialysis or by addition of reduced nicotinamide adenine dinucleotide (NADH) and iso-butyramide. A modified nicotinamide adenine dinucleotide was obtained as a main product from the dead-end complex after dissociation of the complex or denaturation of the apoenzyme. The modified nicotinamide adenine dinucleotide was found to exhibit an absorption spectrum similar to that of NADH; however, it was not oxidizable by liver alcohol dehydrogenase in the presence of acetaldehyde and exhibited no fluorescence.  相似文献   

12.
Treponema denticola convertedl-ornithine, a product ofl-arginine catabolism, to putrescine via a decarboxylation reaction and to proline via a deamination reaction. Ornithine decarboxylation byT. denticola extracts was stimulated by pyridoxal 5′-phosphate. In the absence of pyridoxal 5′-phosphate, (NH4)2SO4-fractionated extracts converted ornithine to proline and ammonia. This activity was not stimulated by α-keto acids, nicotinamide adenine dinucleotide, reduced nicotinamide adenine dinucleotide or ADP. Neither ornithine δ-transaminase (l-ornithine: 2-oxoacid aminotransferase, EC 2.6.1.13) nor Δ1 reductase [l-proline: NAD(P) 5-oxidoreductase, EC 1.5.1.2.] activity was detectable in cell extracts. These results indicate that formation of proline from ornithine inT. denticola is catalyzed by an enzyme system analogous to the ornithine cyclase (deaminating) ofClostridium sporogenes. Exogenous ornithine inhibited the growth ofT. denticola. Thus, in addition to generating putrescine and proline, the ornithine dissimilatory pathways may serve to prevent accumulation of inhibitory concentrations of ornithine in the spirochete's environment.  相似文献   

13.
Summary Polypeptides, synthesized from a mixture of amino acid amides by microwave heating during repeated hydration-dehydration cycles, showed hydrolase- and oxidoreductase-like catalytic activities. Poly(GAVDH), polypeptides synthesized from an equimolar mixture (each 0.1 M) of glycinamide,l-alaninamide,l-valinamide,l-aspartic acid -amide, andl-histidinamide, catalyzed the hydrolysis of PNPAc. The hydrolytic rate of PNPAc with poly(GAVDH) was the quadruple of that ofl-histidine alone. Though the kcat values of different resulting polypeptides were 103–106 times less than those of native hydrolases, the Km value of the polypeptides further containing phenylalanine residues was nearly equal to that of the esterase. This result indicates the presence of hydrophobic interaction between a substrate and the polypeptides. Resulting polypeptides also showed catalytic activity for the reduction of ferricyanide ion [Fe(CN)3–] with NADH. The polypeptides seemed to have a strong affinity for adenine nucleotides, because the reaction was inhibited by adenine derivatives such as NAD+ and AppA. A hypothesis for the emergence of primitive protein enzymes is discussed.  相似文献   

14.
The cell wall composition, the configuration of lactic acid produced from glucose under anaerobic conditions, the occurrence of fructose-1,6-diphosphate (FDP) activatedl-lactate dehydrogenase (l-LDH), and the esterase pattern were determined from more than 80 strains of coagulase-positive staphylococci isolated from man and animal. Strains isolated from man, swine, bovines and hares form a rather homogencous group. They exhibit a similar cell wall composition, produce predominantlyd,l-lactate and have a characteristic and simple esterase pattern. Coagulasepositive staphylococci isolated from dogs, horses, minks and pigeons are quite distinct from typicalStaphylococcus aureus strains. They exhibit a different cell wall composition, produce onlyl-lactate, possess anl-LDH which is specifically activated by FDP, and have a quite complex esterase pattern.List of Abbreviations BBP bromphenol blue - FDP fructose-1,6-diphosphate - d-LDH d-lactate dehydrogenase - l-LDH l-lactate dehydrogenase - NAD nicotinamide adenine dinucleotide  相似文献   

15.
System y+L is a broad-scope amino acid transporter which binds and translocates cationic and neutral amino acids. Na+ replacement with K+ does not affect lysine transport, but markedly decreases the affinity of the transporter for l-leucine and l-glutamine. This observation suggests that the specificity of system y+L varies depending on the ionic composition of the medium. Here we have studied the interaction of the carrier with various amino acids in the presence of Na+, K+, Li+ and guanidinium ion. In agreement with the prediction, the specificity of system y+L was altered by the monovalent cations. In the presence of Na+, l-leucine was the neutral amino acid that interacted more powerfully. Elongation of the side chain (glycine - l-norleucine) strengthened binding. In contrast, bulkiness at the level of the β carbon was detrimental. In K+, the carrier behaved as a cationic amino acid specific carrier, interacting weakly with neutral amino acids. Li+ was found to potentiate neutral amino acid binding and in general the apparent affinities were higher than in Na+; elongation of the nonpolar side chain made a more important contribution to binding and the carrier was more tolerant towards β carbon substitution. Guanidinium stimulated the interaction of the carrier with neutral amino acids, but the effect was restricted to certain analogues (e.g., l-leucine, l-glutamine, l-methionine). Thus, in the presence of guanidinium, the carrier discriminates sharply among different neutral amino acids. The results suggest that the monovalent cations stabilize different carrier conformations. Received: 22 January 1996/Revised: 26 April 1996  相似文献   

16.
The β-hydroxyacid dehydrogenases form a large family of ubiquitous enzymes that catalyze oxidation of various β-hydroxy acid substrates to corresponding semialdehydes. Several known enzymes include β-hydroxyisobutyrate dehydrogenase, 6-phosphogluconate dehydrogenase, 2-(hydroxymethyl)glutarate dehydrogenase, and phenylserine dehydrogenase, but the vast majority of β-hydroxyacid dehydrogenases remain uncharacterized. Here, we demonstrate that the predicted β-hydroxyisobutyrate dehydrogenase PA0743 from Pseudomonas aeruginosa catalyzes an NAD+-dependent oxidation of l-serine and methyl-l-serine but exhibits low activity against β-hydroxyisobutyrate. Two crystal structures of PA0743 were solved at 2.2–2.3-Å resolution and revealed an N-terminal Rossmann fold domain connected by a long α-helix to the C-terminal all-α domain. The PA0743 apostructure showed the presence of additional density modeled as HEPES bound in the interdomain cleft close to the predicted catalytic Lys-171, revealing the molecular details of the PA0743 substrate-binding site. The structure of the PA0743-NAD+ complex demonstrated that the opposite side of the enzyme active site accommodates the cofactor, which is also bound near Lys-171. Site-directed mutagenesis of PA0743 emphasized the critical role of four amino acid residues in catalysis including the primary catalytic residue Lys-171. Our results provide further insight into the molecular mechanisms of substrate selectivity and activity of β-hydroxyacid dehydrogenases.  相似文献   

17.
The activity of a dye-linked l-proline dehydrogenase (dye-l-proDH) was found in the crude extract of an aerobic hyperthermophilic archaeon, Pyrobaculum calidifontis JCM 11548, and was purified 163-fold through four sequential chromatography steps. The enzyme has a molecular mass of about 108 kDa and is a homodimer with a subunit molecular mass of about 46 kDa. The enzyme retained more than 90% of its activity after incubation at 100 °C for 120 min (pH 7.5) or after incubation at pHs 4.5–9.0 for 30 min at 50 °C. The enzyme catalyzed l-proline dehydrogenation to Δ1-pyroline-5-carboxylate using 2,6-dichloroindophenol (DCIP) as the electron acceptor and the Michaelis constants for l-proline and DCIP were 1.67 and 0.026 mM, respectively. The prosthetic group on the enzyme was identified as flavin adenine dinucleotide by high-performance liquid chromatography. The subunit N-terminal amino acid sequence was MYDYVVVGAG. Using that sequence and previously reported genome information, the gene encoding the enzyme (Pcal_1655) was identified. The gene was then cloned and expressed in Escherichia coli and found to encode a polypeptide of 415 amino acids with a calculated molecular weight of 46,259. The dye-l-proDH gene cluster in P. calidifontis inherently differs from those in the other hyperthermophiles reported so far.  相似文献   

18.
The presence of selected dehydrogenases, including alcohol dehydrogenase (ADH-YL) and aldehyde dehydrogenase (ALDH-YL), in Yarrowia lipolytica JMY 861, and their potential role in flavor synthesis were investigated. The experimental findings showed that using reduced form of nicotinamide adenine dinucleotide (NADH) as cofactor, the ADH-YL activity in vitro was 6-fold higher than that with reduced form of nicotinamide adenine dinucleotide phosphate (NADPH); however, under the experimental conditions used in this study, an ALDH-YL activity was not detected. The in situ hexanal reduction reaction was found to be instantaneous; however, when the yeast cells suspension was diluted 150 times, the initial relative hexanal concentration was increased by 84.1%. The chromatographic analyses indicated the conversion, in situ, of linoleic acid hydroperoxides (HPODs) into volatile C6-compounds after 60 min of HPODs addition to the yeast cells suspension.  相似文献   

19.
20.
Hao J  Ma C  Gao C  Qiu J  Wang M  Zhang Y  Cui X  Xu P 《Biotechnology letters》2007,29(1):105-110
Pseudomonas stutzeri SDM oxidized dl-lactic acid (25.5 g l-1) into pyruvic acid (22.6 g l-1) over 24 h. Both NAD+-independent d-lactate dehydrogenase and NAD+-independent l-lactate dehydrogenase were found for the first time in the bioconversion of lactate to pyruvate based on the enzyme activity assay and proteomic analysis. Jianrong Hao and Cuiqing Ma contributed equally to this work  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号