首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Effects of interspecific interactions on the organization of two trampled communities, Eragrostio ferrugineae - Plantaginetum asiaticae (EP) and Eleusino indicae - Digitarietum violascentis (ED), were examined by 4-yr field experiments. We compared changes in the relative abundance of the main component species of the communities in monoculture and mixed culture along a trampling gradient. At no trampling in mixed culture, Ambrosia artemisiifolia var. elatior and Erigeron annuus (roadside herbs, RH) predominated and excluded the trampled community species. Severe trampling markedly reduced the predominance of these roadside herbs, promoted Eragrostis ferruginea (a perennial grass of EP), but suppressed Eleusine indica (an annual grass of ED). These results suggest that the differentiation of trampled and roadside herb communities under heavy trampling are caused by asymmetric competition between their main species. Several species pairs showed a constant rank order of relative cover at high trampling levels. Pennisetum alopecuroides (a perennial grass of both RH and EP) and Eragrostis coexisted, indicating symmetric competition. Eragrostis and Plantago asiatica (a perennial herb of EP) or Poa annua (a winter-annual grass of both EP and ED) coexisted through separation in phenology. Eragrostis promoted the survival of Plantago by moderating unpredictable drought (commensalistic positive interaction). This suggests that community composition is maintained by several interspecific interactions.  相似文献   

2.
Abstract

Plant‐microbial interactions under N‐limiting conditions are governed by competitive abilities of plants for N. Our study aimed to examine how two plant species of strawberry, Fragaria vesca L. (native species) and Duchesnea indica (Andrews) Focke (an invasive plant in central Europe), growing in intra‐specific and inter‐specific competition alter the functions of rhizosphere microorganisms in dependence on N availability. By intra‐specific competition at low N level, a 2.4‐fold slower microbial‐specific growth rate was observed under D. indica characterized by smaller root biomass and lower N content in roots compared with F. vesca. By inter‐specific competition of both plants at low N level, microbial growth rates were similar to those for D. indica indicating that plants with stronger competitive abilities for N controls microbial community in the rhizosphere. Since a high N level smoothed the differences between plant species in root and microbial biomass as well as in microbial growth rates under both intra‐specific and inter‐specific competition, we conclude that competitive abilities of plant species were crucial for microbial growth in the rhizosphere only under N imitation.  相似文献   

3.
Eleusine (Poaceae) includes six diploid and three polyploid species and has three basic chromosome numbers, x=8, 9 and 10. The species are annual as well as perennial and all are wild except E. coracana, which is cultivated for grain and fodder in Africa and the Indian subcontinent. Eleusine coracana and E. africana have the same genome and chromosome number (2n=36). Eleusine indica and E. floccifolia are identified as two genome donors to these polyploid species. Eleusine kigeziensis is the third polyploid species of the genus with 2n=38. Its genome may have come from E. jaegeri and from one of the species with x=9, most probably from E. indica. Eleusine indica, E. tristachya, E. floccifolia and E. intermedia with x=9 and two polyploid species, E. coracana and E. africana, are closely related and there is free genetic flow between them. Eleusine multiflora with x=8 is significantly different in morphology and at genomic level from other species. Eleusine jaegeri with x=10 is morphologically similar to E. indica, however, more information is needed to ascertain its position in the genus. Eleusine coracana, which is commonly called finger millet, is a potential and nutritious crop for the increasing population of the world, particularly in arid and semi-arid regions. It can also serve as a gene pool for various important characters and disease resistant genes. Received February 11, 2002; accepted May 27, 2002 Published online: October 14, 2002 Addresses of the authors: Madho Singh Bisht and Yasuhiko Mukai (e-mail: ymukai@cc.osaka-kyoiku.ac.jp), Laboratory of Plant Molecular Genetics, Division of Natural Science, Osaka Kyoiku University, 4-698-1 Asahigaoka, Kashiwara, Osaka 582-8582, Japan.  相似文献   

4.
The intermediate disturbance hypothesis predicts unimodal relationships between species diversity and disturbance frequency/intensity. To test this hypothesis, species diversity in herbaceous plant communities along a human trampling gradient was investigated by conducting a 4-year experiment in an old-field. In general, species richness (S), the Shannon–Weiner index (H) from plant cover data and species evenness (J) showed negative linear relationships with trampling frequency, in contrast to the prediction of the intermediate disturbance hypothesis. However, the significant relationships between trampling frequency and species diversity were not observed in the fourth year without J, which showed a unimodal relationship. In all experimental years, the number of new species that colonized the plots after 1year was small under frequent trampling, and the number of species lost from the plots was large under infrequent trampling. The relative number and the relative cover of perennial species increased as trampling frequency increased in the first and second years, but this pattern was not observed in the following years because the dominance of perennials further increased at decreasing frequencies of trampling. The similarity in the species composition and the yearly changes in species dominance indicated that trampling at higher frequencies eliminated more trampling-intolerant species only in the early years of the experiment. These results suggest that trampling mediated early changes in species diversity patterns, but competitive interactions were more important in the later experimental years. The time lag in the effects of trampling and competition appears to be attributable to the infrequent occurrence of unimodal patterns of species diversity.  相似文献   

5.
Successful restoration of an invaded landscape to a diverse, invasion‐resistant native plant community requires determining the optimal native species mix to add to the landscape. We manipulated native seed mix (annuals, perennials, or a combination of the two), while controlling the growth of non‐native species to test the hypothesis that altering native species composition can influence native establishment and subsequent non‐native invasion. Initial survival of native annuals and perennials was higher when seeded in separate mixes than when combined, and competition between the native perennials and annuals led to lower perennial cover in year 2 of mixed‐seeded plots. The plots with the highest perennial cover had the highest resistance to invasion by Brassica nigra. To clarify interactions among different functional groups of natives and B. nigra, we measured competitive interactions in pots. We grew one native annual, one native perennial, and B. nigra alone or with different competitors and measured biomass after 12 weeks. Brassica nigra was the strongest competitor, limiting the growth of all native species, and was not impacted by competition with native annuals or perennial seedlings. Results from the potted plant experiment demonstrated the strong negative influence of B. nigra on native seedlings. Older native perennials were the strongest competitors against invasive species in the field, yet perennial seedling survival was limited by competition with native annuals and B. nigra. Management action that maximizes perennial growth in early years may lead to a relatively more successful restoration and the establishment of an invasion‐resistant community.  相似文献   

6.
The ability of an invasive species to establish is mostly determined by its biotic interactions with native species from the recipient community. Here, we evaluate the competitive effects and responses of the invasive Eragrostis plana when interacting with native species, in order to identify possible mechanisms driving invasion in Río de la Plata grasslands. A pairwise competition experiment was performed consisting of treatments that varied in the identity of neighbour plant species: (i) control (no interaction); (ii) intraspecific interaction; (iii) interspecific interaction between native and invasive species; and (iv) interspecific interaction between two co‐occurring native species. Data analysis was separated into the effect of E. plana on the performance of three native perennial grasses (target species: Aristida laevis, Eragrostis neesii and Paspalum notatum) and the response of E. plana to natives (target species: E. plana). Separately for each target species, components of plant performance were compared between neighbouring species treatments. We found that the strength of competitive interactions depended on both target and neighbour species identity. Regarding natives, interspecific competition was stronger than intraspecific. Native species showed distinctive responses to whether the neighbour was the invasive or a co‐occurring native (Eragrostis lugens). Competition between E. plana and native species was stronger than between co‐occurring natives. We demonstrated E. plana had a greater negative effect on native's species performance than the native congener E. lugens. Regarding E. plana, intraspecific competition was stronger than interspecific, and its response was positive or neutral when interacting with natives, suggesting its high tolerance to grow in competition with neighbours. We conclude E. plana's negative effects on native species performance, and its positive or neutral responses to neighbouring native plants demonstrate its strong competitive ability in the recipient community. This may explain its invasion success in southern Brazil and in the encompassing Río de la Plata grasslands. Abstract in Spanish is available with online material.  相似文献   

7.
Fate ofDigitaria adscendens andEleusine indica seedlings under field conditions and their responses to salt spray, drought and nutrients were experimentally investigated in order to evaluate the possible mechanisms controlling the different distributions of the two species in coastal sand dune areas. Salt spray produced no apparent positive effect on the growth or survival of both species. Seeds of each species germinated well in the field, although 80% ofE. indica seedlings died during a summer drought and surviving seedlings neither grew nor bore fruit. The mortality ofD. adscendens seedlings due to the drought was less than 10% and the survivors mostly bore fruit by the end of the growth season. No major difference in the sublethal water saturation deficit was noticed between the two species. However,D. adscendens individuals extended their roots into the deep sandy soil to a much greater extent in water-stressed conditions than in well watered conditions, whereasE. indica showed no such behavior. Additional watering in a dune environment did not help the growth ofE. indica seedlings, but additional nutrients had a markedly stimulatory effect.D. adscendens maintained its growth and fruition with much smaller amounts of nutrients thanE. indica. Soil nitrogen content at a site whereE. indica andD. adscendens were distributed sympatrically was higher than that at a site where onlyD. adscendens was present. Based on these findings, it is proposed thatE. indica seedlings are unable to become established because of their lower resistance to summer drought and the poor nutrient conditions present in a coastal rear sand dune habitat. Dedicated to Prof. emeritus Toshiro Saeki for his fruitful career in plant ecology.  相似文献   

8.
The effect of zinc sulphate has been investigated in mono- and multispecies cultures of the dinoflagellatesScrippsiella faeroense, Prorocentrum micans andGymnodinium splendens and of the diatomsSchroederella schroederi andThalassiosira rotula. Multiplication rate, in vivo chlorophyll fluorescence, maximum cell densities and Zn-conditioned disturbance of the species equilibrium of the multispecies cultures were used as criteria of sublethal toxic inhibition. In monocultures, the first effect became manifest after addition of 0.01 to 0.1 mg Zn++ · l–1. Diatoms proved to be more sensitive than dinoflagellates. In multispecies cultures, the growth of each species depended on the ratio of the inocula. Interrelation between interspecific competition and Zn-caused decrease in the number of algal cells regulated further growth of the cultures. Algal sensitivity to zinc increased with the number of species combined in the test medium: in a 5-species culture sublethal changes appeared already after addition of 0.005 to 0.01 mg Zn++ · l–1. In a few cases, interspecific competition depressed the growth of some species to an appreciable extent, even in the control cultures. At the resulting low cell numbers, the effect of zinc became apparent only in higher concentrations from 5 to 10 mg Zn++ · l–1. Morphological aberrations became manifest inScrippsiella faeroense and in the diatoms in concentrations from 1 and 0.01 mg Zn++ · l–1 respectively. The results show that multispecies experiments are a more sensitive test method for investigating the influence of zinc on plankton algae than are monoculture experiments. In natural plankton communities, however, the toxicity of heavy metals may become effective at considerably lower limit concentrations; this is suggested by the simplified model investigations in the laboratory.  相似文献   

9.
Two summer annual C4 grasses with different trampling susceptibilities were grown as potted plants, and diurnal leaf gas exchange and leaf water potential in each grass were compared. The maximum net photosynthetic rate, leaf conductance and transpiration rate were higher in the trampling-tolerant Eleusine indica (L.) Gaertn. than in trampling sensitive Digitaria adscendens (H. B. K.) Henr. Leaf water potential was much lower in E. indica than in D. adscendens. There were no differences in soil-to-leaf hydraulic conductance and leaf osmotic potential at full turgor as obtained by pressure–volume analysis. However, the bulk modulus of elasticity in cell walls was higher in E. indica leaves than in D. adscendens leaves. This shows that the leaves of E. indica are less elastic. Therefore, the rigid cell walls of E. indica leaves reduced leaf water potential rapidly by decreasing the leaf water content, supporting a high transpiration rate with high leaf conductance. In trampled habitats, such lowering of leaf water potential in E. indica might play a role in water absorption from the compacted soil. In contrast, the ability of D. adscendens to colonize dry habitats such as coastal sand dunes appears to be due to its lower transpiration rate and its higher leaf water potential which is not strongly affected by decreasing leaf water content.  相似文献   

10.
基于长期定位监测数据,量化揭示了红锥纯林(Castanopsis hystrix)、10种与30种乡土树种混交林等3种乡土人工林植物群落的生物量、物种多样性、生物热力学健康水平(eco-exergy)和土壤理化性状在种植后13年内的发展动态,并与尾叶桉(Eucalyptus urophylla)纯林,以及自然恢复系统(灌草坡)进行了比较。结果表明:(1)研究期间,5种恢复模式的植物群落生物量均呈现波动上升趋势,但在发展节率上有所差异。13龄时的尾叶桉纯林与两种乡土树种混交林生物量显著高于其各自1龄时的水平,且显著高于自然恢复灌草坡;相较于其他人工林,红锥纯林生物量增长缓慢,但快于灌草坡;(2)5种恢复模式植物群落的物种多样性(物种丰富度、Shannon-Wiener指数、Pielou均匀度指数)在6至13龄间均呈下降趋势,且30种乡土树种混交林下降趋势最为显著。13龄时,两种混交林Shannon-Wiener指数略高于两种纯林,显著高于灌草坡;10种乡土树种混交林的Pielou均匀度指数略高于红锥纯林与30种乡土树种混交林,显著高于尾叶桉纯林与灌草坡。(3)4种人工林的植物群落生物热力学健康水平皆在6至13龄间显著增加;13龄时两种乡土混交林群落生态显著高于两种纯林,两种纯林显著高于灌草坡,且该差异主要源自于乔木层生态的差异。(4)不同植被恢复模式中,10种乡土树种混交林土壤养分的累积效果最佳,13龄时其土壤总氮含量显著高于红锥纯林和自然恢复灌草坡,但与30种乡土树种混交林和尾叶桉纯林无显著差异。(5)冗余分析结果显示,研究期间植被与土壤间的相关关系逐步建立,土壤理化性状对地上植被结构变化的解释度由1龄时的73.3%逐步上升至13龄时的82.0%,但只有土壤有机碳含量在13龄时与地上植被结构的相关性达到显著水平。上述结果表明,乡土种人工林与外来种人工纯林群落结构、生物热力学健康水平、及植被与土壤间关系的发展规律相似,且相对而言,混交林优于纯林,纯林优于自然恢复灌草坡。植被恢复的起始物种丰富度并不是越高越好;发展到13龄时,10种乡土树种混交林在植被结构与土壤改良方面均优于30种乡土树种混交林。植被与土壤间相关关系的建立是一个长期的过程,不同植被恢复模式对土壤理化性状的差异性影响难以在短期内有所显现。  相似文献   

11.
A long‐term rainforest restoration experiment was established on abandoned pasture in northeastern Queensland in 1993 to examine the effectiveness of five different restoration planting methods: (T1) control (no plantings); (T2) pioneer monoculture (planting seedlings of one pioneer species, Homalanthus novoguineensis, Euphorbiaceae); (T3) Homalanthus group framework method (H. novoguineensis and eight other pioneer species); (T4) Alphitonia group framework method (Alphitonia petriei, Rhamnaceae, with eight other pioneer species); and (T5) maximum diversity method (planting pioneers, middle‐phase species, and mature‐phase species). We investigated temporal patterns in the (1) fate of seedlings originally planted in 1993; (2) natural recruitment of native plant species; and (3) current habitat structure (canopy cover and ground cover of grasses and invasive plants) within each restoration treatment. A total of 97% of seedlings planted in T2 died within the first 13 years and all had died by 2014. A total of 72% of seedlings planted in T3, 55.5% of seedlings planted in T4, and 55% of seedlings planted in T5 also died by 2014. By 2014, 42 species from 21 families had recruited across the experimental site, and the abundance of recruits was almost twice that recorded in 2001 and 2006. Overall, T3, T4, and T5 had the greatest diversity and abundance of recruits. By 2014, canopy cover was greatest in T3, T4, and T5 but grass cover was least in T5. It is concluded that some restoration success measures increase with planting diversity, but overall the rate of recovery is similar in framework species and maximum diversity method.  相似文献   

12.
Plantations cover large areas in many countries, and the enhancement of plantation biodiversity is an increasingly important ecological concern. Many studies have demonstrated that overstory composition is important because it influences understory regeneration. To compare the understory vegetation and analyze its determinant factors, six typical plantations in South China were investigated: Acacia mangium plantation, Schima superba plantation, Eucalyptus citriodora plantation, E. exserta plantation, mixed‐coniferous plantation, and mixed native species plantation. The results show that native species plantations shaded out more grasses and herbs than exotic species plantations, mixed‐species plantations recruited more understory species than monoculture plantations, the leguminous species plantation had higher soil nitrogen than nonleguminous species plantations, and understory vegetation in the mixed‐coniferous plantation was similar to that of mixed, native broadleaf species plantation. Although light is the crucial environmental factor affecting the understory community and diversity among the 14 measured factors, other environmental variables such as soil nutrients and soil moisture are also important.  相似文献   

13.
The prospect of using constructed communities of microalgae in algal cultivation was confirmed in this study. Three different algal communities, constructed of diatoms (Diatom), green algae (Green), and cyanobacteria (Cyano), each mixed with a natural community of microalgae were cultivated in batch and semi‐continuous mode and fed CO2 or cement flue gas (12–15% CO2). Diatom had the highest growth rate but Green had the highest yield. Changes in the community composition occurred throughout the experiment. Green algae were the most competitive group, while filamentous cyanobacteria were outcompeted. Euglenoids, recruited from scarce species in the natural community became a large part of the biomass in semi‐steady state in all communities. High temporal and yield stability were demonstrated in all communities during semi‐steady state. Valuable products (lipids, proteins, and carbohydrates) comprised 61.5 ± 5% of ash‐free biomass and were similar for the three communities with lipids ranging 14–26% of dry mass (DM), proteins (15–28% DM) and carbohydrates (9–23% DM). Our results indicate that culture functions (stability, biomass quality) were maintained while dynamic changes occurred in community composition. We propose that a multispecies community approach can aid sustainability in microalgal cultivation, through complementary use of resources and higher culture stability.  相似文献   

14.
Summary This paper describes the effects of soil temperature and phosphorus supply on Bromus rigidum Roth. and Trifolium subterraneum L. grown either in monoculture or in mixed culture. The experiment was designed as a replacement series with plant density maintained at 0.3 plants cm–2.The results show that increasing soil temperature increases the yield of both species, and increases the competitive ability of the clover with respect to the grass. The root length of the grass increased with increasing soil temperature, but that of clover remained constant. At any given temperature clover root length was greater in mixed culture than in monoculture.The ecological implications of these results are discussed.  相似文献   

15.
Seedling emergence and early establishment of six fen species differing in seed mass and growth form were investigated under experimental land use with changed vegetation structure and under real land use in a calcareous fen. Seeds of all six species were sown in plots with different experimental land-use treatments: summer and autumn mowing with or without litter removal, trampling and abandonment. Additionally, emergence and survival of experimentally sown seeds was investigated under real land use on adjacent sites managed by mowing, grazing, intense trampling or abandonment.On abandoned plots and on plots without litter removal of the land-use experiment, emergence rates of all species were negatively affected either by high litter and moss cover or by tall canopy. No differences were found between autumn and summer mowing. Gap creation by experimental trampling did not increase germination rate. Under real land use, establishment of seedlings of most species was positively affected by litter cover and tall canopy. Trampling, in contrast, had a severe negative effect on seedling survival.The investigated species differed in their germination ability which was tested in the germination chamber and in their response to land use. Succisa pratensis with the highest seed mass germinated well in the chamber and in the field more or less regardless of land use. The low germination rate of Parnassia palustris in the germination chamber indicated a limitation of viable seeds. In the field, however, seedling emergence was additionally limited by microsite availability. Seeds of Serratula tinctoria and Primula farinosa germinated well in the germination chamber, but seedling recruitment in the field was hampered in the presence of a high litter or moss cover. Seeds of Tofieldia calyculata and Pinguicula vulgaris were strongly dependent on the availability of suitable microsites in the field. They hardly germinated under natural conditions, in spite of a high number of germinable seeds in the germination chamber.  相似文献   

16.
Establishing native forbs is crucial for invasive plant management and restoring a desirable plant community. Our objectives were to determine (1) if increasing forb seed density results in increased forb establishment; (2) if a species‐rich mixture of forbs has greater establishment and survivorship than a single species; and (3) if mixtures of forbs are more competitive with Spotted knapweed (Centaurea maculosa) than a forb monoculture. To test our first two objectives, we seeded monocultures of Purple coneflower (Echinacea angustifolia), Arrowleaf balsamroot (Balsamorhiza sagittata), Annual sunflower (Helianthus annuus), Dotted gayfeather (Liatris punctata), Western white yarrow (Achillea millefolium), Sticky geranium (Geranium viscosissimum), as well as a mixture of all forbs. Pots were seeded at 800 or 2,000 seeds/m2 and watered twice or thrice weekly. The highest seed density produced the highest plant density, which averaged 4.35 plants/pot. The density of the mixture was similar to the mean density seen for individual species, and it doubled in response to the highest seed density. To test our third objective, Spotted knapweed and Purple coneflower were arranged in an addition series matrix with a maximum total density of 4,000 seeds/pot. We found that the forb mixture was seven times more competitive with Spotted knapweed than Purple coneflower alone. Using a mixture of forbs rather than a single species enhances forb establishment in various and unpredictable environments because the mixture possesses a variety of traits that may match year–year and site–site conditions. Once established, the mixture may have a greater chance of persisting than a monoculture.  相似文献   

17.
In this study, we investigated the potential of multispecies rhizoremediation and monoculture rhizoremediation in decontaminating polycyclic aromatic hydrocarbon (PAH) contaminated soil Plant-mediated PAH dissipation was evaluated using monoplanted soil microcosms and soil microcosms vegetated with several different grass species (Brachiaria serrata and Eleusine corocana). The dissipation of naphthalene and fluorene was higher in the "multispecies" vegetated soil compared to the monoplanted and nonplanted control soil. The concentration of naphthalene was undetectable in the multispecies vegetated treatment compared to 96% removal efficiencies in the monoplanted treatments and 63% in the nonplanted control after 10 wk of incubation. Similar removal efficiencies were obtained for fluorene. However, there was no significant difference in the dissipation of pyrene in both the mono- and multispecies vegetated treatments. There also was no significant difference between the dissipation of PAHs in the monoplanted treatments with different grass species. Principle component analysis (PCA) and cluster analysis were used to evaluate functional diversity of the different treatments during phytoremediation of PAHs. Both PCA and cluster analysis revealed differences in the metabolic fingerprints of the PAH contaminated and noncontaminated soils. However, the differences in metabolic diversity between the multispecies vegetated and monoplanted treatments were not clearly revealed. The results suggest that multispecies rhizoremediation using tolerant plant species rather than monoculture rhizoremediation have the potential to enhance pollutant removal in moderately contaminated soils.  相似文献   

18.
The predominantly African grass genus Eleusine comprises nine species, including diploids and tetraploids based on n = 8, 9, and 10. Among the polyploids are the important crop finger millet, Eleusine coracana subsp. coracana, and its putative wild ancestor, E. coracana subsp. africana. Eleusine coracana is believed to be an allotetraploid derived by hybridization between E. indica and an unknown diploid. To evaluate this hypothesis, 16 isozyme loci coding nine enzymes were compared among seven of the nine Eleusine species (E. intermedia and E. semisterilis were unavailable). Genetic variability differed substantially among diploid species, ranging from P = 0.563, A = 1.6, H = 0.208 in E. indica to P = 0.188, A = 1.2, H = 0.042 in E. jaegeri. The diploids tended to be genetically distinct, with values of Rogers' Similarity ranging from S = 0.294 (E. jaegeri/floccifolia) to S = 0.794 (E. indica/tristachya). Both subspecies of the tetraploid E. coracana exhibited fixed heterozygosity at several loci, verifying their hypothesized allotetraploid status. Both tetraploids also possessed E. indica marker alleles at all loci, corroborating ancestry by this taxon. Genotypes of the non-indica ancestor, inferred separately for each tetraploid, differed substantially from all candidate diploids and also from each other. These data indicate that 1) none of the candidate diploids investigated is likely to have been the non-indica ancestor of E. coracana, and 2) the non-indica ancestor of the wild tetraploid may differ from that of the crop. The latter conclusion is inconsistent with the complete chromosomal homology exhibited between the two tetraploid subspecies, indicating the need for additional evidence bearing on their relationships.  相似文献   

19.
Leaf area index (LAI) was developed to describe the number of layers of foliage in a monoculture. Subsequent expansion into measurement by remote‐sensing methods has resulted in misrepresentation of LAI. The new name foliage layer index (FLI) is applied to a more simply estimated version of Goodall's “cover repetition,” that is, the number of layers of foliage a single species has, either within a community or in monoculture. The relationship of FLI with cover is demonstrated in model communities, and some potential relationships between FLI and species’ habit are suggested. FLIcomm is a new formulation for the number of layers of foliage in a mixed‐species’ community. LAI should now be reserved for remote‐sensing applications in mixed communities, where it is probably a nonlinear measure of the density of light‐absorbing pigments.  相似文献   

20.
【目的】明确阔叶丰花草在荔枝园定植对杂草群落特征及物种多样性的影响,为阔叶丰花草在果园应用提供参考依据。【方法】通过调查广东茂名高州荔枝国家现代农业产业园的荔枝园中90个有、无阔叶丰花草样方中杂草群落组成、群落高度以及物种多样性,探究阔叶丰花草定植对荔枝园杂草群落结构及物种多样性的影响。【结果】阔叶丰花草在荔枝园定植后,杂草种类减少,由对照样方的42种减少到试验样方的30种;杂草群落结构显著改变,牛筋草、白花鬼针草等恶性杂草重要值降低,薇甘菊、香附子、火炭母等杂草消失;阔叶丰花草的重要值与杂草群落高度和物种多样性指数为显著性负相关(P0.001),且均呈显著三项式回归关系。阔叶花草在荔枝园定植后可建立结构较为单一,且低矮的杂草群落。【结论】阔叶丰花草有望成为荔枝园生草的有益草种。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号