首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Creating porcine biomedical models through recombineering   总被引:1,自引:0,他引:1  
Recent advances in genomics provide genetic information from humans and other mammals (mouse, rat, dog and primates) traditionally used as models as well as new candidates (pigs and cattle). In addition, linked enabling technologies, such as transgenesis and animal cloning, provide innovative ways to design and perform experiments to dissect complex biological systems. Exploitation of genomic information overcomes the traditional need to choose naturally occurring models. Thus, investigators can utilize emerging genomic knowledge and tools to create relevant animal models. This approach is referred to as reverse genetics. In contrast to 'forward genetics', in which gene(s) responsible for a particular phenotype are identified by positional cloning (phenotype to genotype), the 'reverse genetics' approach determines the function of a gene and predicts the phenotype of a cell, tissue, or organism (genotype to phenotype). The convergence of classical and reverse genetics, along with genomics, provides a working definition of a 'genetic model' organism (3). The recent construction of phenotypic maps defining quantitative trait loci (QTL) in various domesticated species provides insights into how allelic variations contribute to phenotypic diversity. Targeted chromosomal regions are characterized by the construction of bacterial artificial chromosome (BAC) contigs to isolate and characterize genes contributing towards phenotypic variation. Recombineering provides a powerful methodology to harvest genetic information responsible for phenotype. Linking recombineering with gene-targeted homologous recombination, coupled with nuclear transfer (NT) technology can provide 'clones' of genetically modified animals.  相似文献   

2.
Most cloned plant disease resistance genes (R-genes) code for proteins belonging to the nucleotide binding site (NBS) leucine-rich repeat (LRR) superfamily. NBS-LRRs can be divided into two classes based on the presence of a TIR domain (Toll and interleukin receptor-like sequence) or a coiled coil motif (nonTIR) in their N-terminus. We used conserved motifs specific to nonTIR-NBS-LRR sequences in a targeted PCR approach to generate nearly 50 genomic soybean sequences with strong homology to known resistance gene analogs (RGAs) of the nonTIR class. Phylogenetic analysis classified these sequences into four main subclasses. A representative clone from each subclass was used for genetic mapping, bacterial artificial chromosome (BAC) library screening, and construction of RGA-containing BAC contigs. Of the 14 RGAs that could be mapped genetically, 12 localized to a 25-cM region of soybean linkage group F already known to contain several classical disease resistance loci. A majority of the genomic region encompassing the RGAs was physically isolated in eight BAC contigs, together spanning more than 1 Mb of genomic sequence with at least 12 RGA copies. Phylogenetic and sequence analysis, together with genetic and physical mapping, provided insights into the genome organization and evolution of this large cluster of soybean RGAs. Received: 8 May 2001 / Accepted: 30 June 2001  相似文献   

3.
Bacterial artificial chromosomes (BACs) have many advantages over other large-insert cloning vectors and have been used for a variety of genetic applications, including the final contigs of the human genome. We describe the utilization of a BAC construct to study gene regulation in a tissue culture-based system, using a 170-kb clone containing the entire Wilson disease (WND) locus as a model. A second BAC construct that lacked a putative negatively regulating promoter sequence was created. A nonviral method of gene delivery was applied to transfect three human cell lines stably with each construct. Our results show correct WND gene expression from the recombinant locus and quantification revealed significantly increased expression from the clone lacking the negative regulator. Comparison with conventional methods confirms the reliability of the genomic approach for thorough examination of gene expression. This experimental system illustrates the potential of BAC clones in genomic gene expression studies, new gene therapy strategies, and validation of potential molecular targets for drug discovery.  相似文献   

4.
The resistance gene analogue (RGA) pic19 in maize, a candidate for sugarcane mosaic virus (SCMV) resistance gene (R gene) Scmv1, was used to screen a maize BAC library to identify homologous sequences in the maize genome and to investigate their genomic organisation. Fifteen positive BAC clones were identified and could be classified into five physically independent contigs consisting of overlapping clones. Genetic mapping clustered three contigs into the same genomic region as Scmv1 on chromosome 6S. The two remaining contigs mapped to the same region as a QTL for SCMV resistance on chromosome 1. Thus, RGAs mapping to a target region can be successfully used to identify further-linked candidate sequences. The pic19 homologous sequences of these clones revealed a sequence similarity of 94-98% on the nucleotide level. The high sequence similarity reveals potential problems for the use of RGAs as molecular markers. Their application in marker-assisted selection (MAS) and the construction of high-density genetic maps is complicated by the existence of closely linked homologues resulting in 'ghost' marker loci analogous to 'ghost' QTLs. Therefore, implementation of genomic library screening, including genetic mapping of potential homologues, seems necessary for the safe application of RGA markers in MAS and gene isolation.  相似文献   

5.
Bacterial artificial chromosome (BAC) has the capacity to clone DNA fragments in excess of 300 kb. It also has the considerable advantages of stable propagation and ease of purification. These features make BAC suitable in genetic research, such as library construction, transgenic mice production, and gene targeting constructs. Homologous recombination in Escherichia coli, a process named recombineering, has made the modification of BACs easy and reliable. We report here a modified recombineering method that can efficiently mediate the fusion of large DNA fragments from two or more different BACs. With the introduction of kanamycin-resistant gene and proposed rare-cutting restriction endonuclease (RCRE) sites into two BACs, a 82.6-kb DNA frament containing the inverted human α-globin genes (ϑ, α1, α2, and ζ) from BAC191K2 and the locus control region (LCR) of human β-globin gene locus (from the BAC186D7) was reconstructed. This approach for combining different BAC DNA fragments should facilitate many kinds of genomic experiments. These two authors contributed equally to this work.  相似文献   

6.
A high utility integrated map of the pig genome   总被引:2,自引:1,他引:1  

Background

The domestic pig is being increasingly exploited as a system for modeling human disease. It also has substantial economic importance for meat-based protein production. Physical clone maps have underpinned large-scale genomic sequencing and enabled focused cloning efforts for many genomes. Comparative genetic maps indicate that there is more structural similarity between pig and human than, for example, mouse and human, and we have used this close relationship between human and pig as a way of facilitating map construction.

Results

Here we report the construction of the most highly continuous bacterial artificial chromosome (BAC) map of any mammalian genome, for the pig (Sus scrofa domestica) genome. The map provides a template for the generation and assembly of high-quality anchored sequence across the genome. The physical map integrates previous landmark maps with restriction fingerprints and BAC end sequences from over 260,000 BACs derived from 4 BAC libraries and takes advantage of alignments to the human genome to improve the continuity and local ordering of the clone contigs. We estimate that over 98% of the euchromatin of the 18 pig autosomes and the X chromosome along with localized coverage on Y is represented in 172 contigs, with chromosome 13 (218 Mb) represented by a single contig. The map is accessible through pre-Ensembl, where links to marker and sequence data can be found.

Conclusion

The map will enable immediate electronic positional cloning of genes, benefiting the pig research community and further facilitating use of the pig as an alternative animal model for human disease. The clone map and BAC end sequence data can also help to support the assembly of maps and genome sequences of other artiodactyls.  相似文献   

7.
Sequencing of the rice genome has provided a platform for functional genomics research of rice and other cereal species. However, multiple approaches are needed to determine the functions of its genes and sequences and to use the genome sequencing results for genetic improvement of cereal crops. Here, we report a plant-transformation-competent, binary bacterial artificial chromosome (BIBAC) and bacterial artificial chromosome (BAC) based map of rice to facilitate these studies. The map was constructed from 20 835 BIBAC and BAC clones, and consisted of 579 overlapping BIBAC/BAC contigs. To facilitate functional analysis of chromosome 8 genomic sequence and cloning of the genes and QTLs mapped to the chromosome, we anchored the chromosomal contigs to the existing rice genetic maps. The chromosomal map consists of 11 contigs, 59 genetic markers, and 36 sequence tagged sites, spanning a total of ca. 38 Mb in physical length. Comparative analysis between the genetic and physical maps of chromosome 8 showed that there are 3 "hot" and 2 "cold" spots of genetic recombination along the chromosomal arms in addition to the "cold spot" in the centromeric region, suggesting that the sequence component contents of a chromosome may affect its local genetic recombination frequencies. Because of its plant transformability, the BIBAC/BAC map could provide a platform for functional analysis of the rice genome sequence and effective use of the sequencing results for gene and QTL cloning and molecular breeding.  相似文献   

8.
A map-based cloning strategy has been employed to isolate Ctv, a single dominant gene from Poncirus trifoliata that confers resistance to citrus tristeza virus (CTV), the most important viral pathogen of citrus. Cloning of this gene will allow development of commercially acceptable, virus-resistant cultivars. A high-resolution genetic linkage map of the Ctv locus region was developed using a backcross population of 678 individuals. Three DNA markers that were closely linked or co-segregated with Ctv were identified and used to screen BAC libraries derived from an intergeneric hybrid of Poncirus and Citrus. Through chromosome walking and landing, two BAC contigs were developed: one encompassing the Ctv region, and the other spanning the allelic susceptibility gene region. The resistance gene contig consists of 20 BAC clones and is approximately 550 kb in length; the susceptibility gene contig consists of 16 BAC clones and extends about 450 kb. The Ctv locus was localized within a genomic region of approximately 180 kb by genetic mapping of BAC insert ends. The BAC contigs were integrated with the genetic map; variation in the ratio of genetic to physical distance was observed in the vicinity of Ctv. Southern hybridization data indicated that a few copies of NBS-LRR class sequences are distributed at or around the Ctv locus. Efforts are being made to assign the Ctv locus to a smaller genomic fragment whose function can be confirmed through genetic complementation of a CTV susceptible phenotype. These results indicate that map-based gene cloning is feasible in a woody perennial.  相似文献   

9.
Comparative mapping in farm animals.   总被引:2,自引:0,他引:2  
This paper summarises the current status of comparative mapping in farm animals. For most of the major farm animal species, a wide range of genomic tools are now available to create high-resolution genetic and physical maps of the genome. For many farm animals, the use of radiation hybrid panels and sequence data from expressed sequence tag (EST) projects has accelerated the development of high-resolution comparative maps, with human--the model species for farm animals. These tools and comparative maps are being used to map and identify the genes at the loci for simple and complex traits. The development of detailed physical maps in farm animals based on radiation hybrid panels and bacterial artificial chromosome (BAC) contigs provides a direct link between the 'information-poor' maps of farm animals and the 'information-rich' genomes of human and other model organisms.  相似文献   

10.
As we identify more and more genetic changes, either through mutation studies or population screens, we need powerful tools to study their potential molecular effects. With these tools, we can begin to understand the contributions of genetic variations to the wide range of human phenotypes. We used our catalogue of molecular changes in patients with carbamyl phosphate synthetase I (CPSI) deficiency to develop such a system for use in eukaryotic cells. We developed the tools and methods for rapidly modifying bacterial artificial chromosomes (BACs) for eukaryotic episomal replication, marker expression, and selection and then applied this protocol to a BAC containing the entire CPSI gene. Although this CPSI BAC construct was suitable for studying nonsynonymous mutations, potential splicing defects, and promoter variations, our focus was on studying potential splicing and RNA-processing defects to validate this system. In this article, we describe the construction of this system and subsequently examine the mechanism of four putative splicing mutations in patients deficient in CPSI. Using this model, we also demonstrate the reversible role of nonsense-mediated decay in all four mutations, using small interfering RNA knockdown of hUPF2. Furthermore, we were able to locate cryptic splicing sites for the two intronic mutations. This BAC-based system permits expression studies in the absence of patient RNA or tissues with relevant gene expression and provides experimental flexibility not available in genomic DNA or plasmid constructs. Our splicing and RNA degradation data demonstrate the advantages of using whole-gene constructs to study the effects of sequence variation on gene expression and function.  相似文献   

11.
A BAC-based physical map of the channel catfish genome   总被引:3,自引:0,他引:3  
Xu P  Wang S  Liu L  Thorsen J  Kucuktas H  Liu Z 《Genomics》2007,90(3):380-388
Catfish is the major aquaculture species in the United States. To enhance its genome studies involving genetic linkage and comparative mapping, a bacterial artificial chromosome (BAC) contig-based physical map of the channel catfish (Ictalurus punctatus) genome was generated using four-color fluorescence-based fingerprints. Fingerprints of 34,580 BAC clones (5.6x genome coverage) were generated for the FPC assembly of the BAC contigs. A total of 3307 contigs were assembled using a cutoff value of 1x10(-20). Each contig contains an average of 9.25 clones with an average size of 292 kb. The combined contig size for all contigs was 0.965 Gb, approximately the genome size of the channel catfish. The reliability of the contig assembly was assessed by both hybridization of gene probes to BAC clones contained in the fingerprinted assembly and validation of randomly selected contigs using overgo probes designed from BAC end sequences. The presented physical map should greatly enhance genome research in the catfish, particularly aiding in the identification of genomic regions containing genes underlying important performance traits.  相似文献   

12.
Xenopus tropicalis has become an alternative model to the amphibian Xenopus laevis because it is better suited for genetic and genomic studies. We have constructed a genomic BAC library consisting of over 100,000 clones from sperm of Xenopus tropicalis. Analysis by pulsed field gel electrophoresis of representative BAC clones indicated the average size of insert DNA to be 100 kb, and we estimated the library covers 6 times the Xenopus tropicalis genome of 1.7 x 10(9) base pairs. To evaluate the BAC library, we attempted to isolate BAC clones which contain a protocadherin gamma (Pcdh gamma) gene and found that the isolated BAC clones are assembled as two separate contigs. This result suggests the presence of at least two clusters for the Pcdh gamma gene in the genome of X. tropicalis.  相似文献   

13.
We have constructed a soybean bacterial artificial chromosome (BAC) library using the plant introduction (PI) 437654. The library contains 73728 clones stored in 192384-well microtiter plates. A random sampling of 230 BACs indicated an average insert size of 136 kb with a range of 20 to 325 kb, and less than 4% of the clones do not contain inserts. Ninety percent of BAC clones in the library have an average insert size greater than 100 kb. Based on a genome size of 1115 Mb, library coverage is 9 haploid genome equivalents. Screening the BAC library colony filters with cpDNA sequences showed that contamination of the genomic library with chloroplast clones was low (1.85%). Library screening with three genomic RFLP probes linked to soybean cyst nematode (SCN) resistance genes resulted in an average of 18 hits per probe (range 7 to 30). Two separate pools of forward and reverse suppression subtractive cDNAs obtained from SCN-infected and uninfected roots of PI 437654 were hybridized to the BAC library filters. The 488 BACs identified from positive signals were fingerprinted and analyzed using FPC software (version 4.0) resulting in 85 different contigs. Contigs were grouped and analyzed in three categories: (1) contigs of BAC clones which hybridized to forward subtracted cDNAs, (2) contigs of BAC clones which hybridized to reverse subtracted cDNAs, and (3) contigs of BAC clones which hybridized to both forward and reverse subtracted cDNAs. This protocol provides an estimate of the number of genomic regions involved in early resistance response to a pathogenic attack.  相似文献   

14.
Three Chinese chestnut bacterial artificial chromosome (BAC) libraries were developed and used for physical map construction. Specifically, high information content fingerprinting was used to assemble 126,445 BAC clones into 1,377 contigs and 12,919 singletons. Integration of the dense Chinese chestnut genetic map with the physical map was achieved via high-throughput hybridization using overgo probes derived from sequence-based genetic markers. A total of 1,026 probes were anchored to the physical map including 831 probes corresponding to 878 expressed sequence tag-based markers. Within the physical map, three BAC contigs were anchored to the three major fungal blight-resistant quantitative trait loci on chestnut linkage groups B, F, and G. A subset of probes corresponding to orthologous genes in poplar showed only a limited amount of conserved gene order between the poplar and chestnut genomes. The integrated genetic and physical map of Chinese chestnut is available at www.fagaceae.org/physical_maps.  相似文献   

15.
A genome-wide BAC physical map of the apple, Malus × domestica Borkh., has been recently developed. Here, we report on integrating the physical and genetic maps of the apple using a SNP-based approach in conjunction with bin mapping. Briefly, BAC clones located at ends of BAC contigs were selected, and sequenced at both ends. The BAC end sequences (BESs) were used to identify candidate SNPs. Subsequently, these candidate SNPs were genetically mapped using a bin mapping strategy for the purpose of mapping the physical onto the genetic map. Using this approach, 52 (23%) out of 228 BESs tested were successfully exploited to develop SNPs. These SNPs anchored 51 contigs, spanning ~ 37 Mb in cumulative physical length, onto 14 linkage groups. The reliability of the integration of the physical and genetic maps using this SNP-based strategy is described, and the results confirm the feasibility of this approach to construct an integrated physical and genetic maps for apple.  相似文献   

16.
17.
FISH physical mapping with barley BAC clones   总被引:7,自引:0,他引:7  
Fluorescence in situ hybridization (FISH) is a useful technique for physical mapping of genes, markers, and other single- or low-copy sequences. Since clones containing less than 10 kb of single-copy DNA do not reliably produce detectable signals with current FISH techniques in plants, a bacterial artificial chromosome (BAC) partial library of barley was constructed and a FISH protocol for detecting unique sequences in barley BAC clones was developed. The library has a 95 kb average barley insert, representing about 20% of a barley genome. Two BAC clones containing hordein gene sequences were identified and partially characterized. FISH using these two BAC clones as probes showed specific hybridization signals near the end of the short arm of one pair of chromosomes. Restriction digests of these two BAC clones were compared with restriction patterns of genomic DNA; all fragments contained in the BAC clones corresponded to bands present in the genomic DNA, and the two BAC clones were not identical. The barley inserts contained in these two BAC clones were faithful copies of the genomic DNA. FISH with four BAC clones with inserts varying from 20 to 150 kb, showed distinct signals on paired chromatids. Physical mapping of single- or low-copy sequences in BAC clones by FISH will help to correlate the genetic and physical maps. FISH with BAC clones also provide an additional approach for saturating regions of interest with markers and for constructing contigs spanning those regions.  相似文献   

18.
《BMC genomics》2015,16(1)

Background

A complete genome sequence is an essential tool for the genetic improvement of wheat. Because the wheat genome is large, highly repetitive and complex due to its allohexaploid nature, the International Wheat Genome Sequencing Consortium (IWGSC) chose a strategy that involves constructing bacterial artificial chromosome (BAC)-based physical maps of individual chromosomes and performing BAC-by-BAC sequencing. Here, we report the construction of a physical map of chromosome 6B with the goal of revealing the structural features of the third largest chromosome in wheat.

Results

We assembled 689 informative BAC contigs (hereafter reffered to as contigs) representing 91 % of the entire physical length of wheat chromosome 6B. The contigs were integrated into a radiation hybrid (RH) map of chromosome 6B, with one linkage group consisting of 448 loci with 653 markers. The order and direction of 480 contigs, corresponding to 87 % of the total length of 6B, were determined. We also characterized the contigs that contained a part of the nucleolus organizer region or centromere based on their positions on the RH map and the assembled BAC clone sequences. Analysis of the virtual gene order along 6B using the information collected for the integrated map revealed the presence of several chromosomal rearrangements, indicating evolutionary events that occurred on chromosome 6B.

Conclusions

We constructed a reliable physical map of chromosome 6B, enabling us to analyze its genomic structure and evolutionary progression. More importantly, the physical map should provide a high-quality and map-based reference sequence that will serve as a resource for wheat chromosome 6B.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1803-y) contains supplementary material, which is available to authorized users.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号