首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the risk of local extinction of a species is vital in conservation biology, especially now when anthropogenic disturbances and global warming are severely changing natural habitats. Local extinction risk depends on species traits, such as its geographical range size, fresh body mass, dispersal ability, length of flying period, life history variation, and how specialized it is regarding its breeding habitat. We used a phylogenetic approach because closely related species are not independent observations in the statistical tests. Our field data contained the local extinction risk of 31 odonate (dragonflies and damselflies) species from Central Finland. Species relatedness (i.e., phylogenetic signal) did not affect local extinction risk, length of flying period, nor the geographical range size of a species. However, we found that closely related species were similar in hind wing length, length of larval period, and habitat of larvae. Both phylogenetically corrected (PGLS) and uncorrected (GLM) analysis indicated that the geographical range size of species was negatively related to local extinction risk. Contrary to expectations, habitat specialist species did not have higher local extinction rates than habitat generalist species nor was it affected by the relatedness of species. As predicted, species’ long larval period increased, and long wings decreased the local extinction risk when evolutionary relatedness was controlled. Our results suggest that a relatively narrow geographical range size is an accurate estimate for a local extinction risk of an odonate species, but the species with long life history and large habitat niche width of adults increased local extinction risk. Because the results were so similar between PGLS and GLM methods, it seems that using a phylogenetic approach does not improve predicting local extinctions.  相似文献   

2.
Species traits explain recent range shifts of Finnish butterflies   总被引:1,自引:0,他引:1  
This study provides a novel systematic comparative analysis of the species characteristics affecting the range margin shifts in butterflies towards higher latitudes, while taking phylogenetic relatedness among species into account. We related observed changes in the northern range margins of 48 butterfly species in Finland between two time periods (1992–1996 and 2000–2004) to 11 species traits. Species with positive records in at least ten 10 km × 10 km grid squares (in the Finnish National Butterfly Recording Scheme, NAFI) in both periods were included in the study. When corrected for range size change, the 48 butterfly species had shifted their range margins northwards on average by 59.9 km between the study periods, with maximum shifts of over 300 km for three species. This rate of range shifts exceeds all previously reported records worldwide. Our findings may be explained by two factors: the study region is situated in higher latitudes than in most previous studies and it focuses on the period of most prominent warming during the last 10–15 years. Several species traits exhibited a significant univariate relationship with the range margin shift according to generalized estimation equations (GEE) taking into account the phylogenetic relatedness among species. Nonthreatened butterflies had on average expanded their ranges strongly northwards (84.5 km), whereas the distributions of threatened species were stationary (−2.1 km). Hierarchical partitioning (HP) analysis indicated that mobile butterflies living in forest edges and using woody plants as their larval hosts exhibited largest range shifts towards the north. Thus, habitat availability and dispersal capacity of butterfly species are likely to determine whether they will be successful in shifting their ranges in response to the warming climate.  相似文献   

3.
Two of the most prominent explanations for a positive interspecific relationship between local abundance and regional distribution are the resource breadth and the resource availability hypotheses. Here we test these hypotheses by characterising habitat use of British breeding birds using extensive census and environmental data. A group of 85 bird species was considered for study along with 34 land use or environmental variables, which were used to generate four ordination axes by Canonical Correspondence Analysis. Measures of niche breadth and position were derived from these synthetic environmental axes using standard procedures. Across species, none of five measures of abundance and distribution chosen were correlated with niche breadth, whereas four out of five of these measures were correlated negatively with niche position. Repeating the analyses using a method designed to control for phylogenetic non-independence confirmed these general patterns. Birds that tended to use resources that were more atypical of the environment tended to be rarer and thinly distributed, while those using typical resources were common and widely distributed. Performing the analyses on subsets of the data based on species sample sizes did not alter the conclusions. On the assumption that our analyses properly capture patterns of niche use by birds, we find little support for the resource breadth hypothesis, but considerable support for the resource availability hypothesis.  相似文献   

4.
Abstract. 1. To determine whether rarity and decline is linked to organism ecology, associations have been examined between butterfly larval host‐plant competitive, stress‐tolerant, ruderal (C‐S‐R) strategies and butterfly biology. 2. Associations have been sought between mean C‐S‐R scores for larval host plants with butterfly life history, morphology and physiology variables, resource use, population attributes, geography, and conservation status. Comparisons are carried out across species and controlled for phylogenetic patterning. 3. Butterfly biology is linked to host‐plant strategies. An increasing tendency of a butterfly's host plants to a particular strategy biases that butterfly species to functionally linked life‐history attributes and resource breadth and type. In turn, population attributes and geography are significantly and substantially affected by host choice and the strategies of these host plants. 4. The greatest contrast is between butterfly species whose host plants are labelled C and R strategists and those whose host plants are labelled S strategists. Increasingly high host‐plant C and R strategy scores bias butterflies to rapid development, short early stages, multivoltinism, long flight periods, early seasonal emergence, higher mobility, polyphagy, wide resource availability and biotope occupancy, open, areally expansive, patchy population structures, denser distributions, wider geographical ranges, resistance to range retractions as well as to increasing rarity in the face of environmental changes. Increasing host‐plant S strategy scores have reversed tendencies, biasing those butterfly species to extended development times, fewer broods, short flight periods, smaller wing expanse and lower mobility, monophagy, restricted resource exploitation and biotope occupancy, closed, areally limited populations with typical metapopulation structures, sparse distributions, and limited geographical ranges, range retractions, and increased rarity. 5. Species with S strategy host plants are species vulnerable to current environmental changes and species of conservation concern.  相似文献   

5.
Aim To analyse the effects of nine species trait variables on the accuracy of bioclimatic envelope models built for 98 butterfly species. Location Finland, northern Europe. Methods Data from a national butterfly atlas monitoring scheme (NAFI) collected from 1991–2003 with a resolution of 10 × 10 km were used in the analyses. Generalized additive models (GAMs) were constructed for 98 butterfly species to predict their occurrence as a function of climatic variables. Modelling accuracy was measured as the cross‐validation area under the curve (AUC) of the receiver–operating characteristic plot. Observed variation in modelling accuracy was related to species traits using multiple GAMs. The effects of phylogenetic relatedness among butterflies were accounted for by using generalized estimation equations. Results The values of the cross‐validation AUC for the 98 species varied between 0.56 and 1.00 with a mean of 0.79. Five species trait variables were included in the GAM that explained 71.4% of the observed variation in modelling accuracy. Four variables remained significant after accounting for phylogenetic relatedness. Species with high mobility and a long flight period were modelled less accurately than species with low mobility and a short flight period. Large species (>50 mm in wing span) were modelled more accurately than small ones. Species inhabiting mires had especially poor models, whereas the models for species inhabiting rocky outcrops, field verges and open fells were more accurate compared with other habitats. Main conclusions These results draw attention to the importance of species traits variables for species–climate impact models. Most importantly, species traits may have a strong impact on the performance of bioclimatic envelope models, and certain trait groups can be inherently difficult to model reliably. These uncertainties should be taken into account by downweighting or excluding species with such traits in studies applying bioclimatic modelling and making assessments of the impacts of climate change.  相似文献   

6.
1. The distribution patterns of unicellular and multicellular organisms have recently been shown to differ profoundly, with the former probably being mostly cosmopolitan, whereas the latter are mostly restricted to certain regions. However, the within‐region distribution patterns of these two organism groups may be rather similar. 2. We predicted that the degree of regional occupancy in unicellular eukaryotes would be related to niche characteristics, dispersal ability and size, as has been found previously for multicellular organisms. The niche characteristics we considered were niche position, that measures marginality in species habitat distribution, and niche breadth, that measures amplitude in species habitat distribution. Niche characteristics were determined using Outlying Mean Index (OMI) analysis. 3. We found that the regional occupancy in our model group of unicellular eukaryotes, stream diatoms, was primarily a reflection of the niche position of a species or, more generally, habitat availability. Thus, non‐marginal species (i.e. species that occupied common habitat conditions across the region) tended to be more widely distributed than marginal species (i.e. species that were restricted to a limited range of rare habitat conditions). This finding was further supported by the general linear model, with niche position, niche breadth, maximum size and attachment mode as explanatory variables: niche position was by far the most important variable accounting for variability in regional occupancy, with significant amounts of additional variation related to niche breadth and maximum size of diatoms. 4. Thus, the degree of regional occupancy among unicellular eukaryotes may be primarily governed by habitat availability, supporting former findings for multicellular organisms.  相似文献   

7.
The butterfly fauna on the Korean peninsula are comprised of both the Palearctic and Oriental species. We hypothesized that the Oriental species (immigrated across the sea) tend to have a wider niche breadth compared with the Palearctic species (immigrated from the continent) since the former migrates long distances across the sea and has to adapt to new environments. We tested this hypothesis using Korean butterfly data on distribution, habitat, food and life history traits. The distribution and ecological traits such as habitat breadth, overwintering stage, and voltinism of the Oriental species were found to be significantly different from the Palearctic species. However, the diet breadth and food plant type were not different. These results partly confirm the peninsula niche breadth hypothesis, which predicted that Oriental species have a broader niche breadth than Palearctic species.  相似文献   

8.
Population genetic patterns of species at their range margin have important implications for species conservation. We performed allozyme electrophoresis of 19 loci to investigate patterns of the genetic structure of 17 populations (538 individuals) of the butterfly Polyommatus coridon, a monophagous habitat specialist with a patchy distribution. The butterfly and its larval food plant Hippocrepis comosa reach their northern distribution margin in the study region (southern Lower Saxony, Germany). Butterfly population size increased with host plant population size. The genetic differentiation between populations was low but significant (FST = 0.013). No isolation-by-distance was found. Hierarchical F-statistics revealed significant differentiation between a western and an eastern subregion, separated by a river valley. The combination of genetic and ecological data sets revealed that the expected heterozygosity (mean: 18.5%) decreased with increasing distance to the nearest P. coridon population. The population size of P. coridon and the size of larval food plant population had no effect on the genetic diversity. The genetic diversity of edge populations of P. coridon was reduced compared to populations from the centre of its distribution. This might be explained by (i). an increasing habitat fragmentation towards the edge of the distribution range and/or (ii). a general reduction of genetic variability towards the northern edge of its distribution.  相似文献   

9.
Four of the eight hypotheses proposed in the literature for explaining the relationship between abundance and range size (the sampling artifact, phylogenetic non-independence, range position and resource breadth hypotheses) were tested by using atlas data for carabid beetles (Coleoptera, Carabidae) from Belgium, Denmark and the Netherlands. A positive relationship between abundance and partial range size was found in all three countries, and the variation in abundance was lower for widespread species. Analysis of the data did not support three of the proposed hypotheses, but did support the resource breadth hypothesis (species having broader environmental tolerances and being able to use a wider range or resources will have higher local densities and be more widely distributed than more specialised species). Examination of species' characteristics revealed that widespread species are generally large bodied, generalists (species with wide niche breadths occurring in a variety of habitat types) and are little influenced by human-altered landscapes, while species with restricted distributions are smaller bodied, specialists (species with small niche breadths occurring in only one or two habitat types), and favour natural habitat. Landscape alteration may be an important factor influencing carabid abundance and range size in these three countries with a long history of human-induced environmental changes.  相似文献   

10.
Population fluctuations and synchrony influence population persistence; species with larger fluctuations and more synchronised population fluctuations face higher extinction risks. Here, we analyse the effect of diet specialisation, mobility, length of the flight period, and distance to the northern edge of the species’ distribution in relation to between-year population fluctuations and synchrony of butterfly species. All butterfly species associated with grasslands were surveyed over five successive years at 19 grassland sites in a forest-dominated landscape (50 km2) in southern Sweden. At both the local and regional level, we found larger population fluctuations in species with longer flight periods. Population fluctuations were more synchronous among localities in diet specialists. Species with a long flight period might move more to track nectar resources compared to species with shorter flight period, and if nectar sources vary widely between years and localities it may explain that population fluctuations increase with increasing flight length. Diet generalists can use different resources (in this case host plants) at different localities and this can explain the lower synchrony in population fluctuations among generalist species. Higher degree of synchrony is one possible explanation for the higher extinction risks that have been observed for more specialised species. Therefore, diet specialists are more often threatened and require more conservation efforts than generalists.  相似文献   

11.

Aim

The breadth of ecological niches and dispersal abilities have long been discussed as important determinants of species' range sizes. However, studies directly comparing the relative effects of both factors are rare, taxonomically biased and revealed inconsistent results.

Location

Europe.

Time Period

Cenozoic.

Major Taxa

Butterflies, Lepidoptera.

Methods

We relate climate, diet and habitat niche breadth and two indicators of dispersal ability, wingspan and a dispersal tendency index, to the global range size of 369 European-centred butterfly species. The relative effects of these five predictors and their variation across the butterfly phylogeny were assessed by means of phylogenetic generalized least squares models and phylogenetically weighted regressions respectively.

Results

Climate niche breadth was the most important single predictor, followed by habitat and diet niche breadth, while dispersal tendency and wingspan showed no relation to species' range size. All predictors together explained 59% of the variation in butterfly range size. However, the effects of each predictor varied considerably across families and genera.

Main Conclusions

Range sizes of European-centred butterflies are strongly correlated with ecological niche breadth but apparently independent of dispersal ability. The magnitude of range size–niche breadth relationships is not stationary across the phylogeny and is often negatively correlated across the different dimensions of the ecological niche. This variation limits the generalizability of range size–trait relationships across broad taxonomic groups.  相似文献   

12.
Ecological specialization provides information about adaptations of species to their environment. However, identification of traits representing the relevant dimensions of ecological space remains challenging. Here we endeavoured to explain how complex habitat specializations relate to various ecological traits of European birds. We employed phylogenetic generalized least squares and information theoretic approach statistically controlling for differences in geographic range size among species. Habitat specialists had narrower diet niche, wider climatic niche, higher wing length/tail length ratio and migrated on shorter distances than habitat generalists. Our results support an expected positive link between habitat and diet niche breadth estimates, however a negative relationship between habitat and climate niche breadths is surprising. It implies that habitat specialists occur mostly in spatially restricted environments with high climatic variability such as mountain areas. This, however, complicates our understanding of predicted impacts of climatic changes on avian geographical distributions. Our results further corroborate that habitat specialization reflects occupation of morphological space, when specialists depend more on manoeuvrability of the flight and are thus more closely associated to open habitats than habitat generalists. Finally, our results indicate that long distance movements might hamper narrow habitat preferences. In conclusion, we have shown that species’ distributions across habitats are informative about their positions along other axes of ecological space and can explain states of particular functional traits, however, our results also reveal that the links between different niche estimates cannot be always straightforwardly predicted.  相似文献   

13.
Determinants of local abundance and range size in forest vascular plants   总被引:2,自引:0,他引:2  
Aim For a large set of forest herbs we tested: (1) whether there is a positive relationship between local abundance and geographical range size; (2) whether abundance or range size are affected by the niche breadths of species or niche availability; and (3) whether these are affected by the species life‐history traits. Location Northwestern Germany. Methods We measured abundance as mean density in 22 base‐rich deciduous forests and recorded range size as area of occupancy on four different spatial scales (local to national). Niche breadth was expressed in terms of habitat specificity (specialists, generalists) and of the ability to grow across a broad range of soil pH. The species’ pH niche position was used as a measure of the importance of habitat availability. As life‐history traits we used diaspore mass and number, plant height, seed longevity, lifespan/clonality, pollination mode, dispersal capability and flowering time. Results There were mainly no positive relationships between the abundance of species and their range size, as tested across species and across phylogenetically independent contrasts. Forest specialists were generally distributed less widely than generalists, but habitat specificity was not related to local abundance. Species with a broader pH niche breadth were more common, but the positive relationships between niche breadth and abundance or range size disappeared when accounting for sample size effects. Clonal species with few and heavy diaspores were most abundant, as well as early‐flowering species and those lacking dispersal structures. Local and regional range size were determined largely by habitat availability, while national range was positively affected by plant height and diaspore mass. Main conclusions Different processes determine the local density of species and their range size. Abundance within habitat patches appears to be related mainly to the species life histories, especially to their capacity for extensive clonal reproduction, whereas range size appears to be determined strongly by the availability of suitable habitat.  相似文献   

14.
1 Using data from a survey of over 10 000 1-m2 quadrats in a 3000-km2 area, we examined the relationship between abundance and range for the vascular plant flora of central England.
2 At the level of the whole landscape, abundance was not related to local, regional or national range. Local, regional and national range were closely related to each other.
3 At the level of the whole landscape, range was significantly and positively related to both niche breadth (expressed as the range of habitats exploited) and to habitat availability, although niche breadth appeared to be more important. Abundance was not related to niche breadth or habitat availability. Since specialist species are mainly confined to uncommon habitats (especially wetlands), we conclude that the relationship between range and niche breadth is not an artefact of widespread species passively sampling more habitats.
4 At the level of individual habitat types, significant positive relationships between range and abundance were common. These relationships remained after controlling for the effects of phylogeny. For predominantly annual weed communities, the relationship was linear, but for perennial communities it was markedly 'upper triangular', i.e. all combinations of range and abundance were found except wide range/low abundance. The evidence suggests that this difference can be attributed to the greater mobility of annual weeds.  相似文献   

15.
袁秀  马克明  王德 《生态学报》2011,31(7):1955-1961
物种分布与多度间的正相关格局非常普遍,但该格局的生态机制却一直不太明确。研究者提出了很多假说来解释这种分布-多度关系,其中物种的生态幅和生态位(资源可利用性)机制的研究较多。为了验证物种的生态幅和生态位是否能解释物种的多度-分布格局,本文研究了黄河三角洲地区湿地植物分布、多度、生态位和生态幅间的关系,结果表明:该区物种分布与多度呈显著正相关,且均与生态幅显著正相关,物种分布与生态位显著负相关,但物种多度与生态位相关性不显著。这说明物种的分布越广,其多度越高,环境容忍度越大;而可利用资源更多的物种分布更广,环境容忍度越大的物种多度越多,资源可利用性对该区物种多度影响不大。本研究说明物种生态幅能解释物种分布-多度正相关格局,而生态位假说不能很好的解释这一格局;应该还有其他因素一起解释这一物种分布-多度正相关格局。  相似文献   

16.
Despite growing evidence that biotic interactions limit the distribution of species and their potential redistribution under climate change, the recent surge of interest in niche conservatism has predominantly focused on the Grinellian (abiotic) niche, whereas few studies have attempted to quantify potential lability in the Eltonian (biotic or trophic) niche. Here, we test for conservatism in the Eltonian niche of 32 freshwater fish species between their introduced and native ranges from 435 populations across the globe. We used stable isotope data to quantify niche shifts along the horizontal (δ13C: indicating the origin of the resources consumed) and vertical (δ15N: describing the trophic position) dimensions of the isotopic niche, as well as shifts in overall isotopic niche breadth. Using an assemblage centroid standardized isotope vector analysis and controlling for phylogenetic relatedness among species, we demonstrated that introduced freshwater fishes exhibited flexibility in both resource use and trophic position that was beyond levels of natural variability observed in their native ranges. By contrast, niche breadth showed variability only within the limits recorded in native populations and varied independently from shifts in mean isotopic niche positions. Across all species and introduction histories, we found a consistent shift towards more balanced acquisition of resources with mixed origins and at intermediate trophic positions, suggesting a general mechanism by which fish species successfully establish into recipient communities. The mechanisms that promote or inhibit species from shifting their Eltonian niche remains unknown, but trophic flexibility is likely to contribute to both the success and the ecological impacts of invasive species and range shifts of native species under future global change.  相似文献   

17.
Aim  To identify the factors that contribute to variation in abundance (population density), and to investigate whether habitat breadth and diet breadth predict macroecological patterns in a suborder of passerine birds (Meliphagoidea).
Location  Australia (including Tasmania).
Methods  Mean abundance data were collated from site surveys of bird abundance (the Australian Bird Count); range size and latitudinal position data from published distribution maps; and body mass and diet breadth information from published accounts. A diversity index of habitats used (habitat breadth) was calculated from the bird census data. We used bivariate correlation and multiple regression techniques, employing two phylogenetic comparative methods: phylogenetic generalized least squares and independent contrasts.
Results  Body mass and latitude were the only strong predictors of abundance, with larger-bodied and lower-latitude species existing at lower densities. Together, however, body mass and latitude explained only 11.1% of the variation in mean abundance. Range size and habitat breadth were positively correlated, as were diet breadth and body mass. However, neither range size, nor habitat breadth and diet breadth, explained patterns in abundance either directly or indirectly.
Main conclusions  Levels of abundance (population density) in meliphagoid birds are most closely linked to body mass and latitudinal position, but not range size. As with many other macroecological analyses, we find little evidence for aspects of niche breadth having an effect on patterns of abundance. We hypothesize that evolutionary age may also have a determining effect on why species tend to be rarer (less abundant) in the tropics.  相似文献   

18.
J. B. Hughes 《Oecologia》2000,123(3):375-383
Numerous hypotheses have been proposed for the commonly observed, positive relationship between local abundance and geographic distribution in groups of closely related species. Here I consider how hostplant specialization and abundance affect the relative abundance and distribution of lycaenid butterflies (Lepidoptera: Lycaenidae). I first discuss three components of specialization: local specialization, turnover of specialization across a species’ range, and the minimum number of resources (or habitats) required by a species. Within this framework, I then consider one dimension of a lycaenid species’ niche, larval hostplant specialization. In a subalpine region of Colorado, I surveyed 11 lycaenid species and their hostplants at 17 sites. I compare this local information to continental hostplant use and large-scale distributions of the lycaenids and their hostplants. Local abundance of a lycaenid species is positively correlated with its local distribution (the number of sites occupied), but not with its regional or continental distribution. Neither local specialization (the number of hostplants used within one habitat) nor continental specialization (the number of hostplants used across many habitats) is correlated with local lycaenid abundance. Continental specialization is positively correlated with a species’ continental distribution, however. Finally, while generalist butterflies tend to have more hostplant available to them, differences in resource availability do not explain the differences in butterfly abundance. Although local abundance is correlated only with local distribution, I suggest that abundance-distribution relationships might emerge at regional and continental scales if local abundance were averaged across many habitat types. Consideration of the scale of a species’ resource specialization (within or among habitats) appears to be key to understanding the relationships between resource specialization, resource availability, and a species’ abundance and distribution. Received: 1 September 1999 / Accepted: 12 December 1999  相似文献   

19.
1. One possible explanation for the latitudinal gradient in species richness often demonstrated is a related gradient in niche breadth, which may allow for denser species packing in the more stable environments at low latitudes. 2. The evidence for such a gradient is, however, ambiguous, and the results have varied as much as the methods. Several studies have considered the non‐independence of species, but few have performed explicit phylogenetic analyses. 3. In the present study, we tested for a correlation between diet breadth and latitude of distribution in Nymphalinae butterflies using generalised estimating equations (GEE) and accounting for phylogenetic independence. 4. Using a simple model with only latitude of distribution as a predictor variable revealed a significant positive relationship with diet breadth. Previous studies, however, have shown that diet breadth is also correlated with butterfly range size, and in turn, that range size may be correlated with latitude of distribution. Including geographical range size in the model also turned out to have a profound effect on the results – to the extent that the relationship between latitude of distribution and diet breadth was effectively reversed. 5. We conclude that, at least for this group of butterflies, there is no evidence for a positive correlation between latitude of species distribution and diet breadth when controlling for range size, and that the effect may actually even be reversed.  相似文献   

20.
1. Dispersal ability of a species is a key ecological characteristic, affecting a range of processes from adaptation, community dynamics and genetic structure, to distribution and range size. It is determined by both intrinsic species traits and extrinsic landscape-related properties. 2. Using butterflies as a model system, the following questions were addressed: (i) given similar extrinsic factors, which intrinsic species trait(s) explain dispersal ability? (ii) can one of these traits be used as a proxy for dispersal ability? (iii) the effect of interactions between the traits, and phylogenetic relatedness, on dispersal ability. 3. Four data sets, using different measures of dispersal, were compiled from published literature. The first data set uses mean dispersal distances from capture-mark-recapture studies, and the other three use mobility indices. Data for six traits that can potentially affect dispersal ability were collected: wingspan, larval host plant specificity, adult habitat specificity, mate location strategy, voltinism and flight period duration. Each data set was subjected to both unifactorial, and multifactorial, phylogenetically controlled analyses. 4. Among the factors considered, wingspan was the most important determinant of dispersal ability, although the predictive powers of regression models were low. Voltinism and flight period duration also affect dispersal ability, especially in case of temperate species. Interactions between the factors did not affect dispersal ability, and phylogenetic relatedness was significant in one data set. 5. While using wingspan as the only proxy for dispersal ability maybe problematic, it is usually the only easily accessible species-specific trait for a large number of species. It can thus be a satisfactory proxy when carefully interpreted, especially for analyses involving many species from all across the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号