共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigated the influence of blood perfusion on local heating of the forearm and middle finger skin following 42.25 GHz exposure with an open ended waveguide (WG) and with a YAV mm wave therapeutic device. Both sources had bell-shaped distributions of the incident power density (IPD) with peak intensities of 208 and 55 mW/cm(2), respectively. Blood perfusion was changed in two ways: by blood flow occlusion and by externally applied vasodilator (nonivamide/nicoboxil) cream to the skin. For thermal modeling, we used the bioheat transfer equation (BHTE) and the hybrid bioheat equation (HBHE) which combines the BHTE and the scalar effective thermal conductivity equation (ETCE). Under normal conditions with the 208 mW/cm(2) exposure, the cutaneous temperature elevation (DeltaT) in the finger (2.5 +/- 0.3 degrees C) having higher blood flow was notably smaller than the cutaneous DeltaT in the forearm (4.7 +/- 0.4 degrees C). However, heating of the forearm and finger skin with blood flow occluded was the same, indicating that the thermal conductivity of tissue in the absence of blood flow at both locations was also the same. The BHTE accurately predicted local hyperthermia in the forearm only at low blood flow. The HBHE made accurate predictions at both low and high perfusion rates. The relationship between blood flow and the effective thermal conductivity (k(eff)) was found to be linear. The heat dissipating effect of higher perfusion was mostly due to an apparent increase in k(eff). It was shown that mm wave exposure could result in steady state heating of tissue layers located much deeper than the penetration depth (0.56 mm). The surface DeltaT and heat penetration into tissue increased with enlarging the irradiating beam area and with increasing exposure duration. Thus, mm waves at sufficient intensities could thermally affect thermo-sensitive structures located in the skin and underlying tissue. 相似文献
2.
3.
In this paper we studied experimentally the frequency dependence of heating of human skin exposed to millimeter waves. Theoretical modeling of obtained data was performed using the hybrid bio-heat equation. It was found that the skin heating and SAR increased with increasing the exposure frequency. The frequency dependence of heating was entirely resulted from that of reflection from the skin. Unlike temperature, the frequency dependence of the SAR was due to the increased absorption of millimeter wave energy within the thin surface layer of the skin. 相似文献
4.
In this paper we studied experimentally the frequency dependence of heating of human skin exposed to millimeter waves. Theoretical modeling of obtained data was performed using the hybrid bio-heat equation. It was found that the skin heating and SAR increased with increasing the exposure frequency. The frequency dependence of heating was entirely resulted from that of reflection from the skin. Unlike temperature, the frequency dependence of the SAR was due to the increased absorption of millimeter wave energy within the thin surface layer of the skin. 相似文献
5.
Emanuele Teodori Ana Sofia Moita Miguel Moura Pedro Pontes Antnio Moreira Yuan Bai Xinlin Li Yan Liu 《仿生工程学报(英文版)》2017,14(3)
This paper addresses the potential to use Lotus leaf bioinspired surfaces in applications involving heat transfer with phase change,namely pool boiling and spray impingement.Besides describing the role of bioinspired topographical features,using an innovative technique combining high-speed visualization and time-resolved infrared thermography,surface durability is also addressed.Water is used for pool boiling and for spray impingement systems (simplified as single droplet impact),while HFE7000 is used in a pool boiling cooler for electronic components.Results show that surface durability is quickly compromised for water pool boiling applications,as the chemical treatment does not withstand high temperatures (T > 100 ℃) during long time intervals (3 h-4 h).For HFE7000 pool boiling (depicting lower saturation temperature-34 ℃),heat transfer enhancement is governed by the topography.The regular hierarchical pattern of the bioinspired surfaces promotes the heat transfer coefficient to increase up to 22.2%,when compared to smooth surfaces,while allowing good control of the interaction mechanisms until a distance between micro-structures of 300 μm-400 μm.Droplet impingement was studied for surface temperatures ranging between 60 ℃-100 ℃.The results do not support the use of superhydrophobic surfaces for cooling applications,but reveal great potential for other applications involving droplet impact on heated surfaces (e.g.metallurgy industry). 相似文献
6.
The temperature of plants can be measured using infrared (IR) thermography. Despite the extensive use of IR imaging indoors, outdoor IR imaging is uncommon. We used IR imaging to compare leaf temperatures between necrotic spots and healthy areas of oriental cherry (Prunus serrulata var. spontanea), Japanese cornel (Cornus officinalis) and sawtooth oak (Quercus acutissima) in the field. There was a significant difference in the mean leaf temperatures between the necrotic spots (26.4°C) and healthy areas (25.6°C) of oriental cherry (p = .01). The mean temperatures in the necrotic spots of Japanese cornel and sawtooth oak leaves were 22.3°C and 29.6°C, respectively, which were not significantly different from the mean temperatures of the healthy areas. A consecutive, 2‐day temporal leaf analysis in October 2018 revealed that the temperatures in the necrotic spots were generally higher than those in the healthy areas of the three species. The temperature difference between the spots and healthy areas (up to 1.4°C) was more pronounced at 13:00 hr in all three species on both days. These results reveal differences in the spatial and temporal thermal state across the necrotic spotted leaves. There is potential for use of outdoor IR imaging to visualize the response of trees to pathogen infection and abiotic stress. 相似文献
7.
Wang S Xie W Rylander MN Tucker PW Aggarwal S Diller KR 《Biotechnology and bioengineering》2008,99(1):146-154
The direct correlation between levels of heat shock protein expression and efficiency of its tissue protection function motivates this study of how thermal doses can be used for an optimal stress protocol design. Heat shock protein 70 (HSP70) expression kinetics were visualized continuously in cultured bovine aortic endothelial cells (BAECs) on a microscope heating stage using green fluorescent protein (GFP) as a reporter. BAECs were transfected with a DNA vector, HSP(p)-HSP70-GFP which expresses an HSP70-GFP fusion protein under control of the HSP70 promoter. Expression levels were validated by western blot analysis. Transfected cells were heated on a controlled temperature microscope stage at 42 degrees C for a defined period, then shifted to 37 degrees C for varied post-heating times. The expression of HSP70-GFP and its sub-cellular localization were visualized via fluorescence microscopy. The progressive expression kinetics were measured by quantitative analysis of serial fluorescence images captured during heating protocols from 1 to 2 h and post-heating times from 0 to 20 h. The results show two sequential peaks in HSP70 expression at approximately 3 and 12 h post-heat shock. A progressive translocation of HSP70 from the cytoplasm to the nucleus was observed from 6 to 16 h. We conclude that we have successfully combined molecular cloning and optical imaging to study HSP70 expression kinetics. The kinetic profile for HSP70-GFP fusion protein is consistent with the endogenous HSP70. Furthermore, information on dynamic intracellular translocation of HSP70 was extracted from the same experimental data. 相似文献
8.
Millimeter wave dosimetry of human skin 总被引:1,自引:0,他引:1
To identify the mechanisms of biological effects of mm waves it is important to develop accurate methods for evaluating absorption and penetration depth of mm waves in the epidermis and dermis. The main characteristics of mm wave skin dosimetry were calculated using a homogeneous unilayer model and two multilayer models of skin. These characteristics included reflection, power density (PD), penetration depth (delta), and specific absorption rate (SAR). The parameters of the models were found from fitting the models to the experimental data obtained from measurements of mm wave reflection from human skin. The forearm and palm data were used to model the skin with thin and thick stratum corneum (SC), respectively. The thin SC produced little influence on the interaction of mm waves with skin. On the contrary, the thick SC in the palm played the role of a matching layer and significantly reduced reflection. In addition, the palmar skin manifested a broad peak in reflection within the 83-277 GHz range. The viable epidermis plus dermis, containing a large amount of free water, greatly attenuated mm wave energy. Therefore, the deeper fat layer had little effect on the PD and SAR profiles. We observed the appearance of a moderate SAR peak in the therapeutic frequency range (42-62 GHz) within the skin at a depth of 0.3-0.4 mm. Millimeter waves penetrate into the human skin deep enough (delta = 0.65 mm at 42 GHz) to affect most skin structures located in the epidermis and dermis. 相似文献
9.
Sandrine Golay Christian Haeberli Anne Delachaux Lucas Liaudet Paul Kucera Bernard Waeber Fran?ois Feihl 《Journal of applied physiology》2004,97(5):1781-1786
Local changes in surface temperature have a powerful influence on the perfusion of human skin. Heating increases local skin blood flow, but the mechanisms and mediators of this response (thermal hyperemia response) are incompletely elucidated. In the present study, we examined the possible dependence of the thermal hyperemia response on stimulation of muscarinic cholinergic receptors and on production of vasodilator prostanoids. In 13 male healthy subjects aged 20-30 yr, a temperature-controlled chamber was positioned on the volar face of one forearm and used to raise surface temperature from 34 to 41 degrees C. The time course of the resulting thermal hyperemia response was recorded with a laser-Doppler imager. In one experiment, each of eight subjects received an intravenous bolus of the antimuscarinic agent glycopyrrolate (4 microg/kg) on one visit and saline on the other. The thermal hyperemia response was determined within the hour after the injections. Glycopyrrolate effectively inhibited the skin vasodilation induced by iontophoresis of acetylcholine but did not influence the thermal hyperemia response. In a second experiment, conducted in five other subjects, 1 g of the cyclooxygenase inhibitor aspirin administered orally totally abolished the vasodilation induced in the skin by anodal current but also failed to modify the thermal hyperemia response. The present study excludes the stimulation of muscarinic receptors and the production of vasodilator prostaglandins as essential and nonredundant mechanisms for the vasodilation induced by local heating in human forearm skin. 相似文献
10.
11.
现有的医用红外热像技术几乎都采自体表,为了提高诊断准确性,必须进一步确定体表温度分布与体内热源间的关系。基于人体内部传热机制和人体与环境的传热机制,推导出稳态下均质(各向同性)组织的表面温度分布与内部球状热源之间的关系,通过模拟计算可验证结论的准确性。 相似文献
12.
The importance of using infrared thermography (IRT) to assess skin temperature (tsk) is increasing in clinical settings. Recently, its use has been increasing in sports and exercise medicine; however, no consensus guideline exists to address the methods for collecting data in such situations. The aim of this study was to develop a checklist for the collection of tsk using IRT in sports and exercise medicine. We carried out a Delphi study to set a checklist based on consensus agreement from leading experts in the field. Panelists (n = 24) representing the areas of sport science (n = 8; 33%), physiology (n = 7; 29%), physiotherapy (n = 3; 13%) and medicine (n = 6; 25%), from 13 different countries completed the Delphi process. An initial list of 16 points was proposed which was rated and commented on by panelists in three rounds of anonymous surveys following a standard Delphi procedure. The panel reached consensus on 15 items which encompassed the participants’ demographic information, camera/room or environment setup and recording/analysis of tsk using IRT. The results of the Delphi produced the checklist entitled “Thermographic Imaging in Sports and Exercise Medicine (TISEM)” which is a proposal to standardize the collection and analysis of tsk data using IRT. It is intended that the TISEM can also be applied to evaluate bias in thermographic studies and to guide practitioners in the use of this technique. 相似文献
13.
14.
Flavonols are plant pigments that are ubiquitous in nature. Quercetin (3,3',4',5,7-pentahydroxyflavone) and other related plant flavonols have come into recent prominence because of their usefulness as anticancer, antitumor, anti-AIDS, and other important therapeutic activities of significant potency and low systemic toxicity. Quercetin is intrinsically weakly fluorescent in aqueous solution, showing an emission maximum at approximately 538 nm. Upon binding to human serum albumin (HSA), quercetin undergoes dramatic enhancement in its fluorescence emission intensity, along with the appearance of dual emission behavior, consisting of normal and excited-state proton transfer (ESPT) fluorescence. In addition, the occurrence of a third emitting species has been noted for the first time. This is attributed to a electronic ground-state complex formed in the protein environment. High values of the fluorescence anisotropy (r) are obtained in the presence of HSA for the ESPT tautomer (r = 0.18), as well as the complex species (r = 0.37) of quercetin, indicating that the precursor ground-state molecules for both these emitting species of quercetin molecules are located in the motionally constrained sites of HSA. The steady-state emission data suggest that quercetin binds to two distinct sites in HSA from which the emissions from the normal tautomer and complex species take place. The preliminary results of studies on emission decay kinetics are also reported herein. Studies by far-UV circular dichroism spectroscopy reveal that binding of quercetin induces no significant perturbation in the secondary structure of HSA. 相似文献
15.
16.
A thermal therapy for cancer in skin tissue is numerically investigated using three bioheat conduction models, namely Pennes, thermal wave and dual-phase lag models. A laser is applied at the surface of the skin for cancer ablation, and the temperature and thermal damage distributions are predicted using the three bioheat models and two different modeling approaches of the laser effect. The first one is a prescribed surface heat flux, in which the tissue is assumed to be highly absorbent, while the second approach is a volumetric heat source, which is reasonable if the scattering and absorption skin effects are of similar magnitude. The finite volume method is applied to solve the governing bioheat equation. A parametric study is carried out to ascertain the effects of the thermophysical properties of the cancer on the thermal damage. The temperature distributions predicted by the three models exhibit significant differences, even though the temperature distributions are similar when the laser is turned off. The type of bioheat model has more influence on the predicted thermal damage than the type of modeling approach used for the laser. The phase lags of heat flux and temperature gradient have an important influence on the results, as well as the thermal conductivity of the cancer. In contrast, the uncertainty in the specific heat and blood perfusion rate has a minor influence on the thermal damage. 相似文献
17.
Infrared thermography (IRT) was used to assess surface temperature change as an indirect measure of muscle activity and exercise associated changes in blood flow in the working hind limb muscles of horses (n=7) undergoing water treadmill exercise. Three treatments were investigated including the treadmill ran dry (TD), water at the height of the proximal interphalangeal joint (PIP) and water at the height of the carpus (CP). Maximum skin surface temperature was recorded from the region of the semitendinosus muscle during exercise at each water height. There was a significant difference in surface hind limb temperature between exercise on the water treadmill ran dry and with water at the height of the PIP and CP (P<0.0001) with hotter temperatures recorded during the TD treatment. There was a greater increase in surface temperature of the hind limbs from pre exercise to maximum temperature during the PIP and CP treatments when compared to the TD treatment, however, this was not significant (P=0.58). There was no significant difference in surface hind limb temperature found between exercise in water at the height of the PIP and water at the height of the CP. The findings from this study suggest that IRT is able to non-invasively detect muscle activity and associated changes in blood flow whilst horses are exercised on a water treadmill. IRT could potentially be used as an alternative method to assess muscle activity and temperature change in an aquatic environment where existing methods present methodological challenges. 相似文献
18.
Reinnervation of human skin grafts: a histochemical study 总被引:3,自引:0,他引:3
The reinnervation of nine human skin grafts was investigated using histochemical thiocholine methods for the demonstration of cholinesterases. The regenerated cutaneous nerves showed both specific acetylcholinesterase and nonspecific cholinesterase reactions. In the youngest specimens, taken 3 weeks after the grafting, such regenerated nerves were seen both at the subdermal level under the graft and at the margins of the graft. These nerves seemed to orient toward the denervated graft area. The growing nerves were generally distributed in a random fashion. The reinnervation of some hair follicles, erector pili muscles, and sweat glands were observed in well-innervated full-thickness and thick partial-thickness skin grafts. It is suggested that this target-organ control of regenerating nerves occurs as a result of the action of chemotactic factors. A well-innervated graft bed seems to be important for optimum reinnervation of skin grafts. Fibrosis and scarring seem to hamper nerve regeneration. 相似文献
19.
Osteoporosis, defined as decreased bone mineral density (BMD), poses patients in dangers for fracture risk and has become a major public health problem worldwide because of is associated morbidity, mortality and costs. Without doubt, early detection and timely intervention are important to successfully manage osteoporosis and its associated complications. The dual‐energy x‐ray absorptiometry (DXA) is the most popular and standard method to measure BMD. However, limitations including radiation exposure and availability restrict its application for osteoporosis screening among general population. In this study, we developed a simple method to detect human distal radius bone density based on near infrared (NIR) image system. Among 10 volunteers (including 5 young and 5 elderly participants) receiving bone density measurement using our NIR image system at the ultradistal part of bilateral distal radius, we demonstrated a strong correlation between the optical attenuation and BMD measured with DXA, which may facilitate predicting bone density status. We hope our potential NIR image system may open a new avenue for development of osteoporosis screening facilities and help in prevention of osteoporosis related fracture and its associated complications in the near future. Pearson's correlations between BMD values from the DXA and light intensity of NIR system. 相似文献