首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
高等植物在正常生长情况下,一般叶组织是没有或具有少量脱镁叶绿素 a 的。当植物受至 SO_2污染后,叶组织脱镁叶绿素 a 含量增加,色带增浓;其变化规律是:在一定接触量范围内,与熏气时间和作用浓度呈正相关;与可见伤害呈现相一致;与植物的抗性呈负相关。实验表明,脱镁叶绿素 a 的变化是 SO_2污染的伤害指标。  相似文献   

2.
脱镁叶绿酸a单加氧酶与叶绿素降解   总被引:1,自引:0,他引:1  
近年来叶绿素降解的分子调控机制颇受关注,脱镁叶绿酸a单加氧酶(PaO)作为催化叶绿素卟啉环开环成为四元线性吡咯衍生物的关键酶,成为研究的焦点。本文从PaO的结构与生理功能出发,着重介绍了近期在PaO表达调控方面的最新研究进展,包括PaO突变体中叶绿素降解的反馈机制;去磷酸化作用与PaO的活性调节;非黄化突变体AtNYE1基因、蛋白激酶基因rlpk2、持绿突变体基因sgr的表达与PaO活性之间的关系,并且简要归纳了PaO研究的发展过程与趋势、存在的问题和争议。  相似文献   

3.
在一定的温度和丙酮的协同作用下,植物脱镁叶绿素a可置换紫细菌RS601光合反应中心的细菌脱镁叶绿素而形成含有植物脱镁叶绿素的紫细菌光合反应中心(简称Phe a RC).当协同作用15和60min时,反应中心的细菌脱镁叶绿素分别被替代了50%和71%.在Phe a RC中,细菌脱镁叶绿素的QX(537nm)和QY(758nm)特征峰显著下降,而出现植物脱镁叶绿素的QX(509/542nm)和QY(674nm)特征峰.排除温度和丙酮的影响,替代时间为15或60min的Phe a RC的光化学活性分别为对照的78%或71%,其电化学特性也有所变化.  相似文献   

4.
浮游植物叶绿素与脱镁叶绿素的测定方法   总被引:16,自引:0,他引:16  
叶绿素含量的测定,早已受到生理学家的重视。在生态学范畴内,浮游藻类的叶绿素含量既是浮游藻类现存量的一个指标,又是推算浮游藻类生产量的重要参量。故生态学家、水产与环境科学工作者,均日益重视叶绿素含量的测定。本文在综合国内外有关资料的基础上,结合作者的工作经验,对浮游藻类的光合色素组成、叶绿素与脱镁叶绿素的测算原理、测算方法作了详细介绍。  相似文献   

5.
6.
不同胁迫处理对刺栲叶片叶绿素a荧光的影响   总被引:3,自引:0,他引:3  
探讨了光强、温度和水分胁迫对刺栲(Castanopsis hystrix)体叶片叶绿素a荧光特征的影响,由此了解它的基本生物学特性。结果表明:(1)强光(1 300μmol.m-2.s-1左右)未胁迫时下降6.1%,表现轻微光抑制;(2)黑暗下低温(4℃,72 h)处理后电子传递速率下降较少(21.1%),初始荧光Fo保持稳定;与25℃对照相比,Fv/Fo和Fv/Fm无显著变化,表明黑暗下零上低温对PSⅡ潜在活性及光化学效率影响较小;(3)高温(40℃)胁迫显著影响了PSⅡ反应中心活性,ETR,Fv/Fm和Fv/Fo下降在处理2 h后达到极显著水平(p<0.01),Fo上升在处理4 h后也达到显著水平(p<0.05);(4)PEG诱导的水分胁迫严重影响了其光合机构活性,表现在无论与处理前比较、还是与耐旱种降真香(Acronychia pedunculata)的比较,其Fo上升和Fv/Fm、Fv/Fo下降都达到显著水平,表明其不耐干旱。  相似文献   

7.
以金叶女贞(Ligustrum×vicaryi)和金森女贞(Ligustrum japonicum‘Howardii’)2种金色叶女贞为试材,采用人工静态熏气的方法,研究SO2胁迫对金色叶植物叶片叶绿素含量及其合成代谢的影响,探讨SO2胁迫影响金色叶植物叶绿素合成的可能位点。结果表明:20和40 mg·m-3的SO2熏气提高了叶绿素、尿卟啉原Ⅲ(UrogenⅢ)、原卟啉Ⅸ(ProtoⅨ)、镁原卟啉Ⅸ(Mg-protoⅨ)的含量,使δ-氨基酮戊酸脱水酶(ALAD)和尿卟啉原Ⅲ合酶(UROS)活性升高,δ-氨基酮戊酸(ALA)和胆色素原(PBG)含量降低;80 mg·m-3的SO2熏气使叶绿素含量降低,引起ALA和PBG含量的积累,降低了UrogenⅢ、ProtoⅨ和Mg-protoⅨ的含量,抑制了ALAD和UROS的活性。研究发现,金叶女贞叶绿素合成关键前体物质含量和相关酶活性随熏气浓度的变化趋势较金森女贞明显,前者对SO2较为敏感,后者抗SO2的能力强于前者,SO2胁迫影响金色叶植物叶绿素合成的可能位点位于UrogenⅢ的合成过程。  相似文献   

8.
植物叶绿素含量与大气中SO2浓度相关性研究   总被引:1,自引:0,他引:1  
本文对厦门市5个样点、6种常见绿化树种及盆栽植物蕹菜的叶绿素含量、叶片含硫量及大气中SO_2浓度分析测定,得出了6种植物叶绿素a、b变化趋势是:鼓浪屿、厦门大学>火车站、后江埭>电化厂;叶片含硫量的变化趋势与叶绿素a、b含量变化相反。表明植物叶片叶绿素含量与大气中SO_2浓度和叶片含硫量呈负相关,并计算蕹菜叶绿素含量与大气SO_2浓度相关模式(y=-0.0138x 0.1958),为大气环境评价提供生物学依据。  相似文献   

9.
衰老叶片中叶绿素的降解   总被引:6,自引:0,他引:6  
叶蕙  刘伟 《西北植物学报》2002,22(2):437-443
综述了近年来关于衰老叶片中叶绿素降解的研究情况,包括叶绿素代谢的中间产物、终产物、主要代谢途径、代谢酶及代谢途径在细胞内的定位及代谢调节方面的研究进展。  相似文献   

10.
实验室和野外条件下SO2对蚕豆叶片抗氧化剂的影响   总被引:3,自引:0,他引:3  
从实验室熏气和野外大气暴露两方面研究了SO_2对蚕豆叶片内抗氧化剂水平的影响。熏气实验表明,低浓度的SO_2(0.1和0.05 ug/g)暴露能使超氧化物歧化酶(SOD)和过氧化物酶(POD)活性升高,而使抗坏血酸含量下降。野外大气暴露实验结果表明大气硫酸盐化速率与SOD活性呈极显著正线性相关(P相似文献   

11.
Uptake of label from solutions containing 35SO2, H35SO3 and 35SO32− into mesophyll protoplasts, vacuoles, and chloroplasts isolated from young barley leaves was measured at different pH values. Uptake was fast at low pH, when the concentration of SO2 was high, and low at high pH, when the concentration of SO2 was low. When the resistance (R) of plasmalemma, tonoplast, and chloroplast envelope to the penetration of SO2 was calculated from rates of uptake of label, comparable values were obtained for the different biomembranes at low pH values. R was close to 8000 seconds per meter and permeability coefficients were close to 1.25 × 10−4 meters per second. Under these conditions R may describe resistance to SO2 diffusion across a lipid bilayer. At higher pH values, R decreased. As R was calculated on the assumption that SO2 is the only penetrating molecular species, the data suggest that carrier-mediated anion transport contributes to the uptake of sulfur at physiological pH values thereby decreasing apparent RSO2. The contribution of anion transport appeared to be smaller for transfer across the plasmalemma than for transfer across the tonoplast. It was large for transfer across the chloroplast envelope. The phosphate translocator of the chloroplast envelope catalyzed uptake of SO32− into chloroplasts at neutral pH. Uptake was decreased in the presence of high levels of phosphate or sulfate and by pyridoxal phosphate. SO2 transfer into cells leads to the intracellular liberation of one or two protons, depending on pH and oxidizing conditions. When the divalent sulfite anion is exchanged across the chloroplast envelope, bisulfite formation results in proton uptake in the chloroplast stroma, whereas SO2 uptake into chloroplasts lowers the stroma pH.  相似文献   

12.
Pea (Pisum sativum L. cv `Little Marvel') plants were exposed to SO2 for short term (3 hours) and long term (2 days) at 0.2 and at 0.5 microliter per liter (ppm) levels. The effect of this treatment on the activity of phosphoenolpyruvate carboxylase, NAD- and NADP-malate dehydrogenases, and alanine aminotransferase from epidermis and whole leaves was investigated. Short-term exposure to SO2 at 0.2 or 0.5 ppm decreased the activity of the carboxylase and the dehydrogenases in the epidermis. In contrast, the activity of the same three enzymes increased in whole leaves with either short- or long-term exposure to SO2. Alanine aminotransferase in epidermis or whole leaves was not much affected by short-term exposure, but the epidermal activity was decreased and whole leaf activity was increased with long-term exposure. SO2 exposure which was initiated prior to illumination decreased the free thiol content of both epidermis and of whole leaf. Net photosynthesis was reversibly inhibited by long-term exposure to SO2 at 0.5 ppm. No effect of 0.5 ppm SO2 on stomatal conductance was detectable after 3 hours. Stomatal conductance appeared to decrease after longer exposure times (2 days) at 0.5 ppm.  相似文献   

13.
Short-term (4 hours) effect of different concentrations of SO2 fumigation on in vivo photochemical activities of sugar maple (Acer saccharum Marsh.) leaves was investigated using photoacoustic spectroscopy. The relative quantum yield of O2 evolution (ratio of O2 signal to the photothermal signal) and photochemical energy storage are increased by 0.05 microliter per liter of SO2. This increase is more pronounced in 5 to 7 year old saplings than in 3 month old seedlings. Both oxygen-relative quantum yield and energy storage of seedlings are inhibited by increased concentrations of SO2 and the inhibition is concentration dependent. The inhibition is greater in seedlings than in saplings at 2 microliters per liter of SO2, indicating the more susceptible nature of seedlings. The present study indicates a concentration dependent differential effect of SO2 on photochemical activities of sugar maple leaves.  相似文献   

14.
Lee MY 《Phytochemistry》2002,59(5):493-499
This study investigated the effects of Na(2)SO(3), which releases SO(2) in apoplastic water, on the growth of geranium seedlings and on the activities of various antioxidant enzymes including peroxidase. Sodium sulfite (Na(2)SO(3)) addition both inhibited primary root growth and stimulated lateral root growth of the seedlings respectively. In addition, the contents of chlorophyll and Rubisco protein of the seedlings were greatly reduced with Na(2)SO(3) treatment. Total peroxidase activities of the seedlings also increased proportionally with the amount of Na(2)SO(3), this presumably correlating with oxidative stress levels. Notably, about an 8-fold enhancement of total peroxidase activity occurred in seedlings treated with 60 nM Na(2)SO(3) at pH 4.0. This enhancement of total peroxidase activity was mainly due to the increase of a strong cationic isoperoxidase, strong anionic isoperoxidase and neutral isoperoxidase activities. The strong cationic isoperoxidase from geranium seedlings was found to be the same enzyme as PC3 from geranium callus in terms of its physicochemical and catalytic properties. Moreover, the activities of superoxide dismutase and glutathione reductase were greatly enhanced with Na(2)SO(3) treatments at pH 4.0 without significant alteration of catalase activity. These results suggest that Na(2)SO(3) exposure, activities the plants defense mechanism against the reactive oxygen species generated.  相似文献   

15.
A series of laboratory exposures of two varieties of bush bean (Phaseolus vulgaris L., var 274 and var 290) was conducted to determine the sensitivity of [14C]photosynthate allocation patterns to alteration by SO2 and O3. Experiments with the pollution-resistant 274 variety demonstrated short-term changes in both 14C and biomass allocation to roots of 14CO2-labeled plants but no significant effect on yield by up to 40 hours of exposure to SO2 at 0.50 microliters per liter or 4 hours of O3 at 0.40 microliters per liter. Subsequent experiments with the more sensitive 290 variety demonstrated significant alteration of photosynthesis, translocation, and partitioning of photosynthate between plant parts including developing pods. Significant increases in foliar retention of photosynthate (+40%) occurred after 8 hours of exposure to SO2 at 0.75 microliters per liter (6.0 microliters per liter-hour) and 11 hours of exposure to O3 at 0.30 microliters per liter-hour (3.3 microliters-hours). Time series sampling of labeled tissues after 14CO2 uptake showed that the disruption of translocation patterns was persistent for at least 1 week after exposures ceased. Subsequent longer-term exposures at lower concentrations of both O3 (0.0, 0.10, 0.15, and 0.20 microliters per liter) and SO2 (0.0, 0.20, and 0.40 microliters per liter) demonstrated that O3 more effectively altered allocation than SO2, that primary leaves were generally more sensitive than trifoliates, and that responses of trifoliate leaves varied with plant growth stage. Altered rates of allocation of photosynthate by leaves were generally associated with alterations of similar magnitude and opposite direction in developing pods. Collectively, these experiments suggest that allocation patterns can provide sensitive indices of incipient growth responses of pollution-stressed vegetation.  相似文献   

16.
The effects of SO2 on stomatal aperture of attached sunflower leaves were observed with a remote-control light microscope system that permitted continuous observation of stomatal responses over periods of several hours. The relationship between actual stomatal aperture and stomatal conductance, measured with a porometer, also was examined on leaves before and after exposure to SO2.

A distinction between uninjured and injured regions was clearly visible on leaves after exposure to 1.5 microliters per liter SO2 for less than an hour. During the exposure, the mean value of apertures for many stomata, which indicates stomatal conductance and transpiration rate, tended to decrease simultaneously in the uninjured and injured regions. However, the rate of decrease in the injured region was slower than that in the uninjured region because of a transient opening induced by water-soaking in the injured region. The transient opening was less common in stomata near veins and veinlets.

There was a good correlation between pore width and stomatal conductance measured with a porometer before exposure to SO2. This correlation continued in leaves exposed to SO2 until visible, irreversible injury occurred, but then it disappeared.

The results of these experiments indicate the necessity of continuous observation of individual stomata under the microscope to understand the effects of air pollutants such as SO2 on stomatal behavior.

  相似文献   

17.
Flux of SO(2) into Leaf Cells and Cellular Acidification by SO(2)   总被引:4,自引:0,他引:4       下载免费PDF全文
A comparison of fluxes of SO2 from the atmosphere into leaves with fluxes across biomembranes revealed that, apart from the cuticle, the main barrier to SO2 entry into leaves are the stomates. SO2 fluxes into leaves can be calculated with an accuracy sufficient for many purposes on the assumption that the intracellular SO2 concentration is zero. SO2 entering green leaf cells is trapped in the cytoplasm. In the light, the products formed in its reaction with water are processed particularly in the chloroplasts. Flux of SO2 to the acidic central vacuole of leaf cells is insignificant. Intracellular acidification of barley mesophyll protoplasts by SO2 was measured by the uptake of 14C-labeled 5,5-dimethyl-oxazolidine-2,4-dione. The measured acidification was similar to the acidification calculated from known buffer capacities and the rate of SO2 influx when the H+/SO2 ratio was assumed to be 2. A comparison of photosynthesis inhibition by SO2 with calculated acidification revealed different mechanisms of inhibition at low and at high concentrations of SO2. At very low concentrations, inhibition by SO2 was even smaller than expected from calculated acidification. The data suggest that, if acidification cannot be compensated by pH-stabilizing cellular mechanisms, it is a main factor of SO2 toxicity at low SO2 levels. At high levels of SO2, anion toxicity and/or radical formation during oxidation of SO2 to sulfate may play a large role in inhibition.  相似文献   

18.
After SO2 has entered leaves of spinach (Spinacia oleracea) through open stomata and been hydrated in the aqueous phase of cell walls, the sulfite formed can be oxidized to sulfate by an apoplastic peroxidase that is normally involved in phenol oxidation. The oxidation of sulfite is competitive with the oxidation of phenolics. During sulfite oxidation, the peroxidase is inhibited. In the absence of ascorbate, which is a normal constituent of the aqueous phase of the apoplast, peroxidative sulfite oxidation facilitates fast additional sulfite oxidation by a radical chain reaction. By scavenging radicals, ascorbate inhibits chain initiation and sulfite oxidation. Even after exposure of leaves to high concentrations of SO2, which inhibited photosynthesis, the redox state of ascorbate remained almost unaltered in the apoplastic space of the leaves. It is concluded that the oxidative detoxification of SO2 in the apoplast outside the cells is slow. Its rate depends on the rate of apoplastic hydrogen peroxide generation and on the steady-state apoplastic concentrations of phenolics and sulfite. The affinity of the peroxidase for phenolics is higher than that for sulfite.  相似文献   

19.
Kato  Yukio 《Plant & cell physiology》1981,22(7):1325-1334
The position of adventitious bud formation on isolated leavesfrom young, green and etiolated plants of Heloniopsis orientaliswas considerably influenced by their orientation on the medium.Homogeneous distribution of buds over the whole surface of theleaves was observed in darkness, however, irrespective of theirorientation. The polarity of the bud regeneration was influencedby the application of various growth regulators, such as fusicoccin,cytokinins or abscisic acid. All attempts to induce the formationof adventitious buds on the abaxial side of the leaves wereunsuccessful. From the present and previous results, three polarityaxes (longitudinal, transverse and dorsiventral axes) in thesiting of bud formation on leaves are described. The gradientin the quantity and relative position of vascular bundles andchanges in the stomatal density of a leaf are discussed in termsof their possible roles in the determination of the sites ofbudding on isolated leaves. (Received March 9, 1981; Accepted August 28, 1981)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号