首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A range of conformationally distinct functional states within the T quaternary state of hemoglobin are accessed and probed using a combination of mutagenesis and sol-gel encapsulation that greatly slow or eliminate the T --> R transition. Visible and UV resonance Raman spectroscopy are used to probe the proximal strain at the heme and the status of the alpha(1)beta(2) interface, respectively, whereas CO geminate and bimolecular recombination traces in conjunction with MEM (maximum entropy method) analysis of kinetic populations are used to identify functionally distinct T-state populations. The mutants used in this study are Hb(Nbeta102A) and the alpha99-alpha99 cross-linked derivative of Hb(Wbeta37E). The former mutant, which binds oxygen noncooperatively with very low affinity, is used to access low-affinity ligated T-state conformations, whereas the latter mutant is used to access the high-affinity end of the distribution of T-state conformations. A pattern emerges within the T state in which ligand reactivity increases as both the proximal strain and the alpha(1)beta(2) interface interactions are progressively lessened after ligand binding to the deoxy T-state species. The ligation and effector-dependent interplay between the heme environment and the stability of the Trp beta37 cluster in the hinge region of the alpha(1)beta(2) interface appears to determine the distribution of the ligated T-state species generated upon ligand binding. A qualitative model is presented, suggesting that different T quaternary structures modulate the stability of different alphabeta dimer conformations within the tetramer.  相似文献   

2.
The hydroxyl group of Tyr alpha 42 in human hemoglobin forms a hydrogen bond with the carboxylate of Asp beta 99 which is considered to be one of the most important hydrogen bonds for stabilizing the "T-state." However, no spontaneous mutation at position 42 of the alpha subunit has been reported, and the role of the tyrosine has not been tested experimentally. Two artificial human mutant hemoglobins in which Tyr alpha 42 was replaced by phenylalanine or histidine were synthesized in Escherichia coli, and their proton NMR spectra were studied with particular attention to the hyperfine-shifted and hydrogen-bonded proton resonances. The site-directed mutagenesis of the Tyr alpha 42----Phe removes the hydrogen bond described above and prevents transition to the T-state so that the mutant Hb is rather similar to the "R-state" even when deoxygenated. On the other hand, the mutation from tyrosine to histidine causes less drastic structural changes, and its quaternary and tertiary structures are almost the same as native deoxy-Hb A. This may be attributed to the formation of a new hydrogen bond between His alpha 1(42) and Asp beta 2(99). These observations indicate that the hydrogen bond formed between Tyr alpha 42 and Asp beta 99 is required to convert unliganded Hb to the T-state.  相似文献   

3.
Previous crystallographic studies have shown that human hemoglobin A can adopt two stable quaternary structures, one for deoxyhemoglobin (the T-state) and one for liganded hemoglobin (the R-state). In this paper we report our finding of a second quaternary structure (the R2-state) for liganded hemoglobin A. The magnitudes of the spatial differences between the R- and R2-states are as large as those between the R- and T-states. Of particular interest are the structural changes that occur as a result of R-T and R-R2 transitions at the so-called "switch" region of the critical alpha 1 beta 2 interface. In the R-state, His-97 beta 2 is positioned between Thr-38 alpha 1 and Thr-41 alpha 1, whereas in transition to the T-state His 97 beta 2 must "jump" a turn in the alpha 1 C helix to form nonpolar contacts with Thr-41 alpha 1 and Pro-44 alpha 1. This facet of the R-T transition presents a major steric barrier to the quaternary structure change. In the R2-state, His-97 beta 2 simply rotates away from threonines 38 alpha 1 and 41 alpha 1, breaking contact with these residues and allowing water access to the center of the alpha 1 beta 2 interface. With the switch region in an open position in the R2-state, His-97 beta 2 should be able to move by Thr-41 alpha 1 and make the transition to the T-state with a steric barrier that is less than that for the R-T transition. Thus the R2-state may function as a stable intermediate along a R-R2-T pathway. The T-, R-, and R2-states must coexist in solution. That is, the fact that these states can be crystallized implies that they are all energetically accessible structures. What remains to be determined are the T-to-R, T-to-R2, and R-to-R2 equilibrium constants for hemoglobin under various solution conditions and ligation states. Although this may prove to be difficult, we discuss previously published results which indicate that low concentrations of inorganic anions or low pH may favor the R2-state and at least one alpha 1 beta 2 interface mutation stabilizes a quaternary structure that is very similar to the R2-state.  相似文献   

4.
Histidine decarboxylase (HDC) from Lactobacillus 30a converts histidine to histamine, a process that enables the bacteria to maintain the optimum pH range for cell growth. HDC is regulated by pH; it is active at low pH and inactive at neutral to alkaline pH. The X-ray structure of HDC at pH 8 revealed that a helix was disordered, resulting in the disruption of the substrate-binding site. The HDC trimer has also been shown to exhibit cooperative kinetics at neutral pH, that is, histidine can trigger a T-state to R-state transition. The D53,54N mutant of HDC has an elevated Km, even at low pH, indicating that the enzyme assumes the low activity T-state. We have solved the structures of the D53,54N mutant at low pH, with and without the substrate analog histidine methyl ester (HME) bound. Structural analysis shows that the apo-D53,54N mutant is in the inactive or T-state and that binding of the substrate analog induces the enzyme to adopt the active or R-state. A mechanism for the cooperative transition is proposed.  相似文献   

5.

Background

Guinea pigs are considered to be genetically adapted to a high altitude environment based on the consistent finding of a high oxygen affinity of their blood.

Methodology/Principal Findings

The crystal structure of guinea pig hemoglobin at 1.8 Å resolution suggests that the increased oxygen affinity of guinea pig hemoglobin can be explained by two factors, namely a decreased stability of the T-state and an increased stability of the R2-state. The destabilization of the T-state can be related to the substitution of a highly conserved proline (P44) to histidine (H44) in the α-subunit, which causes a steric hindrance with H97 of the β-subunit in the switch region. The stabilization of the R2-state is caused by two additional salt bridges at the β1/β2 interface.

Conclusions/Significance

Both factors together are supposed to serve to shift the equilibrium between the conformational states towards the high affinity relaxed states resulting in an increased oxygen affinity.  相似文献   

6.
Robinson VL  Smith BB  Arnone A 《Biochemistry》2003,42(34):10113-10125
In 1947, Perutz and co-workers reported that crystalline horse methemoglobin undergoes a large lattice transition as the pH is decreased from 7.1 to 5.4. We have determined the pH 7.1 and 5.4 crystal structures of horse methemoglobin at 1.6 and 2.1 A resolution, respectively, and find that this lattice transition involves a 23 A translation of adjacent hemoglobin tetramers as well as changes in alpha heme ligation and the tertiary structure of the alpha subunits. Specifically, when the pH is lowered from 7.1 to 5.4, the Fe(3+) alpha heme groups (but not the beta heme groups) are converted from the aquomet form, in which the proximal histidine [His87(F8)alpha] and a water molecule are the axial heme ligands, to the hemichrome (bishistidine) form, in which the proximal histidine and the distal histidine [His58(E7)alpha] are the axial heme ligands. Hemichrome formation is coupled to a large tertiary structure transition in the eight-residue segment Pro44(CD2)alpha-Gly51(D7)alpha that converts from an extended loop structure at pH 7.1 to a pi-like helix at pH 5.4. The formation of the pi helix forces Phe46(CD4)alpha out of the alpha heme pocket and into the interface between adjacent hemoglobin tetramers where it participates in crystal lattice contacts unique to the pH 5.4 structure. In addition, the transition from aquomet alpha subunits to bishistidine alpha subunits is accompanied by an approximately 1.2 A movement of the alpha heme groups to a more solvent-exposed position as well as the creation of a solvent channel from the interior of the alpha heme pocket to the outside of the tetramer. These changes and the extensive rearrangement of the crystal lattice structure allow the alpha heme group of one tetramer to make direct contact with an alpha heme group on an adjacent tetramer. These results suggest possible functional roles for hemichrome formation in vivo.  相似文献   

7.
Li D  Harper S  Speicher DW 《Biochemistry》2007,46(37):10585-10594
Red cell spectrin alpha and beta subunits consist primarily of many tandem homologous motifs with very similar three- helix-bundle structures and similar dimer interfaces. Although misassembled homodimers can form under some conditions, correctly aligned heterodimers consistently assemble provided a small "dimer initiation" site near the actin binding domain is present. The dimer initiation site has been characterized to some extent, but little is known about the subsequent, low-affinity lateral interactions of the remaining motifs along the length of this ropelike molecule or the forces involved in these two steps of the dimerization process. In this study, we used isothermal titration calorimetry to deduce the mechanism and energetics of the two heterodimer assembly phases. The high-affinity initiation of dimerization is primarily enthalpically driven, which is consistent with initial alignment and docking of specific complementary alpha and beta motifs in the dimer initiation site driven by long-range electrostatic interactions followed by tight binding stabilized by hydrogen bonds and other hydrophilic interactions. In contrast, the subsequent weak lateral associations of additional motifs are primarily entropically driven, suggesting binding primarily involves weak hydrophobic interactions. Although initial docking is largely electrostatic, the only lateral interaction within the first four pairs of motifs that involves a net change in protons is the interaction of the alpha18 and beta4 repeats. This substoichiometric uptake of protons could be due to a pKa shift of a histidine in the alpha18 motif located near the dimer interface in a proposed homology-based model. On the basis of this analysis of heterodimer thermodynamics, a detailed model of spectrin dimer assembly is proposed.  相似文献   

8.
Hagfish are extremely primitive jawless fish of disputed ancestry. Although generally classed with lampreys as cyclostomes ("round mouths"), it is clear that they diverged from them several hundred million years ago. The crystal structures of the deoxy and CO forms of hemoglobin from a hagfish (Eptatretus burgeri) have been solved at 1.6 and 2.1 A, respectively. The deoxy crystal contains one dimer and two monomers in a unit cell, with the dimer being similar to that found in lamprey deoxy-Hb, but with a larger interface and different relative orientation of the partner chains. Ile(E11) and Gln(E7) obstruct ligand binding in the deoxy form and make room for ligands in the CO form, but no interaction path between the two hemes could be identified. The BGH core structure, which forms the alpha1beta1 interface of all vertebrate alpha2beta2 tetrameric Hbs, is conserved in hagfish and lamprey Hbs. It was shown previously that human and cartilaginous fish Hbs have independently evolved stereochemical mechanisms other than the movement of the proximal histidine to regulate ligand binding at the hemes. Our results therefore suggest that the formation of the alpha2beta2 tetramer using the BGH core and the mechanism of quaternary structure change evolved between the branching points of hagfish and lampreys from other vertebrates.  相似文献   

9.
Zinc insulin hexamer has been shown to undergo a phenol-induced T6 to R6 conformational transition in solution. Our circular dichroic (CD) studies demonstrate that insulin undergoes pH-dependent conformational changes over the pH range of 6-10 in the T-state and in the R- state. In order to determine which specific amino acid residues may be responsible for these pH-dependent changes, a series of insulin analogs were utilized. In the T-state, the pH dependent CD changes monitored in the far UV region have a pK of 8.2 and appear to be related to the titration of the A1-Gly amino group. Using the near UV CD a second pH-dependent conformational change was detected with a pK of 7.5 in the T-state. 1H N.M.R. studies suggest that B5-His may be responsible for this conformational transition. In the presence of m-cresol (R-state), the pK value was found to be 6.9. During this titration, the increased ellipticity for the R-state is diminishing as pH decreases from pH 8 to 6, and no difference in ellipticity was observed at 255 nm between T- and R-states at pH 6. Therefore, this may be due to the transition from the R back to the T-state.  相似文献   

10.
L J Parkhurst  D J Goss 《Biochemistry》1984,23(10):2180-2186
Oxygen and CO ligand binding kinetics have been studied for the hybrid hemoglobin (Hb) alpha (human):beta (carp), hybrid II. Valency and half-saturated hybrids were used to aid in the assignment of the conformations of both chains. In hybrid II, an intermediate S state occurs, in which one chain has R- and the other T-state properties. In HbCO at pH 6 (plus 1 mM inositol hexaphosphate), the human alpha-chain is R state and the carp beta-chain is T state. We have no evidence at this pH that the carp beta-chain ever assumes the R conformation. At pH 6, the human alpha-chain shows human Hb R-state kinetics at low fractional photolysis and T-state rates for CO ligation by stopped flow. At pH 7, the human-chain R-state rate slows toward a carp hemoglobin rate. The carp beta-chains, on the other hand, react 50% more rapidly in the liganded conformation than in carp hemoglobin, and while the human alpha-chains are in the R state, the two beta-chains appear to function as a cooperative dimer. In this hemoglobin, the chains appear to be somewhat decoupled near pH 7, allowing a sequential conformational change from the R state in which the beta-chains first assume T-state properties, followed by the alpha-chains. The rate of the R-T conformational change for the carp beta-chains is at least 300 times greater than that for the human alpha-chains. At pH 9, the R----T conformational transition rate is at least 200 times slower than that for human hemoglobin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
HutP is an L-histidine-activated RNA binding protein that regulates the expression of the histidine utilization (hut) operon in Bacillus subtilis by binding to cis-acting regulatory sequences on the hut mRNA. The crystal structure of HutP complexed with an L-histidine analog showed a novel fold; there are four antiparallel beta strands in the central region of each monomer, with two alpha helices each on the front and back. Two HutP monomers form a dimer, and three dimers are arranged in crystallographic 3-fold symmetry to form a hexamer. A histidine analog was located in between the two monomers of HutP, with the imidazole group of L-histidine hydrogen bonded to Glu81. An activation mechanism is proposed based on the identification of key residues of HutP. The HutP binding region in hut mRNA was defined: it consists of three UAG trinucleotide motifs separated by four spacer nucleotides. Residues of HutP potentially important for RNA binding were identified.  相似文献   

12.
Two CpG mutations at codon 504 of the gene encoding the alpha-subunit of beta-hexosaminidase (the HEX A gene) have been identified previously: (1) a C deletion resulting in premature termination of the alpha-subunit and (2) a G----A transition resulting in 504Arg----His substitution, in patients with infantile Tay-Sachs disease and juvenile GM2 gangliosidosis, respectively. This prompted a search for a C----T transition in the same dinucleotide, as would be expected from the mechanism of CpG mutagenesis. Such a mutation, which results in a substitution of cysteine for arginine, was found in a patient with chronic GM2 gangliosidosis, in compound heterozygosity with the known 269Gly----Ser allele. The biochemical phenotype of the 504Arg----Cys mutation was examined by site-directed mutagenesis of the alpha-subunit cDNA and transfection of Cos-1 cells. The expression of the mutagenized cDNA with the cysteine substitution gave rise to an alpha-subunit with the same defects as those resulting from expression of mutagenized cDNA with the histidine substitution--i.e., secretion primarily as the alpha-monomer rather than as the alpha alpha dimer, along with absence of enzymatic activity. The 504Arg----Cys/269Gly----Ser genotype of the chronic GM2 gangliosidosis patient is shared by her sibling, who has mild adult-onset GM2 gangliosidosis, implying that the clinical differences between them must be attributed to other factors. The family is unique in yet another respect--namely, that the normal allele of the mother and of a 504Arg----Cys heterozygous sibling has a silent mutation, a G----A transition in the wobble position of the glutamic acid codon at position 506.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Bezafibrate, an antilipidemic drug, is known as a potent allosteric effector of hemoglobin. The previously proposed mechanism for the allosteric potency of this drug was that it stabilizes and constrains the T-state of hemoglobin by specifically binding to the large central cavity of the T-state. Here we report a new allosteric binding site of fully liganded R-state hemoglobin for this drug. The high resolution crystal structure of horse carbonmonoxyhemoglobin in complex with bezafibrate reveals that the bezafibrate molecule lies near the surface of the E-helix of each alpha subunit and the complex maintains the quaternary structure of the R-state. Binding is caused by the close fit of bezafibrate into the binding pocket, which is composed of some hydrophobic residues and the heme edge, suggesting the importance of hydrophobic interactions. Upon binding of bezafibrate, the distance between Fe and the N epsilon(2) of distal His E7(alpha 58) is shortened by 0.22 A in the alpha subunit, whereas no significant structural changes are transmitted to the beta subunit. Oxygen equilibrium studies of R-state-locked hemoglobin with bezafibrate in a wet porous sol-gel indicate that bezafibrate selectively lowers the oxygen affinity of one type of subunit within the R-state, consistent with the structural data. These results disclose a new allosteric mechanism of bezafibrate and offer the first demonstration of how the allosteric effector interacts with R-state hemoglobin.  相似文献   

14.
The origin of co-operativity in haemoglobin (Hb) resides in the reduced affinity of the T-state. T-state Hb crystals grown from polyethyleneglycol can be liganded without the molecule switching to the R high affinity state. X-ray analysis of T-state alpha-oxy Hb and T-state met Hb has identified the structural basis for reduced affinity. The nature of the chemical tension at the haem environment is different in the alpha and beta haems. There are small but definite structural changes associated with ligation in the T-state: these prove to be mostly in the same direction as the larger changes that occur in the T-->R transition.  相似文献   

15.
Collagen XI is a heterotrimeric molecule found predominantly in heterotypic cartilage fibrils, where it is involved in the regulation of fibrillogenesis. This function is thought to involve the complex N-terminal domain. The goal of this current study was to examine its structural organization to further elucidate the regulatory mechanism. The amino-propeptide (alpha1-Npp) alone or with isoforms of the variable region were recombinantly expressed and purified by affinity and molecular sieve chromatography. Cys-1-Cys-4 and Cys-2-Cys-3 disulfide bonds were detected by liquid chromatography-tandem mass spectrometry. This pattern is identical to the homologous alpha2-Npp, indicating that the recombinant proteins were folded correctly. Anomalous elution on molecular sieve chromatography suggested that the variable region was extended, which was confirmed using rotary shadowing; the alpha1-Npp formed a globular "head" and the variable region an extended "tail." Circular dichroism spectra analysis determined that the alpha1-Npp comprised 33% beta-sheet, whereas the variable region largely comprised non-periodic structure. Taken together, these results imply that the alpha1-Npp cannot be accommodated within the core of the fibril and that the variable region and/or minor helix facilitates its exclusion to the fibril surface. This provides further support for regulation of fibril diameter by steric hindrance or by interactions with other matrix components that affect fibrillogenesis.  相似文献   

16.
The membrane-disruptive antimicrobial peptide PGLa is found to change its orientation in a dimyristoyl-phosphatidylcholine bilayer when its concentration is increased to biologically active levels. The alignment of the alpha-helix was determined by highly sensitive solid-state NMR measurements of (19)F dipolar couplings on CF(3)-labeled side chains, and supported by a nonperturbing (15)N label. At a low peptide/lipid ratio of 1:200 the amphiphilic peptide resides on the membrane surface in the so-called S-state, as expected. However, at high peptide concentration (>/=1:50 molar ratio) the helix axis changes its tilt angle from approximately 90 degrees to approximately 120 degrees , with the C-terminus pointing toward the bilayer interior. This tilted "T-state" represents a novel feature of antimicrobial peptides, which is distinct from a membrane-inserted I-state. At intermediate concentration, PGLa is in exchange between the S- and T-state in the timescale of the NMR experiment. In both states the peptide molecules undergo fast rotation around the membrane normal in liquid crystalline bilayers; hence, large peptide aggregates do not form. Very likely the obliquely tilted T-state represents an antiparallel dimer of PGLa that is formed in the membrane at increasing concentration.  相似文献   

17.
Spectroscopic studies indicate an interaction of the distal histidine with the heme iron as well as the transmission of distal heme perturbations across the alpha1beta1 interface. Molecular dynamics simulations have been used to explain the molecular basis for these processes. Using a human methemoglobin alpha beta dimer, it has been shown that at 235 K after 61 ps, a rearrangement occurs in the alpha-chain corresponding to the formation of a bond with the distal histidine. This transition does not take place in the beta-chain during a 100-ps simulation and is reversed at 300 K. The absence of the distal histidine transition in the isolated chains and with the interface frozen indicate the involvement of the alphabeta interface. A detailed analysis of the simulation has been performed in terms of RMS fluctuations, domain cross-correlation maps, the disruption of helix hydrogen bonds, as well changes in electrostatic interactions and dihedral angles. This analysis shows that the rearrangements in the alpha-chain necessary to bring the histidine closer to the iron involve alterations primarily in the CD loop and at the interface. Communication to the beta-chain distal pocket is propagated by increased interactions of the alpha-chain B helix with the beta-chain G-GH-H segment and the flexibility in the EF loop. The G helices shown to be involved in propagation of perturbation across the alpha1beta1 interface extend into the alpha1beta2 interfaces, providing a mechansim whereby distal interactions can modulate the T<==>R transition in hemoglobin.  相似文献   

18.
Aspartokinase III (AKIII) from Escherichia coli catalyzes an initial commitment step of the aspartate pathway, giving biosynthesis of certain amino acids including lysine. We report crystal structures of AKIII in the inactive T-state with bound feedback allosteric inhibitor lysine and in the R-state with aspartate and ADP. The structures reveal an unusual configuration for the regulatory ACT domains, in which ACT2 is inserted into ACT1 rather than the expected tandem repeat. Comparison of R- and T-state AKIII indicates that binding of lysine to the regulatory ACT1 domain in R-state AKIII instigates a series of changes that release a "latch", the beta15-alphaK loop, from the catalytic domain, which in turn undergoes large rotational rearrangements, promoting tetramer formation and completion of the transition to the T-state. Lysine-induced allosteric transition in AKIII involves both destabilizing the R-state and stabilizing the T-state tetramer. Rearrangement of the catalytic domain blocks the ATP-binding site, which is therefore the structural basis for allosteric inhibition of AKIII by lysine.  相似文献   

19.
The kinetics of ligand rebinding have been studied for modified or cross-linked hemoglobins (Hbs). Several compounds were tested that interact with alpha Val 1 or involve a cross-link between alpha Val 1 and alpha Lys 99 of the opposite dimer. By varying the length of certain cross-linking molecules, a wide range in the allosteric equilibrium could be obtained. Several of the mono-aldehyde modified Hbs show a shift toward the high affinity conformation of Hb. At the other extreme, for certain di-aldehyde cross-linked Hbs, the CO kinetics are typical of binding to deoxy Hb, even at low photodissociation levels, with which the dominant photoproduct is the triply liganded species; in these cases the hemoglobin does not switch from the low to high affinity state until after the fourth ligand is bound. Although each modified Hb shows only two distinct rates, the kinetic data as a function of dissociation level cannot be simulated with a simple two-state model. A critical length is observed for the maximum shift toward the low affinity T-state. Longer or shorter lengths of the cross-linker yielded more high affinity R-state. Unlike native Hb, which is in equilibrium with free dimers, the cross-linked Hbs maintain the fraction slow kinetics, which is unique to Hb tetramers, even at 0.5 microM (total heme). Addition of HbCN to unmodified HbCO solutions results in dimer exchange, which decreases the relative fraction of slow bimolecular kinetics; the cross-linked Hbs did not show such an effect, indicating that they do not participate in dimer exchange.  相似文献   

20.
Ligand photodissociation experiments are used to measure the prephotolysis equilibria between doubly liganded R and T quaternary conformers of the symmetric Fe-Co HbCO hybrids, (alpha(FeCO)beta(Co))(2) and (alpha(Co)beta(FeCO))(2). The free energies obtained from these data are used to calculate the cooperative free energies of the (alpha(FeCO)beta(Fe))(2) and (alpha(Fe)beta(FeCO))(2) intermediate CO-ligation states of normal hemoglobin in the T conformation, quantities important to the evaluation of current models of cooperativity. The symmetry rule model, incorporating sequential cooperativity of T-state ligand binding within an alphabeta dimer in addition to the traditional two-state cooperativity of the tetramer, predicts a larger free energy penalty for disturbing both dimers in a doubly liganded T tetramer than would be expected in the two-state model as currently formulated. (Cooperative energy penalties are simply proportional to the number of tetramer-bound ligands in the traditional two-state model.) The value found here for the energies of doubly liganded T microstates in which both dimers are perturbed, 7.9 +/- 0.3 kcal/mol, is consistent with the symmetry rule model but significantly higher than that expected (5-6 kcal/mol) in the two-state model of cooperativity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号