首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
正We are very pleased to announce a special issue,to be published in Summer 2018,on "Plant Genomics" in the journal Genomics,ProteomicsBioinformatics(GPB).The development of genomics has greatly accelerated and even renovated the plant research.The sequencing of plant genomes has greatly facilitated the research on gene functions.The multiple released genomes further promote the research on genome evolution and its functional  相似文献   

2.
正We are very pleased to announce a special issue,to be published in the spring of 2019,on"Plant Genomics"in the journal Genomics,ProteomicsBioinformatics(GPB).The development of genomics has greatly accelerated and even renovated the plant research.The sequencing of plant genomes has greatly facilitated the research on gene functions.The multiple released genomes further promote the research on genome evolution and its functional  相似文献   

3.
正We are very pleased to announce a special issue,to be published in the fall of 2018,on "Plant Genomics"in the journal Genomics,ProteomicsBioinformatics(GPB).The development of genomics has greatly accelerated and even renovated the plant research.The sequencing of plant genomes has greatly facilitated the research on gene functions.The  相似文献   

4.
正We are very pleased to announce a special issue,to be published in the spring of 2019,on‘‘Plant Genomics’’in the journal Genomics,ProteomicsBioinformatics(GPB).The development of genomics has greatly accelerated and even renovated the plant research.The sequencing of plant genomes has greatly facilitated the research on gene functions.The multiple released genomes further promote the research on genome evolution and its functional  相似文献   

5.
正We are very pleased to announce a special issue,to be published in the fall of 2018,on‘‘Plant Genomics’’in the journal Genomics,ProteomicsBioinformatics(GPB).The development of genomics has greatly accelerated and even renovated the plant research.The sequencing of plant genomes has greatly facilitated the research on gene functions.The multiple released genomes further promote the research on genome evolution and its functional  相似文献   

6.
正We are very pleased to announce a special issue, to be published in the summer of 2019,on ‘‘Plant Genomics’’ in the journal Genomics, ProteomicsBioinformatics (GPB).The development of genomics has greatly accelerated and even renovated the plant research.The sequencing of plant genomes has greatly facilitated the research on gene functions. The multiple released genomes further promote the research on genome evolution and its functional  相似文献   

7.
<正>We are very pleased to announce a special issue,to be published in the fall of 2018,on‘‘Plant Genomics’’in the journal Genomics,ProteomicsBioinformatics(GPB).The development of genomics has greatly accelerated and even renovated the plant research.  相似文献   

8.
<正>We are very pleased to announce a special issue,to be published in the summer of 2018,on ‘‘Plant Genomics’’ in the journal Genomics,ProteomicsBioinformatics(GPB).The development of genomics has greatly accelerated and even renovated the plant research.  相似文献   

9.
《Cell research》2006,16(5):401-401
The use of molecular biology and genomics tools in plant biology research has greatly expanded our understandingof the molecular mechanisms that underlie plant development and physiology.The successful establishment of researchresources such as mutant populations has led to progress in a variety of fields,including plant reproductive develop-ment,signal transduction,hormone functions,defense responses and epigenetic control.In the future these advanceswill potentially facilitate crop improvement through molecular breeding.  相似文献   

10.
The presence/absence variants (PAVs) are a major source of genome structural variation and have profound effects on phenotypic and genomic variation in animals and humans. However, little is understood about PAVs in plant genomes. Our previous resequencing effort on three sorghum (Sorghum bicolour L.) genomes, each 12? coverage, uncovered 5 364 PAVs. Here, we report a detailed characterization of 51 large-size (&gt;30 kb) PAVs. These PAVs spanned a total size of 2.92 Mb of the sorghum genome containing 202 known and predicted genes, including 38 genes annotated to encode celldeath and stress response genes. The PAVs varied considerably for repeat sequences and mobile elements with DNA trans-posons as the major components. The frequency and distribution of these PAVs differed substantial y across 96&amp;nbsp;sorghum inbred lines, and the low-and high frequency PAVs differed in their gene categories. This report shed new light on the occurrence and diversity of PAVs in sorghum genomes. Our research exemplifies a new perspective to explore genome structural variation for genetic improvement in plant breeding.  相似文献   

11.
<正>We are very pleased to announce a special issue,to be published in the spring of 2018,on "URNA Epigenetics" in the journal Genomics,PwteomicsBioinformatics(GPB) RNAs are life’s essential molecules with diverse functions.The identification and functional studies of multipe types of non-coding RNAs have been a major focus of life science research  相似文献   

12.
13.
Editorial     
《植物生理学报》2009,(5):839-839
Plants--of the botanical kind--are not often mentioned in 'The State of the Union' addresses by US Presidents, but when they are, it can have global impacts on plant biology research. In the 1990s, President Clinton ridiculed government support of research on 'plant stress' in one of his addresses, confusing psychological stress with the devastating effects of drought, salinity, and other environmental stresses on agricultural productivity. A decade later, President Bush mentioned the S word (switchgrass) in connection with alternatives to petroleum, thereby encouraging the US Department of Energy to invest heavily in research to understand plant cell walls and to develop efficient processes to harness the sun's energy, which is stored on a massive scale in plant cell walls.  相似文献   

14.
《Acta Botanica Sinica》2009,(8):718-718
Since the very beginning of plant science, sexual plant reproduction (SPR) has proved an attractive and enduring topic for generations of botanists. With the rapid development of modern technology, a significant acceleration has occurred in our understanding on the developmental mechanisms of plant reproductive processes, particularly the evolution of double fertilisation, signalling in pollen tube orientation, molecular characterisation of plant gametes, maternal to zygotic transitions and parental gene involvement in early embryogenesis. This is reflected not only by several recent high-ranking research papers, but also by the frequent conferences and workshops on these topics. These include the 2008 XXth International Congress on SPR in Brasilia and "Frontiers in SPR Ⅲ" in Tucson, as well as "Cell- Cell Communication in Plant Reproduction" held in 2009 in Bath. The continuing efforts from around the world indicate that SPR is still a fertile and flourishing field, with great expectations for the coming decade.  相似文献   

15.
Recent Progress on Rice Genetics in China   总被引:1,自引:0,他引:1  
Through thousands of years of evolution and cultivation, tremendously rich genetic diversity has been accumulated in rice (Oryza sativa L.), developing a large germplasm pool from which people can select varieties with morphologies of Interest and other important agronomic traits. With the development of modern genetics, scientists have paid more attention to the genetic value of these elite varieties and germplasms, and such rich rice resources provide a good foundation for genetic research in China. Approximately 100 000 accessions of radiation-, chemical- or insertion-induced mutagenesis have been generated since the 1980s, and great progress has been made on rice molecular genetics. So far at least 16 variant/mutant genes Including MOC1, BC1, SKC1, and Rfgenes have been isolated and characterized in China. These achievements greatly promote the research on functional genomics, understanding the mechanism of plant development and molecular design breeding of rice in China. Here we review the progress of three aspects of rice genetics in China: moving forward at the molecular level, genetic research on elite varieties and germplasms, and new gene screening and genetic analysis using mutants. The prospects of rice genetics are also discussed.  相似文献   

16.
The aquatic ferns of the genus Azolla are nitrogen-fixing plants that have great potentials in agricultural production and environmental conservation. Azolla in many aspects is qualified to serve as a model organism for genomic studies because of its importance in agriculture, its unique position in plant evolution, its symbiotic relationship with the N2-fixing cyanobacterium, Anabaena azollae, and its moderate-sized genome. The goals of this genome project are not only to understand the biology of the Azolla genome to promote its applications in biological research and agriculture practice but also to gain critical insights about evolution of plant genomes. Together with the strategic and technical improvement as well as cost reduction of DNA sequencing, the deciphering of their genetic code is imminent.  相似文献   

17.
<正>We are very pleased to announce a special issue,to be published in Fall 2017,on"RNA Epigenetics"in the journal Genomics,ProteomicsBioinformatics(GPB).RNAs are life’s essential molecules with diverse functions.The identification and functional studies of multiple types of non-coding RNAs have been a major focus of life science research during the past decade.Moreover,diversified chemical modifications as well as structural  相似文献   

18.
正We are very pleased to announce a special issue,to be published in Summer 2017,on "RNA Epigenetics" in the journal Genomics,ProteomicsBioinformatics(GPB).RNAs are life's essential molecules with diverse functions.The identification and functional studies of multiple types of non-coding RNAs have been a major focus of life science research during the past decade.Moreover,diversified chemical modifications as well as structural  相似文献   

19.
<正>We are very pleased to announce a special issue,to be published in the spring of 2018,on‘‘RNA Epigenetics’’in the journal Genomics,ProteomicsBioinformatics(GPB).RNAs are life’s essential molecules with diverse functions.The identification and functional studies of multiple types of non-coding RNAs have been a major focus of life science research  相似文献   

20.
<正>We are very pleased to announce a special issue,to be published in the fall of 2017,on‘‘RNA Epigenetics’’in the journal Genomics,ProteomicsBioinformatics(GPB).RNAs are life’s essential molecules with diverse functions.The identification and functional studies of multiple types of non-coding RNAs have been a major focus of life science research  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号