首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An extensive body of evidence links inositide-specific phospholipase C (PLC) to the nucleus and the main isoform located in the nucleus is PLCbeta(1). Constitutive overexpression of nuclear PLCbeta(1) has been previously shown to inhibit Friend erythroleukemia cells differentiation and to induce cell cycle progression targeting cyclin D3. The aim of this study was to identify new proteins regulated by PLCbeta(1) overexpression, given the role exerted by its signaling in the nucleus during cell growth and differentiation. To identify novel downstream effectors of nuclear PLCbeta(1)-dependent signaling in Friend erythroleukemia cells, we performed the high-resolution 2-DE-based proteomic analysis. Using a proteomic approach we found that SRp20, a member of the highly conserved SR family of splicing regulators, was down-regulated in cells overexpressing nuclear PLCbeta(1) as compared with wild-type cells. Reduction in SRp20 was confirmed by 2-D Western blotting. Moreover, we have shown that nuclear PLCbeta(1) is bound to the SRp20 splicing factor. Indeed, by immunoprecipitation and subcellular fractioning, we have demonstrated that endogenous PLCbeta(1) and SRp20 physically interact in the nucleus. Here we show the existence of a PLCbeta(1)-specific target, the splicing factor SRp20, whose expression is specifically down-regulated by the nuclear signaling evoked by PLCbeta(1).  相似文献   

2.
3.
4.
5.
6.
7.
8.
In the present work, we have analyzed the expression and subcellular localization of all the members of inositide-specific phospholipase C (PLCbeta) family in muscle differentiation, given that nuclear PLCbeta1 has been shown to be related to the differentiative process. Cell cultures of C2C12 myoblasts were induced to differentiate towards the phenotype of myotubes, which are also indicated as differentiated C2C12 cells. By means of immunochemical and immunocytochemical analysis, the expression and subcellular localization of PLCbeta1, beta2, beta3, beta4 have been assessed. As further characterization, we investigated the localization of PLCbeta isoenzymes in C2C12 cells by fusing their cDNA to enhanced green fluorescent protein (GFP). In myoblast culture, PLCbeta4 was the most expressed isoform in the cytoplasm, whereas PLCbeta1 and beta3 exhibited a lesser expression in this cell compartment. In nuclei of differentiated myotube culture, PLCbeta1 isoform was expressed at the highest extent. A marked decrease of PLCbeta4 expression in the cytoplasm of differentiated C2C12 cells was detected as compared to myoblasts. No relevant differences were evidenced as regards the expression of PLCbeta3 at both cytoplasmatic and nuclear level, whilst PLCbeta2 expression was almost undetectable. Therefore, we propose that the different subcellular expression of these PLC isoforms, namely the increase of nuclear PLCbeta1 and the decrease of cytoplasmatic PLCbeta4, during the establishment of myotube differentiation, is related to a spatial-temporal signaling event, involved in myogenic differentiation. Once again the subcellular localization appears to be a key step for the diverse signaling activity of PLCbetas.  相似文献   

9.
10.
11.
12.
Up-regulation of nuclear PLCbeta1 in myogenic differentiation   总被引:2,自引:0,他引:2  
Phospholipase C beta(1) (PLCbeta(1)) signaling in both cell proliferation and differentiation has been largely investigated, but its role in myoblast differentiation is still unclear. The C2C12 myogenic cell line has been used in this study in order to find out the role of the two subtypes of PLCbeta(1), i.e., a and b in this process. C2C12 myoblast proliferate in response to mitogens and upon mitogen withdrawal differentiates into multinucleated myotubes. We found that differentiation of C2C12 skeletal muscle cells is characterized by a marked increase in the amount of nuclear PLCbeta(1)a and PLCbeta(1)b. Indeed, treatment with insulin induces a dramatic rise of both PLCbeta(1) subtypes expression and activity, as determined by immunochemical and enzymatic assays. Immunofluorescence experiments with anti-PLCbeta(1) specific monoclonal antibody showed a low level of cytoplasmatic and nuclear staining during the initial 12 h of differentiation whilst a massive nuclear staining is appreciable in differentiating cells. The time course of PLCbeta(1) expression versus Troponin T expression clearly indicates that the increase in the amount of PLCbeta(1) takes place 24 h earlier than that of Troponin T. Moreover, the overexpression of the PLCbeta(1)M2b mutant, lacking the nuclear localization signal and entirely located in the cytoplasm, represses the formation of mature multinucleated myotube. Taken together these results suggest that nuclear PLCbeta(1) is a key player in myoblast differentiation, functioning as a positive regulator of this process.  相似文献   

13.
14.
15.
Previous reports from our laboratories and others have hinted that the nucleus is a site for an autonomous signalling system acting through the activation of the inositol lipid cycle. Among phospholipases (PLC) it has been shown previously that PLCbeta1 is specifically localised in the nucleus as well as at the plasma membrane. Using NIH 3T3 cells, it has been possible to obtain, with two purification strategies, in the presence or in the absence of Nonidet P-40, both intact nuclei still maintaining the outer membrane and nuclei completely stripped of their envelope. In these nuclei, we show that not only PLCbeta1 is present, but also PLCbeta2, PLCbeta3 and PLCbeta4. The more abounding isoform is PLCbeta1 followed by PLCbeta3, PLCbeta2 and PLCbeta4, respectively. All the isoforms are enriched in nuclear preparations free from nuclear envelope and cytoplasmatic debris, indicating that the actual localisation of the PLCbeta isozymes is in the inner nuclear compartment.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号