首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The increase in the release of acetylcholine (ACh) from cortical slices of rat brain elicited by the depolarizing agents, ouabain and tityustoxin (TsTX) was compared in the presence of tetrodotoxin, an inhibitor of Na+ transport and of ethyleneglycol tetraacetic acid, a specific chelator of Ca2+. TsTX stimulated the release of ACh independently of K1 but required both Na+ and Ca2+. Unlike ouabain, TsTX failed to inhibit the Na+, K+ -ATPase of rat brain homogenates. The uptake of 24Na+ and of 45Ca2+ by the slices was significantly enhanced by TsTX over the entire incubation period during which this process was compared to TsTX-free controls. A hypothesis of TsTX action is proposed which differs from that necessary to explain the ACh releasing effect of ouabain.  相似文献   

2.
The effect of tityustoxin (TsTX) on the release of [3H] dopamine in rat brain prefrontal cortical slices was investigated. The stimulatory effect of TsTX was dependent on incubation time and TsTX concentration with an EC50 of 0.05 microM. The release of [3H] dopamine stimulated by TsTX is dependent of Na+ channels and thus, was completely, inhibited by tetrodotoxin. Tityustoxin-induced release of [3H] dopamine was not blocked by ethylene glycol-bis(beta-aminoethyl) ether (EGTA) and thus was independent of extracellular calcium. However, [3H] dopamine release induced by TsTX was inhibited by 52% by BAPTA, a calcium chelator. Moreover, dantrolene (100 microM) and tetracaine (500 microM) partially inhibited by 38 and 29%, respectively, the tityustoxin-induced release of [3H] dopamine from prefrontal cortical slices suggesting a role from intracellular calcium increase. In conclusion, part of the TsTX-induced release [3H] dopamine may be due to an effect of the toxin on the reversal of the dopamine transporter (DAT), but the majority of the toxin stimulated release of [3H] dopamine involves the mobilization of intracellular calcium stores.  相似文献   

3.
Exogenous labeled acetylcholine ([14C]ACh) bound, in rat brain cortex slices, in a poorly (or non-) exchangeable form, by prior incubation of the slices in presence of 5 mM [14C]ACh, is partly released in an ACh-free physiological saline-glucose-paraoxon medium by a variety of conditions. Among these are high [K+], lack of Na+ or Ca2+, and the presence of protoveratrine or ouabain. The releasing effect of protoveratrine is completely abolished by tetrodotoxin which itself is without effect. Only about half of the retained or tissue-bound [14C]ACh is affected by these conditions. The whole of the bound ACh is released by treatment with acid or by dissolution of the cell membranes. The stimuli that release part of the bound exogenous [14C]ACh appear to be similar to those that release glucose-derived tissue-bound ACh formed during normal cerebral metabolism.  相似文献   

4.
Abstract— Radioactive acetylcholine ([14C]ACh) that is taken up by rat cerebral cortex slices, incubated aerobically in a physiological saline-glucose paraoxon-[14C]ACh medium, apparently by a passive diffusion process at concentrations > 1 mm consists essentially of two forms, a readily exchangeable and releaseable or mobile form, and a bound or retained form, poorly (or not) exchangeable. The quantity of retained ACh consists of a considerable fraction of that taken up amounting to 54% with external 0.1 mm -[14C]ACh and about constant, 27%, for the range 5-50mm -[14C]ACh. All its ACh is released on homogenization with 0.1 n -perchloric acid or on tissue disintegration in distilled water. The cerebral uptake of ACh differs basically from that of urea as there is no retention of the latter following its uptake. Cerebral cortex slices are superior to those of cerebellar cortex, subcortical white matter, kidney cortex, liver and spleen in taking up and retaining [14C]ACh. Deprivation in the incubation media of glucose or Na+ or Ca2+. or the presence of dinitrophenol, whilst causing little change in ACh uptake, induces considerable changes in swelling and ACh retention; the greater the amount of swelling the smaller is that of retention. It seems that the latter is segregated in compartments characterized by a low permeability to exogenous ACh. About half of it is independent of changes in incubation conditions whilst the other half enters the compartment by an Na+, Ca2+ and energy-dependent process. At least part of the retention is neuronal as it is diminished by protovera-trine, the diminution being blocked by tetrodotoxin. Mobile ACh (i.e. total uptake minus retained ACh) is largely unaffected by protoveratrine, ouabain, etc. It seems that the retained ACh is directly proportional to the amount of mobile ACh minus the amount that enters with swelling. If the latter is largely glial in location, then the retained ACh is simply proportional to the mobile neuronal ACh. Suggestions are made as to the location of the retained ACh in the brain cells and to the processes involved in its segregation there. Release of retained ACh occurs on change of the Na+ gradient. Atropine and d-tubocurarine also diminish the amount of retained ACh but the percentage diminution falls with increase of the concentration of exogenous ACh.  相似文献   

5.
Abstract: We studied the effect of α-latrotoxin (αLTX) on [14C]acetylcholine ([14C]ACh) release, intracellular Ca2+ concentration ([Ca2+]i), plasma membrane potential, and high-affinity choline uptake of synaptosomes isolated from guinea pig cortex. αLTX (10?10-10?8M) caused an elevation of the [Ca2+]i as detected by Fura 2 fluorescence and evoked [14C]ACh efflux. Two components in the action of the toxin were distinguished: one that required the presence of Na+ in the external medium and another that did not. Displacement of Na+ by sucrose or N-methylglucamine in the medium considerably decreased the elevation of [Ca2+]i and [14C]ACh release by αLTX. The Na+-dependent component of the αLTX action was obvious in the inhibition of the high-affinity choline uptake of synaptosomes. Some of the toxin action on both [Ca2+]i and [14C]ACh release remained in the absence of Na+. Both the Na+-dependent and the Na+-independent components of the αLTX-evoked [14C]ACh release partly required the presence of either Mg2+ or Ca2+. The nonneurotransmitter [14C]choline was released along with [14C]ACh, but this release did not depend on the presence of either Na+ or Ca2+, indicating nonspecific leakage through the plasma membrane. We conclude that there are two factors in the release of ACh from synaptosomes caused by the toxin: (1) cation-dependent ACh release, which is related to (a) Na+-dependent divalent cation entry and (b) Na+-independent divalent cation entry, and (2) nonspecific Na+- and divalent cation-independent leakage.  相似文献   

6.
The K-stimulated release of [3H]ACh from rat midbrain slices prelabeled by incubation with [3H]choline was dependent on extracellular Ca. Phenobarbital inhibited the K-stimulated [3H]ACh release and the IC50 was equal to that found for K-stimulated endogenous ACh release. These results support the suggestion that barbiturates primarily inhibit the Ca-dependent stimulated release of ACh and affect ACh synthesis only indirectly. K-Stimulated release of [3H]5-HT was also inhibited by removing Ca from the medium or by adding phenobarbital which further supports the effects of barbiturates on the depolarization-induced release process. Fluoxetine, an inhibitor of 5-HT uptake, increased the amount of [3H]5-HT found in the medium but did not fully block the uptake of [3H]5-HT in this slice preparation.  相似文献   

7.
The effect of X537A on acetylcholine (ACh) release was examined in vitro in superfused slices of rat cerebrum and striatum. The ionophore (30 μM) induced a transient release of ACh which was not dependent on calcium in the medium. Also in contrast to K+-stimulated release, X537A-induced release was not sustained by 10?5M choline in the superfusion medium and not inhibited by 5 × 10?4M pentobarbital. The ionophore did not transport ACh or choline from an aqueous to an organic phase. Both K+ and X537A inhibited 1 μM (3H) choline uptake into striatal synaptosomes but this effect of X537A was more extensive and less reversible than that caused by K+. X537A did not inhibit choline acetyltransferase activity.  相似文献   

8.
—Guinea pig cerebral slices were incubated in oxygenated Krebs-Ringer bicarbonate glucose saline for periods of 1 s to 60 min, and their swelling and Na+ and K+ cone were measured. The swelling was at the rate of 8 per cent for the 1st min, and 0·8 per cent for the next 29 min; it fell significantly during the subsequent 30 min (P= 0·05). The Na+ and K+ concn in the tissue fluctuated during the 1st min of incubation, but the Na+ concn had risen to a mean of 108 mm after 1 min incubation and the K+ concn had fallen to a mean of 52 mm by 3 min. The concentrations of these cations did not change significantly after these times. Cerebral slices were also incubated for 30 min in isotonic media modified such that Na+, + K+, Na++ choline+, or K++ choline+ always added up to 150 mm . It was found that about half of the swelling (20-25 per cent) was independent of the Na+ or K+ concn and a further 20-25 per cent of the swelling varied with the cations only if Na+ and K+ were both present and was a function of the K+ concn in the medium (0·15 per cent m-mol). The Na+ concn in the tissue was a mean 8·4 mm after incubation in a Na+-free medium and 7·1 mm in K+ after incubation in a K+-free medium. Cerebral slices in the presence of Na++ K+ excluded one molecule of Na+ for every four molecules in the incubating medium; they accumulated K+ from the medium until the concn in the medium exceeded 130 mm .  相似文献   

9.
The potassium-stimulated release of acetylcholine (ACh), glutamate (GLU) and dopamine (DA) from mouse striatal slices was studied during anoxia and/or 3,4-diaminopyridine (DAP) treatment. Anoxia, in the presence of calcium, increased DA and GLU release, but depressed ACh release. Omission of calcium from an anoxic incubation further stimulated GLU and DA release and impaired ACh release. Under normoxic conditions, DAP (100 M) increased the release of all three neurotransmitters; the sensitivity of the slices to DAP changed with the presence or absence of an acetylcholinesterase inhibitor in the preincubation media. During an anoxic incubation, DAP did not ameliorate the anoxic-induced, K+-stimulated impairment of ACh release, but significantly reduced the K+-stimulated release of GLU and DA. These results are consistent with the hypothesis that hypoxia induces a presynaptic deficit that may underlie postsynaptic ischemic-induced changes. Amelioration of these presynaptic alterations in neurotransmitter release may be an effective approach to preventing hypoxic-induced damage.  相似文献   

10.
The effects of different ionic environments were measured on the concentration of acetyl-choline (ACh) from synaptosomes and their effect on subsequent high affinity choline (Ch) transport and ACh synthesis after resuspension of the synaptosomes in the normal Krebs medium. KCl (40 mM) was used to induce ACh release and reduce synaptosomal ACh content. The effects of Na+ omission, Ca2+ omission, and high Mg2+ on spontaneous (KC1: 4.75 mM) and potassium induced (KC1: 40 mM) ACh release and other cholinergic parameters are presented. The high affinity transport of Ch was more highly correlated with the reciprocal of the ACh level (r= 0.934, P= 9.7 × 10-4) than with the ACh release rate during preincubation (r= 0.792, P= 3.4 × 10-2). The results are consistent with the view that the consequences of the various ionic conditions on Ch transport and ACh synthesis are dependent on their effects on intrasynaptosomal ACh levels and only secondarily on synaptosomal ACh release.  相似文献   

11.
The contents of K+, Na+ and Cl? in various incubation media and in slices of adult cat cerebral cortex incubated in vitro under a variety of conditions have been determined in conjunction with studies on slice swelling and fluid compartmentation reported in the preceding paper (Bourke and Tower , 1966). Cortical slices incubated in media containing 16 Or 27 mm-K+ exhibit contents of K+ and Na+ most nearly comparable to those found in viuo. Substitution of isethionate? For Cl? or omission of Ca2+ in such media have little effect on slice cation composition. Rb+ can effectively substitute for K+, but substitution of Li+ or choline+ for most of the naf in incubation media is associated with accumulation of these cations in slices at the expense of both K+ and Na+. Compared to values in vivo for net contents and/or concentrations of electrolytes in the non-sucrose spaces of cortical slices, conditions yielding most favourable data in vitro appeared to be incubation of cortical slices in 16 mm -K+ medium or in 27 mm -K+ medium with either omission of Ca2+ or replacement of Cl? by isethionate. Essentially complete inhibition of maintenance of K+ and extrusion of Na+ in slices of cat cerebral cortex occurs upon incubation with 10?5 or 10?4m -ouabain, with 50 per cent inhibition of cortical slice electrolyte metabolism occurring at about 8 × 10?7m -ouabain. Cortical slices incubated in 27 mm -K+ medium in the presence of 42K exhibited rates of exchange and turnover of slice K+ (in non-sucrose spaces) of 0·7 μequiv./min and 6.45 per cent respectively. In the presence of 10?5m -ouabain, a maximal ratio of slice specific activity/medium specific activity is attained within about 5 min after 42K addition, compared to >20 min for control slices. In neither case does the maximal specific activity ratio exceed about 0.85; this suggests that some 10-15 per cent of total cortical K+ comprises a “slowly exchangeable” fraction. In the presence of Ca2+ (1.3 mm ) slice oxygen consumption is markedly stimulated (39 per cent) and aerobic glycolysis is markedly depressed (54 per cent) in the presence of 10?5m -ouabain; whereas on omission of Ca2+ from incubation media, both respiration and glycolysis are normally stimulated but, with 10?5m -ouabain present, both are significantly depressed (20 per cent and 37 per cent respectively). Possible relevance of these effects to mobilization of tissue Ca2+ by ouabain and to effects of intracellular Ca2+ on mitochondrial respiratory metabolism is discussed.  相似文献   

12.
The aim of this study was to obtain neurochemical information on the possible role of acetylcholine (ACh) and -aminobutyric acid (GABA) as neurotransmitters in the pontine reticular formation (PRF). We studied the uptake of labeled choline and GABA, as well as the release of this amino acid and of ACh, in PRF slices of the rat. In addition, choline acetyltransferase, acetylcholinesterase and glutamate decarboxylase activities were assayed in PRF homogenates. The uptake of GABA was strictly Na+-dependent, whereas choline uptake was only partially Na+-dependent. The release of both ACh and GABA was stimulated by K+-depolarization, but only the former was Ca2+-dependent. Choline acetyltransferase activity in the PRF was 74% of that in the striatum, whereas acetylcholinesterase activity was considerably lower. Glutamate decarboxylase activity in the PRF was about half that observed in the striatum. These findings support the possibility that both ACh and GABA may act as neurotransmitters in the rat PRF.  相似文献   

13.
Slicing and incubating rat liver caused a rapid Ca2+-independent exchange of K+ for Na+, followed by a Ca2+-dependent recovery. Freshly cut slices washed for 10 min in a Ca2+ medium containing equal concentrations of Na+ and K+ showed little replacement of K+ by Na+ during subsequent incubation in a normal medium. Changes in medium Ca2+ caused immediate changes in slice Na+ and K+, before any substantial change in slice Ca2+ and without altering gradients responsible for passive transfers of Na+ and K+. Ca2+ did not influence an ouabain-sensitive Na+ pump. It also appeared unlikely that Ca2+ was required for an ouabain-insensitive Na+ pump or for maintenance of intracellular structures concerned with K+ sorption, even if these mechanisms existed in the slices. Instead Ca2+ seemed to maintain the cell membrane relatively impermeable to Na+ and K+. An ouabain-sensitive Na+ pump not normally dependent on oxygen supply to the cells appeared to alter its activity according to the work required of it. Control of slice water content could not be attributed to the activity of this pump.  相似文献   

14.
Abstract— Pre-treatment of rat brain slices with organic mercurials prevents the increased acetylcholine release induced by tityustoxin. This inhibition is reversed by dithiothreitol. N-Ethylmaleimide blocks the tityustoxin effect irreversibly. Simultaneous incubation with mercurials and toxin reveals a competition of both ligands for a membrane sulfhydryl group apparently required for tityustoxin activity.  相似文献   

15.
—Uptake of acetylcholine (ACh) in mouse brain cortex slices, previously shown with ACh synthesized from tritiated choline is confirmed with acetyl[1-14C]choline. Radioactivity from tritiated sodium acetate also accumulates in slices, but forms hardly any ACh. Uptake of ACh increases in a Ca2+-free medium, decreases again upon addition of a 3 × 105 molar concentration of an anticholinergic benzilate compound and is completely blocked by the same compound at 3 × 103 m. Slices preloaded with labelled ACh release, after extensive washing, some of their radioactivity into an outer medium free from ACh. Phospholipase, A or C, increases the release of radioactivity from the slices. An equilibrium is reached both with controls and phospholipase-treated slices. Remaining radioactivity seems to be due to bound ACh. Calcium and magnesium ions have no effect on the uptake of tritiated atropine, although low concentrations of Ca2+ decrease the effects of phospholipase C on atropine uptake. The inhibitory effect of K+ on atropine uptake disappears completely after treatment with small amounts of phospholipase A, but even high concentrations of phospholipase C have no effect.  相似文献   

16.
Time course of the hippocampal slice acetylcholine content and the rate of acetylcholine release were studied during high K+-induced depolarization for 4 to 60 min. At the end of the potassium exposure, both the acetylcholine remaining in the tissue and appearing in the incubation medium were quantitatively determined by gas chromatography using a nitrogen-sensitive detector. During prolonged K+ incubation, the acetylcholine content of the slices decreased by 60%, reaching a steady state after 16 min. The increase in the acetycholine concentration of the depolarizing medium showed a biphasic pattern, with rate constants of 1.40 and 0.69 nmol/min/g in the early (0–16 min) and late (16–60 min) phase, respectively. K+-evoked acetylcholine release was Cal+-dependent, but addition of choline did not alter tissue levels of acetylcholine or the pattern of K+-evoked acetylcholine release. The rate of acetylcholine release was markedly decreased by inhibition of choline uptake with hemicholinium-3 or by addition of 4-(1-naphthylvinyl)pyridine which inhibits both ACh producing enzyme, choline acetyltransferase and choline uptake mechanism. These data confirm the essential role during depolarization of extracellular choline transport into the cholinergic terminals utilizing choline released by the slices during the incubation. It is concluded that drugs which can influence the processes of choline uptake and acetylcholine sythesis can alter the rate of acetylcholine release measured under similar conditions.  相似文献   

17.
Abstract: The effect of ouabain and dihydroouabain on Na+-K+ ATPase, 86Rb uptake and the release of [14C]ACh (acetylcholine) from synaptosomal preparations of guinea pigs was compared. At low concentrations of glycoside (<50 μm ) there was a good correlation between the potency of ouabain and of dihydroouabain in inhibiting Na+-K+ ATPase and in causing the release of [l4C]ACh in a nondepolarising medium. Ouabain (200 μM) increased the release of [14C]ACh evoked by 25 mm -KCl, but not that evoked by 100μm -veratrine. The enhancement of release was independent of the presence of calcium. It was observed that in addition to [14C]ACh release, choline efflux was also stimulated by ouabain, independently of the presence of Ca2+. Experiments with hemicholinium-3 showed that the ouabain-induced increase in choline efflux was not due to an inhibition of reuptake. The effect of ouabain on intrasynaptosomal K+ concentration was measured in order to investigate the degree of depolarisation it caused. The decrease in K+ was found to be similar in magnitude and time course to that caused by veratrine. It was shown that ouabain-induced depolarisation caused an increased efflux of another positive ion (dibenzyldimethylammonium chloride) and retention of a negatively charged ion (chloride), as would be expected from the operation of the electrochemical potential gradient changing as a result of depolarisation. It is suggested that ouabain acts to stimulate ACh release from synaptosomes as follows: following blockage of the Na+-K+ ATPase there is rapid depolarisation which, if Ca2+ is present, provokes the normal Ca2+-dependent transmitter release process to occur. In addition, depolarisation accelerates the leakage of positive ions down their electrochemical potential gradient, but causes a retention of negative ions. Such an action does not depend on the presence of Ca2+, nor is it specific to transmitters.  相似文献   

18.
(14C) acetylcholine synthesis by cortex slices of rat brain   总被引:13,自引:0,他引:13  
Abstract—
  • 1 A procedure has been developed to measure ACh synthesis from [14C]-precursors. As little as 10?9 moles of ACh were detected as the result of de nova synthesis. Following incubation of cortex slices of rat brain with eserine and a tagged metabolite, ACh carrier was added to the incubation medium and to an extract from the slices. ACh was purified by chromatography on Amberlite CG-50, precipitation and recrystallization of ACh chloroaurate.
  • 2 [U?14C]glucose and [2?14C]pyruvate formed similar amounts of [14C]ACh. Hydrolysis of ACh with subsequent chromatography of the resultant acetic acid demonstrated that all of the label was located in the acetyl moiety. [14C]acetate did not serve as a precursor of the acetyl group of ACh. Equivalent incorporation of carbons 1 and 6 of glucose into ACh indicated that glucose metabolism to ACh occurred via the Embden-Meyerhof pathway.
  • 3 The amount of ACh detected by bioassay after incubation of cortex slices with [U?14C]glucose was approximately the same as that calculated as labelled ACh; this demonstrates that all of the acetyl groups of ACh formed during incubation were derived from glucose.
  • 4 [14C]choline, either methyl or chain labelled, formed [14C]ACh while labelled ethanolamine, serine and methionine did not. Synthesis from labelled choline did not occur in the absence of glucose.
  • 5 When both [U?14C]glucose and [14C]choline were incubated with brain slices, the acetyl and choline moieties of ACh were equally labelled; this demonstrates that the entire molecule was formed from added precursors. Slices supported a high rate of ACh synthesis without addition of choline. The addition of 10?4m -hemicholinium-3 inhibited ACh formation by more than 90 per cent from either [U-14C]glucose or [Me-14C]choline.
  • 6 Study of the time course of ACh synthesis from glucose demonstrated a rapid formation of [14C]ACh within the slices which reached a maximum during the first hour of incubation. [14C]ACh in the incubation medium accumulated at a linear rate for 3 hr. Replacement of a portion of the sodium chloride of the incubation medium by potassium chloride to a final concentration of 31 mm -KCI markedly increased the formation of [14C]ACh found in the incubation medium. Decreased amounts of [14C]ACh were extracted from the slices by homogenization or by subsequent heating at pH 4 in the high potassium ion medium.
  相似文献   

19.
The formation of lactic acid by mucosal slices, rings and muscle from rat jejunum has been studied for periods of up to 8 min. Lactate output by mucosal slices incubated in the absence of glucose was characterised by two phases: a rapid, initial phase of release lasting about 1 min, followed by a much slower phase extending over the remainder of the incubation period. Glucose addition at 30 s initiated a second rapid phase of lactate release into the medium which was again followed by a slower rate of lactate output up to 8 min. The time course of lactate output suggested that there was a negative Pasteur effect in mucosal slices, which could not be reversed by the addition of ADP or glucose 6-phosphate. By contrast, the rate of lactate formation by rings and muscle from rat jejunum increased steadily over the incubation period, indicating a positive Pasteur effect. When Na+ in the incubating medium were replaced by K+, lactate formation by mucosal slices and rings was considerably reduced. Measurements of tissue lactate content before and during incubation revealed that about three-quarters of the lactate released by mucosal slices during the first 30 s of incubation was present initially in the tissue. After the first 30 s the tissue lactate remained constant both in the presence and absence of glucose so that the lactate released into the incubation medium is equivalent to the lactate formed by the slices. The role of the various tissue components of the small intestine in lactate formation is discussed in relation to sites of glucose entry.  相似文献   

20.
Hypothermia induces swelling of dog kidney cortex slices. Swelling of cells during hypothermia is related to a number of factors including the permeability of Cl. By substituting lactobionate for Cl, while maintaining isoosmotic conditions, swelling is prevented. Lactobionate is an impermeable anion and its presence in the suspending fluid prevents swelling of dog kidney cortex slices in salts of Na+, K+ or combinations of Na+ and K+ even in the presence of metabolic inhibitors. By maintaining a ratio of 80 mM lactobionate: 60 mM chloride and an appropriate ratio of Na+:K+ (80 mM:60 mM), both the total tissue H2O and ratio of intracellular K+/Na+ are kept within normal ranges during hypothermic incubation of tissue slices. Kidney cortex slices suspended in this medium at 30 °C respire at a rate 30–40% slower than that of control slices suspended in saline. A similar result is obtained by adding ouabain to slices suspended in saline. This suggests that the Na+-pump activity is suppressed under these conditions and results in a reduced energy demand on the cell. These results are discussed in relation to utilizing this type of solution for long-term perfusion preservation of kidneys for transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号