共查询到20条相似文献,搜索用时 15 毫秒
1.
The phototrophic green bacterium Chloroflexus aurantiacus was grown anaerobically in batch culture with different amino acids at 56°C and constant illumination of 25 klx. The composition of the photosynthetic apparatus was measured by quantitation of the bacteriochlorophylls (Bchl) a and c (representing the membrane-bound and the chlorosomal moieties, respectively). Ser added at concentrations up to 15 mM stimulated protein formation and Bchl a and c syntheses. A comparable stimulation was found with Glu and Ala. Coproporphyrin accumulation approached saturation at 5 mM of Ala, Asp, Orn, and Ser, while with Glu and Arg saturating concentrations were above 5 mM. Protein and tetrapyrrole syntheses became saturated at 2.5 to 5 mM of Asp, Ile, and Val. However, with Arg and Orn Bchl c synthesis was stimulated up to 2.5 mM, growth and Bchl a synthesis up to 5 mM. At higher Arg or Orn concentrations these activities were inhibited. Coproporphyrin accumulation was highest with Arg or Orn, at concentrations which inhibited growth and Bchl formation. Stimulation of Bchl synthesis took place preferentially at the level of Bchl c, while Bchl a was more sensitive toward inhibition. In both cases however, the ratio of Bchl c to Bchl a increased with higher amino acid concentrations. Nevertheless, each amino acid induced a typical effect. To understand different effects exerted by different amino acids, chemostat cultures were grown limited by either Ser or Glu. With Ser, steady state protein levels and specific Bchl a contents decreased slightly when increasing the dilution rate (D). Concomitantly Bchl c and coproporphyrin levels as well as the ratio of Bchl a/Bchl c increased. With Glu as the limiting substrate, all of the above mentioned parameters decreased. Since all of the Ser was consumed and increasing amounts of Glu remained unutilized in the spent medium, it is concluded that differences in the formation of the three pyrrole derivatives tested are due to differences in the affinities of uptake systems for Ser and Glu. 相似文献
2.
Continuous cultures of Chloroflexus aurantiacus were cultivated in a chemostat in the light with varying bacteriochlorophyll (BChl) a/c ratios by changing the growth rate. Under these culture conditions all cells were homogeneously and reproducibly equipped with chlorosomes. In order to determine the number and size of chlorosomes in relation to different BChl contents morphometric measurements were performed on electron micrographs. The linear increase of BChl a contents coincided with an increasing number of chlorosomes per membrane area and per bacterium rather than with an enlargement of the average size of chlorosomes. The numbers of chlorosomes and therefore the percentage of chlorosome-covered cytoplasmic membrane increased linearly with increasing BChl a contents. The average size of the baseplates was largely constant in all cultures (mean 3,222±836 nm2). However, within individual cells the size of baseplates varied by a factor of 3.0, especially by the variation of the length. The exponential increase in BChl c contents coincided with an increasing number of chlorosomes (up to a factor of 2.3) and an enlargement of the average chlorosome volume (up to a factor of 1.9). The number of BChl a molecules per chlorosome was about 1,484±165, thus the number of reaction centers per chlorosome was 58±12. The data suggest, firstly, that BChl a is confined to areas (cytoplasmic membrane plus baseplate) as represented by the chlorosome attachment sites; secondly, that the degree of packing of BChl c molecules within chlorosomes increases with increasing BChl c contents. 相似文献
3.
We have studied the pigment arrangement in purified cytoplasmic membranes of the thermophilic green bacterium Chloroflexus aurantiacus. The membranes contain 30–35 antenna bacteriochlorophyll a molecules per reaction center; these are organized in the B808–866 light-harvesting complex, together with carotenoids in a 2:1 molar ratio. Measurements of linear dichroism in a pressed polyacrylamide gel permitted the accurate determination of the orientation of the optical transition dipole moments with respect to the membrane plane. Combination of linear dichroism and low temperature fluorescence polarization data shows that the Qy transitions of the BChl 866 molecules all lie almost perfectly parallel to the membrane plane, but have no preferred orientation within the plane. The BChl 808 Qy transitions make an average angle of about 44° with this plane. This demonstrates that there are clear structural differences between the B808–866 complex of C. aurantiacus and the B800–850 complex of purple bacteria. Excitation energy transfer from carotenoid to BChl a proceeds with about 40% efficiency, while the efficiency of energy transfer from BChl 808 to BChl 866 approaches 100%. From the minimal energy transfer rate between the two spectral forms of BChl a, obtained by analysis of low temperature fluorescence emission spectra, a maximal distance between BChl 808 and BChl 866 of 23 was derived.Abbreviations BChl
bacteriochlorophyll
- BPheo
bacteriopheophytin
- CD
circular dichroism
- LD
linear dichroism
- Tris
Tris(hydroxymethyl)aminomethane 相似文献
4.
Amino acid consumption was studied with batch and continuous chemostat cultures of Chloroflexus aurantiacus grown phototrophically in complex medium with casamino acids (Pierson and Castenholz 1974). Amino acids like Arg, Asx, Thr, Ala, Tyr, which were utilized during the early exponential phase by cells grown in batch cultures were consumed in chemostat cultures essentially at any of the dilution rates employed (0.018–0.104 h-1). Those amino acids which were taken up during subsequent phases of growth were consumed in chemostat cultures preferentially at low dilution rates. For example, the consumption of Glx was enhanced during the late exponential phase and at low dilution rates. At high dilution rates Glx was not consumed at all. Since Glx utilization largely paralleled bacteriochlorophyll formation, it is discussed that formation of the photopigment depends on the intracellular availability of Glu as the exclusive precursor for tetrapyrrole synthesis. 相似文献
5.
The membrane-bound photooxidizable cytochrome c-554 from Chloroflexus aurantiacus has been purified. The purified protein runs as a single heme staining band on SDS-PAGE with an apparent molecular mass of 43 000 daltons. An extinction coefficient of 28 ± 1 mM–1 cm–1 per heme at 554 nm was found for the dithionite-reduced protein. The potentiometric titration of the hemes takes place over an extended range, showing clearly that the protein does not contain a single heme in a well-defined site. The titration can be fit to a Nernst curve with midpoint potentials at 0, +120, +220 and +300 mV vs the standard hydrogen electrode. Pyridine hemochrome analysis combined with a Lowry protein assay and the SDS-PAGE molecular weight indicates that there are a minimum of three, and probably four hemes per peptide. Amino acid analysis shows 5 histidine residues and 29% hydrophobic residues in the protein. This cytochrome appears to be functionally similar to the bound cytochrome from Rhodopseudomonas viridis. Both cytochrome c-554 from C. aurantiacus and the four-heme cytochrome c-558-553 from R. viridis appear to act as direct electron donors to the special bacteriochlorophyll pair of the photosynthetic reaction center. They have a similar content of hydrophobic amino acids, but differ in isoelectric point, thermodynamic characteristics, spectral properties, and in their ability to be photooxidized at low temperature.Abbreviations LDAO
lauryl dimethyl amine-N-oxide
- SDS-PAGE
sodium dodecyl sulfate polyacrylamide gel electrophoresis
- mV
millivolt
- Em.8
midpoint potential at pH 8.0
- ODV
optical density x volume in ml 相似文献
6.
The transfer of excitation energy in intact cells of the thermophilic green photosynthetic bacterium Chloroflexus aurantiacus was studied both at low temperature and under more physiological conditions. Analysis of excitation spectra measured at 4K indicates that the minor fraction of bacteriochlorophyll a present in the chlorosome functions as an intermediate in energy transfer between the main light-harvesting pigment BChl c and the membrane-bound B808-866 antenna complex. This supports the hypothesis that BChl a is associated with the base plate which connects the chlorosome with the membrane. The overall efficiency for energy transfer from the chlorosome to the membrane is only 15% at 4K. High efficiencies of close to 100% are observed above 40°C near the temperature where the cultures are grown. Cooling to 20°C resulted in a sudden drop of the transfer efficiency which appeared to originate in the chlorosome. This decrease may be related to a lipid phase transition. Further cooling mainly affected the efficiency of transfer between the chlorosome and the membrane. This effect can only partially be explained by a decreased Förster overlap between the chlorosomal BChl a and BChl a 808 associated with the membrane-bound antenna system. The temperature dependence of the fluorescence yield of BChl a 866 also appeared to be affected by lipid phase transitions, suggesting that this fluorescence can be used as a native probe of the physical state of the membrane. 相似文献
7.
The development of chlorosomes and their pigmentation were studied by growing Chloroflexus aurantiacus strain Ok-7o-fl first under conditions under which BChl c-synthesis is low (50°C, 2000 lux and 30°C, 1500 lux) and subsequently under conditions promoting high BChl c-synthesis (50°C, 400 lux). Electron microscopic observations on and chemical analyses of isolated cell components showed that in BChl c-depleted cells chlorosome-like structures (chlorosome bags) are attached to fragments of cytoplasmic membranes. These chlorosome bags exhibit a periodic fine structure caused by the construction of the baseplates of the chlorosomes. The baseplates are closely attached to the cytoplasmic membrane, they are rich in phospholipids and apparently contain a 790 nm-BChl a-complex. Chlorosome bags of BChl c-depleted cells always contain a limited amount of light-harvesting pigment complexes (BChlc, - and -carotene). The light-harvesting system is restored (50°C, 400 lux) by first refilling the existing chlorosome bags before cell division takes place.Abbreviations BChl
Bacteriochlorophyll
- LH
Light-harvesting complex
- RC
Reaction center 相似文献
8.
Two new particulate fractions, wax oleosomes and chlorophyll-free spindle-shaped particles in addition to chlorosomes and plasma membrane vesicles, were isolated and characterized from homogenates of the photosynthetic bacterium Chloroflexus aurantiacus. The wax oleosomes contained the bulk of cellular wax esters and carotenoids. Wax esters were also present in the spindle-shaped particles, chlorosomes, and plasma membrane vesicles. The spindleshaped particles were the only particulate fraction active in polyprenol and carotene synthesis from [1-14C]isopentenyl diphosphate. The significance of wax esters and spindle-shaped particles is discussed. 相似文献
9.
Mamoru Mimuro Yoshinobu Nishimura Iwao Yamazaki Masayuki Kobayashi Zheng Yu Wang Tsunenori Nozawa Keizo Shimada Katsumi Matsuura 《Photosynthesis research》1996,48(1-2):263-270
The effect of 1-hexanol on spectral properties and the processes of energy transfer of the green gliding photosynthetic bacterium Chloroflexus aurantiacus was investigated with reference to the baseplate region. On addition of 1-hexanol to a cell suspension in a concentration of one-fourth saturation, a specific change in the baseplate region was induced: that is, a bleach of the 793-nm component, and an increase in absorption of the 813-nm component. This result was also confirmed by fluorescence spectra of whole cells and isolated chlorosomes. The processes of energy transfer were affected in the overall transfer efficiency but not kinetically, indicating that 1-hexanol suppressed the flux of energy flow from the baseplate to the B806-866 complexes in the cytoplasmic membranes. The fluorescence excitation spectrum suggests a specific site of interaction between bacteriochlorophyll (BChl) c with a maximum at 771 nm in the rod elements and BChl a with a maximum at 793 nm in the baseplate, which is a funnel for a fast transfer of energy to the B806-866 complexes in the membranes. The absorption spectrum of chlorosomes was resolved to components consistently on the basis, including circular dichroism and magnetic circular dichroism spectra; besides two major BChl c forms, bands corresponding to tetramer, dimer, and monomer were also discernible, which are supposed to be intermediary components for a higher order structure. A tentative model for the antenna system of C. aurantiacus is proposed.Abbreviations A670
a component whose absorption maximum is located at 670 nm
- (B)Chl
(bacterio)chlorophyll
- CD
circular dichroism
- F675
a component whose emission maximum is located at 675 nm
- FMO protein
Fenna-Mathews-Olson protein
- LD
linear dichroism
- LH
light-harvesting
- McD
magnetic circular dichroism
- PS
photosystem
- RC
reaction center 相似文献
10.
Two l-threonine (l-serine) dehydratases (EC 4.2.1.16) of the thermophilic phototrophic bacterium Chloroflexus aurantiacus Ok-70-fl were purified to electrophoretic homogeneity by procedures involving anion exchange and hydrophobic interaction chromatography. Only one of the two enzymes was sensitive to inhibition by l-isoleucine (K
i=2 M) and activation by l-valine. The isoleucine-insensitive dehydratase was active with l-threonine (K
m=20 mM) as well as with l-serine (K
m=10 mM) whereas the other enzyme, which displayed much higher affinity to l-threonine (K
m=1.3 mM), was inactivated when acting on l-serine. Both dehydratases contained pyridoxal-5-phosphate as cofactor. When assayed by gel filtration techniques at 20 to 25° C, the molecular weights of both enzymes were found to be 106,000±6,000. In sodium dodecylsulfate-polyacrylamide gel electrophoresis, the two dehydratases yielded only one type of subunit with a molecular weight of 55,000±3,000. The isoleucine-insensitive enzyme was subject to a glucose-mediated catabolite repression.Abbreviations A
absorbance
-
ile
isoleucine
- PLP
pyridoxal-5-phosphate
- SDS
sodium dodecyl sulfate
- TDH
threonine dehydratase
- U
unit 相似文献
11.
Chloroflexus aurantiacus OK-70 fl was grown photoautotrophically with hydrogen as electron source. The cultures were subjected to long term labelling experments with 13C-labelled acetate or alanine in the presence of sodium fluoroacetate. The presence of fluoroacetate caused the cells to accumulate large amounts of polyglucose which was hydrolysed and analysed by NMR. The labelling patterns of glucose were symmetric and in agreement with carbohydrate synthesis from acetate and CO2 via pyruvate synthase. The content of carbon derived from added acetate was highest in C2 and C5 of glucose, at least 20% higher than in C1 and C6. About one third of the glucose carbon was derived from added acetate, the rest being from CO2. Contrary to expectations, in glucose formed in the presence of C1-labelled acetate C1 and C6 contained more label than C2 and C5, and with C2-labelled acetate as the tracer glucose was mainly labelled in C2 and C5. Labelled CO2 was formed from acetate labelled at either position. The labelling data indicate a new metabolic pathway in C. aurantiacus. It is suggested that the cells form C1-labelled acetyl-CoA from C2-labelled acetyl-CoA and vice versa by a cyclic mechanism involving concomitant CO2 fixation and that this cycle is the part of the autotrophic CO2 fixation pathways in C. aurantiacus in which acetyl-CoA is formed from CO2.The polyglucose of C. aurantiacus appears to have predominantly (1–4)-linked structure with about 10% (1–6)-linkages as revealed by 13C-NMR. 相似文献
12.
In this paper we attempt a functional and spectral characterization of the membrane-bound cytochromes involved in respiratory electron transport by membranes from cells of Chloroflexus aurantiacus grown in the dark under oxygen saturated conditions. We conclude that the NADH-dependent respiration is carried out by a branched respiratory chain leading to two oxidases which differ in sensitivity to CN- and CO. The two routes also show a different sensitivity to the ubiquinone analogue, HQNO, the pathway through the cytochrome c oxidase being fully blocked by 5 M HQNO, whereas the alternative one is insensitive to this inhibitor. The cytochrome c oxidase containing branch is composed by at least two c-type haems with E
m 7.0 of +130 and +270 mV ( bands at 550/553 nm and 549 nm, respectively), plus a b-type cytochrome with E
m 7.0 of +50 mV ( band at 561 nm). From this, and previous work, we conclude that respiratory and photosynthetic electron transport components are assembled together and function on a single undifferentiated plasma membrane.Abbreviations HQNO
heptylhydroxy-quinoline-N-oxide
- UHDBT
undecyl-hydroxydioxobenthiazole
- Q/b-c
ubiquinol/cytochrome c oxidoreductase complex
- BChl
bacteriochlorophyll 相似文献
13.
The transfer of excitation energy and the pigment arrangement in isolated chlorosomes of the thermophilic green bacterium Chloroflexus aurantiacus were studied by means of absorption, fluorescence and linear dichroism spectroscopy, both at room temperature and at 4 K. The low temperature absorption spectrum shows bands of the main antenna pigments BChl c and carotenoid, in addition to which bands of BChl a are present at 798 and 613 nm. Fluorescence measurements showed that excitation energy from BChl c and carotenoid is transferred to BChl a, which presumably functions as an intermediate in energy transfer from the chlorosome to the cytoplasmic membrane. Measurements of fluorescence polarization and the use of two different orientation techniques for linear dichroism experiments enabled us to determine the orientation of several transition dipole moments with respect to each other and to the three principal axes of the chlorosome. The Qy transition of BChl a is oriented almost perfectly perpendicular to the long axis of the chlorosome. The Qy transition of BChl c and the -carotene transition dipole are almost parallel to each other. They make an angle of about 40° with the long axis and of about 70° with the short axis of the chlorosome; the angle between these transitions and the BChl a Qy transition is close to the magic angle (55°).Abbreviations BChl
bacteriochlorophyll
- CD
circular dichroism
- LD
linear dichroism
Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement. 相似文献
14.
Autotrophically grown cells of Chloroflexus aurantiacus B-3 were shown to possess activity of ATP-dependent malate lyase (acetylating CoA). ATP: malate lyase is supposed to be the specific enzyme of the cycle of the autotrophic CO2 fixation, in which pyruvate synthase, pyruvate phosphate dikinase, phosphoenolpyruvate (PEP) carboxylase and malate dehydrogenase are involved as well. The main product of the CO2 fixation cycle is glyoxylate, which could further be converted into 3-phosphoglyceric acid (3-PGA) in the reactions of either glycerate or serine pathway. The enzymes of both pathways were detected in C. auratiacus B-3. The results of the in vivo studies of glyxoylate and glycine metabolism, as well as the inhibitor analysis using fluoroacetate (FAc), isonicotinic acid hydrazide (INH), and 4-aminopterin (4-AP) confirm the operation of the proposed pathway in Chloroflexus.Abbreviations 3-PGA
3-phosphoglyceric acid
- 4-AP
4-aminopterin
- FAc
fluoroacetate
- INH
isonicotinic acid hydrazide
- MV
methyl viologen
- PEP
phosphoenolpyruvate
- THF
tetrahydrofolate
- TPP
thiamine pyrophosphate 相似文献
15.
Helge Holo 《Archives of microbiology》1989,151(3):252-256
Chloroflexus aurantiacus OK-70 fl secreted 3-hydroxypropionate (3HP) during phototrophic growth. The greatest amounts were secreted by cells grown on propionate (0.35 mM 3HP) while the lowest levels were found in autotrophically grown cultures (1.5 M). Large amounts of 2-fluoro,3-hydroxypropionate were formed by autotrophically grown cells exposed to fluoroacetate (FAc). Increased levels of 3HP were observed in these cultures when incubated with acctate. The secretion of 3HP was further stimulated by 0.2 mM KCN, an inhibitor of CO2 fixation, but only in the presence of acetate. The pathway of 3HP formation was studied by using 13C-labelled substrates and NMR. The 3HP formed in the presence of C1-labelled acetate and FAc was labelled at C3 and somewhat less at C2 while with C2-labelled acetate as the tracer 3HP was labelled predominantly at C2. The carboxyl group was derived from CO2. The 3HP formed by cells grown on propionate and 13CO2 was labelled at all carbon atoms, the label content of C2 and C3 was about 25 and 65% of that of C1 respectively. It is suggested that 3HP is an intermediate in a pathway for acetate assimilation and in a new reductive carboxylic acid cycle for autotrophic CO2 fixation.Abbreviations 3HP
3-hydroxypropionate
- 2F3HP
2,fluoro,3-hydroxypropionate
- FAc
fluoroacetate
- GC
gas chromatography
- MS
mass spectrometry
- NMR
nuclear magnetic resonance 相似文献
16.
The activity of two carboxylating enzymes was studied in the green filamentous bacteriumChloroflexus aurantiacus. The carboxylation reaction involving pyruvate synthase was optimized using14CO2 and cell extracts. Pyruvate synthase was shown to be absent from cells ofCfl. aurantiacus OK-70 and present (in a quantity sufficient to account for autotrophic growth) in cells ofCfl. aurantiacus B-3. Differences in the levels of acetyl CoA carboxylase activity were revealed between cells of the strains studied grown
under different conditions. The data obtained confirm the operation of different mechanisms of autotrophic CO2 assimilation inCfl. aurantiacus B-3 andCfl. aurantiacus OK-70: in the former organism, it is the reductive cycle of dicarboxylic acids, and in the latter one, it is the 3-hydroxypropionate
cycle. 相似文献
17.
The thermophilic phototrophic prokaryote, Chloroflexus aurantiacus was shown to contain high constitutive l-threonine (l-serine) deaminating activity. Separation of cellular proteins by DE 52-cellulose chromatography and by polyacrylamide gel electrophoresis with subsequent activity staining of the gels yielded two bands, one representing an isoleucine-sensitive, the other one an isoleucine-insensitive form of l-threonine dehydratase. Both enzymes had a molecular weight of 120,000 but were distinguished by their different affinities to the two substrates, l-threonine and l-serine.Abbreviations SDH
l-serine dehydratase
- TDH
l-threonine dehydratase 相似文献
18.
Mamoru Mimuro Masamitsu Hirota Yoshinobu Nishimura Takeshi Moriyama Iwao Yamazaki Keizo Shimada Katsumi Matsuura 《Photosynthesis research》1994,41(1):181-191
Examination was made of changes in fluorescence polarization plane by energy transfer in the chlorosomes of the green photosynthetic bacterium,Chloroflexus aurantiacus. Fluorescence anisotropy in the picosecond (ps) time region was analyzed using chlorosomes suspended in solution as well as those oriented in a polyacrylamide gel. When the main component of BChlc was preferentially excited, the decay of fluorescence anisotropy was found to depend on wavelength. In the chlorosome suspension, the anisotropy ratio of BChlc changed from 0.31 to 0.24 within 100 ps following excitation. In the baseplate BChla region, this ratio decreased to a negative value (–0.09) from the initial 0.14. In oriented samples, the degree of polarization remained at 0.68 for BChlc, and changed from 0.25 to –0.40 for the baseplate BChla by excitation light whose electric vector was parallel to the longest axis of chlorosomes. In the latter case, there was a shift from 0.30 to –0.55 by excitation perpendicular to the longest axis. Time-resolved fluorescence polarization spectra clearly indicated extensive changes in polarization plane accompanied by energy transfer. The directions of polarization plane of emission from oriented samples were mostly dependent on chlorosome orientation in the gel but not on that of the polarization plane of excitation light. Orientations of the dipole moment of fluorescence components was consistent with that of absorption components as determined by the linear dichroism (Matsuura et al. (1993) Photochem. Photobiol. 57: 92–97). A model for molecular organization of BChlc anda in chlorosomes is proposed based on anisotropic optical properties. 相似文献
19.
Chlorofluexus aurantiacus OK-70 fl was grown photoautotrophically with hydrogen as the electron source. The lowest doubling time observed was 26 h.The mechanism of CO2 fixation in autotrophically grown cells was studied. The presence of ribulose-1,5-bis-phosphate carboxylase and phosphoribulokinase could not be demonstrated. Carbon isotope fractionation (13C) was small, and alanine and aspartate but not 3-phosphoglycerate were the major labelled compounds in short term 14CO2 labelling. Thus CO2 is not fixed by the Calvin cycle.Fluoroacetate (FAc) completely inhibited protein synthesis in cultures and caused a slight citrate accumulation. However, CO2 fixation continued and increased polyglucose formation occurred. Under these conditions added acetate was metabolized to polyglucose, as were glycine, serine, glyoxylate and succinate, but to a lesser extent; little or no formate or CO was utilised.Glyoxylate inhibited CO2 fixation in vivo, indicating that pyruvate is formed from acetyl-CoA and CO2 by pyruvate synthase. Two key enzymes of the reductive TCA cycle, citrate lyase and -ketoglutarate synthase were not detected in cell free extracts, but pyruvate synthase and phosphoenolpyruvate carboxylase were demonstrated. It is concluded that acetyl-CoA is a central intermediate in the CO2 fixation process, but the mechanism of its synthesis is not clear.Abbreviations Rubisco
ribulose-1,5-bisphosphate carboxylase
- TCA cycle
tricarboxylic acid cycle
- FAc
monofluoroacetate
- PEP
phosphoenolpyruvate
- MV
methyl viologen
- TTC
triphenyltetrazolium chloride
- PMS
phenazine methosulfate 相似文献
20.
Frese Raoul Oberheide Uwe van Stokkum Ivo van Grondelle Rienk Foidl Markus Oelze Jürgen van Amerongen Herbert 《Photosynthesis research》1997,54(2):115-126
The organization of bacteriochlorophyll c (BChl c) molecules was studied in normal and carotenoid-deficient chlorosomes isolated from the green phototrophic bacterium Chloroflexus aurantiacus. Carotenoid-deficient chlorosomes were obtained from cells grown in the presence of 60 µg of 2-hydroxybiphenyl per ml. At this concentration, BChl c synthesis was not affected while the formation of the 5.7 kDa chlorosome polypeptide was inhibited by about 50% (M. Foidl et al., submitted). Absorption, linear dichroism and circular dichroism spectroscopy showed that the organization of BChl c molecules with respect to each other as well as to the long axis of the chlorosomes was similar for both types of chlorosomes. Therefore, it is concluded that the organization of BChl c molecules is largely independent on the presence of the bulk of carotenoids as well as of at least half of the normal amount of the 5.7 kDa polypeptide. The Stark spectra of the chlorosomes, as characterized by a large difference polarizability for the ground- and excited states of the interacting BChl c molecules, were much more intense than those of individual pigments. It is proposed that this is caused by the strong overlap of BChl c molecules in the chlorosomes. In contrast to individual chlorophylls, BChl c in chlorosomes did not give rise to a significant difference permanent dipole moment for the ground- and excited states. This observation favors models for the BChl c organization which invoke the anti-parallel stacking of linear BChl c aggregates above those models in which linear BChl c aggregates are stacked in a parallel fashion. The difference between the Stark spectrum of carotenoid-deficient and WT chlorosomes indicates that the carotenoids are in the vicinity of the BChls. 相似文献