首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
F Heinmets 《Cell biophysics》1989,14(3):283-323
A model-system is established to analyze purine and pyrimidine metabolism leading to DNA synthesis. The principal aim is to explore the flow and regulation of terminal deoxynucleoside triophosphates (dNTPs) in various input and parametric conditions. A series of flow equations are established, which are subsequently converted to differential equations. These are programmed (Fortran) and analyzed on a Cray chi-MP/48 supercomputer. The pool concentrations are presented as a function of time in conditions in which various pertinent parameters of the system are modified. The system is formulated by 100 differential equations.  相似文献   

2.
ABSTRACT

Carefully balanced deoxynucleoside triphosphate (dNTP) pools are essential for both nuclear and mitochondrial genome replication and repair. Two synthetic pathways operate in cells to produce dNTPs, e.g., the de novo and the salvage pathways. The key regulatory enzymes for de novo synthesis are ribonucleotide reductase (RNR) and thymidylate synthase (TS), and this process is considered to be cytosolic. The salvage pathway operates both in the cytosol (TK1 and dCK) and the mitochondria (TK2 and dGK). Mitochondrial dNTP pools are separated from the cytosolic ones owing to the double membrane structure of the mitochondria, and are formed by the salvage enzymes TK2 and dGK together with NMPKs and NDPK in postmitotic tissues, while in proliferating cells the mitochondrial dNTPs are mainly imported from the cytosol produced by the cytosolic pathways. Imbalanced mitochondrial dNTP pools lead to mtDNA depletion and/or deletions resulting in serious mitochondrial diseases. The mtDNA depletion syndrome is caused by deficiencies not only in enzymes in dNTP synthesis (TK2, dGK, p53R2, and TP) and mtDNA replication (mtDNA polymerase and twinkle helicase), but also in enzymes in other metabolic pathways such as SUCLA2 and SUCLG1, ABAT and MPV17. Basic questions are why defects in these enzymes affect dNTP synthesis and how important is mitochondrial nucleotide synthesis in the whole cell/organism perspective? This review will focus on recent studies on purine and pyrimidine metabolism, which have revealed several important links that connect mitochondrial nucleotide metabolism with amino acids, glucose, and fatty acid metabolism.  相似文献   

3.
The de novo synthesis of pyrimidine nucleotides in plants has been analysed on a molecular level with special focus on cDNA cloning and structure analysis of all genes involved and their expression pattern during development. The exhaustive cloning of all cDNAs resulted from screening with heterologous cDNAs or by using complementation strategies with Escherichia coli mutants and subsequent enzyme activity measurements. Southern hybridization and comparison with the Arabidopsis genome reveals plant specific aspects and a simple genomic organization of pyrimidine synthesis in plants, which is superimposed by the postulated, complex subcellular compartmentalization. Northern hybridization evinces coordinated expression of all genes under developmental control during tobacco leaf growth.  相似文献   

4.
The presence of purines and pyrimidines bases, nucleosides, and nucleotides in the culture medium has shown to differently affect the growth of a Chinese hamster ovary (CHO) cell line producing the secreted form of the human placental alkaline phosphatase enzyme (SEAP; Carvalhal et al., Biotech Prog. 2003;19:69-83). CHO, BHK, as well as Sf9 cell growth was clearly reduced in the presence of purines but was not affected by pyrimidines at the concentrations tested. The knowledge about the mechanisms by which nucleotides exert their effect when present outside the cells remains very incomplete. The catabolism of both extracellular purines and pyrimidines was followed during the culture of CHO cells. Purines/pyrimidines nucleotides added at a concentration of 1 mM to the culture medium decreased to negligible concentrations in the first 2 days. Purine and pyrimidine catabolism originated only purinic and pyrimidic end-products, respectively. The comparison between AMP catabolism in serum-free cultures (CHO cells expressing Factor VII and Sf9 cells) and in cultures containing serum (CHO cells expressing SEAP and BHK cells expressing Factor VII) showed that AMP extracellular catabolism is mediated by both cells and enzymes present in the serum. This work shows that the quantification of purines and pyrimidines in the culture medium is essential in animal cell culture optimization. When using AMP addition as a chemical cell growth strategy for recombinant protein production improvement, AMP extracellular concentration monitoring allows the optimization of the multiple AMP addition strategy for a prolonged cell culture duration with high specific productivity.  相似文献   

5.
Purine and pyrimidine metabolism was compared in erythrocytes from three patients from two families with purine nucleoside phosphorylase deficiency and T-cell immunodeficiency, one heterozygote subject for this enzyme deficiency, one patient with a complete deficiency of hypoxanthine-guanine phosphoribosyltransferase, and two normal subjects. The erythrocytes from the heterozygote subject were indistinguishable from the normal erythrocytes. The purine nucleoside phosphorylase deficient erythrocytes had a block in the conversion of inosine to hypoxanthine. The erythrocytes with 0.07% of normal purine nucleoside phosphorylase activity resembled erythrocytes with hypoxanthine-guanine phosphoribosyltransferase deficiency by having an elevated intracellular concentration of PP-ribose-P, increased synthesis of PP-ribose-P, and an elevated rate of carbon dioxide release from orotic acid during its conversion to UMP. Two hypotheses to account for the associated immunodeficiency—that the enzyme deficiency leads to a block of PP-ribose-P synthesis or inhibition of pyrimidine synthesis—could not be supported by observations in erythrocytes from both enzyme-deficient families.This work was supported by U.S. Public Health Service Grant AM 19674 and 5 M01 RR 42 and by a Grant-In-Aid from American Heart Association (77-849) and with funds contributed in part by the Michigan Heart Association. N.L.E. is a Rheumatology Fellow from the Rackman Arthritis Research Unit supported by Training Grant USPHS AM 07080.  相似文献   

6.
Purine and pyrimidine nucleotide metabolism in higher plants   总被引:1,自引:0,他引:1  
  相似文献   

7.
The intracellular acid-soluble purine and pyrimidine derivatives of myxamoebae-swarm cells of Physarum flavicomum were investigated during growth, microcyst formation, and during adenine-inhibition of encystment, using high performance liquid chromatography (HPLC). We also studied the incorporation of exogenous radioactive adenine into the acid soluble purine derivatives and S-adenosyl-sulphur compounds separated by HPLC. The most abundant ribonucleoside monophosphate was AMP in the growing and 15 h encysting cells (NC), while it was UMP in the 15 h adenine-inhibited cells (AIC). ADP was the nucleoside diphosphate present in the greatest quantity in the growing and NC cells but it was CDP in the AIC. The nucleoside triphosphate in highest concentration was ATP, UTP, and GTP in growing, NC, and AIC, respectively. Guanosine was the most abundant nucleoside in all cells. The nucleobase occurring in greatest concentration was cytosine, cytosine and guanine, and adenine in the growing, NC, and AIC, respectively. The AMP content in the 15 h AIC was 2.1-fold higher than that of adenosine. The 15 h NC had the lowest adenylate energy charge, a value of 0.54 +/- 0.02, while the values for growing cells and the AIC were 0.62 +/- 0.02 and 0.76 +/- 0.01, respectively. [14C]-Adenine labelling studies (15 h) revealed the occurrence of purine nucleotide interconversion, as the label was detected not only in adenosine, AMP, ADP, ATP, but also in guanine, guanosine, GMP, GDP, GTP, as well as, in inosine monophosphate and xanthosine monophosphate. The percentage incorporation of the radiolabelled adenine into AMP was higher than into adenosine. An increased intracellular level of guanine nucleotides is associated with the inhibition of encystment. The extracellular adenine, rather than internal adenine sources, appears to be the primary precursor of nucleotide for S-adenosylmethionine synthesis during adenine-inhibition of encystment.  相似文献   

8.
9.
This review summarizes currently available information about a crucial part of erythrocyte metabolism, that is, purine nucleotide conversions and their relationships with other conversion pathways. We describe the cellular resynthesis, interconversion, and degradation of purine compounds, and also the regulatory mechanisms in the conversion pathways. We also mention purine metabolism disorders and their clinical consequences. The literature is fragmentary because studies have concentrated only on selected aspects of purine metabolism; hence the need for a synthetic approach. Published in Russian in Biokhimiya, 2006, Vol. 71, No. 5, pp. 581–591.  相似文献   

10.
Yeast cells inhibited by benzimidazole accumulate hypoxanthine with an associated efflux of xanthine. Unlike control cells, inhibited cells contain no detectable free UMP and CMP. Benzimidazole decreases uptake of [8-14C]-hypoxanthine into the intracellular pool of hypoxanthine and xanthine but causes radioactive xanthine to accumulate in the medium. In inhibited cultures there is a threefold increase in incorporation of [8-14C]hypoxanthine into the total (intracellular plus extracellular) xanthine. Uptake of [8-14C]hypoxanthine into free nucleotides and into bound adenine and guanine was inhibited by 70%. Uptake of [U-14C]glycine into IMP, AMP, GMP, DNA and RNA was also substantially decreased. Incorporation of [2-14C]uracil into the intracellular uracil pool was inhibited by 30% and into free uridine and cytidine by over 90%. Benzimidazole inhibited incorporation of [8-3H]IMP into AMP and GMP, and decreased substantially the activity of glutamine-amidophosphoribosyltransferase (EC 2.4.2.14). Yeast cultures were shown to N-ribotylate benzimidazole. Results are consistent with benzimidazole inhibiting yeast growth by competing for P-rib-PP and so depriving other ribotylation processes such as the ‘salvage’ pathways and de novo synthesis of purines and pyrimidines.  相似文献   

11.
Ribonucleotide flavor enhancers such as inosine monophosphate (IMP) and guanosine monophosphate (GMP) provide umami taste, similarly to glutamine. Japanese cuisine frequently uses soup stocks containing these nucleotides to enhance umami. We quantified 18 types of purines (nucleotides, nucleosides, and purine bases) in three soup stocks (chicken, consommé, and dried bonito soup). IMP was the most abundant purine in all umami soup stocks, followed by hypoxanthine, inosine, and GMP. The IMP content of dried bonito soup was the highest of the three soup stocks. We also evaluated the effects of these purines on extracellular and intracellular purine metabolism in HepG2 cells after adding each umami soup stock to the cells. An increase in inosine and hypoxanthine was evident 1 h and 4 h after soup stock addition, and a low amount of xanthine and guanosine was observed in the extracellular medium. The addition of chicken soup stock resulted in increased intracellular and extracellular levels of uric acid and guanosine. Purine metabolism may be affected by ingredients present in soups.  相似文献   

12.
《Molecular cell》2022,82(17):3284-3298.e7
  1. Download : Download high-res image (195KB)
  2. Download : Download full-size image
  相似文献   

13.
14.
A model system (1) was established to analyze purine and pyrimidine metabolism. This system has been expanded to include macrosimulation of DNA synthesis and the study of its regulation by terminal deoxynucleoside triphosphates (dNTPs) via a complex set of interactions. Computer experiments reveal that our model exhibits adequate and reasonable sensitivity in terms of dNTP pool levels and rates of DNA synthesis when inputs to the system are varied. These simulation experiments reveal that in order to achieve maximum DNA synthesis (in terms of purine metabolism), a proper balance is required in guanine and adenine input into this metabolic system. Excessive inputs will become inhibitory to DNA synthesis. In addition, studies are carried out on rates of DNA synthesis when various parameters are changed quantitatively. The current system is formulated by 110 differential equations.  相似文献   

15.
The easy, convenient and high yielding preparation of new thioglycosides incorporating mercaptopyrazolo[1,5-a]pyrimidine moieties from readily accessible starting materials has been reported. The main step of this protocol is the formation of 7-mercaptopyrazolo[1,5-a]pyrimidine-6-carbonitrile derivatives 4a-d by condensation of sodium 2-cyano-3-ethoxy-3-oxoprop-1-ene-1,1-bis(thiolate) 1 with 4-(aryldiazenyl)-1H-pyrazole-3,5-diamines 3a-d to form target compounds 4a-d, which coupled with tetra-O-acetyl-α-D-glycopyranosyl bromides 5a,b in the presence of basic medium to provide the corresponding product purine thioglycoside analogs 6a-h. Ammonolysis of the latter compounds 6a-d at ambient temperature for 10 minutes, led to the free glycoside derivatives 7a-h, which were obtained in approximately quantitative yields. Their structures were created based on the spectroscopic and elemental data.  相似文献   

16.
17.
6-甲基嘌呤-2'-脱氧核苷(MePdR)是一种新型抗癌药物,它作为药物前体应用于PNP自杀基因治疗系统可以选择性杀伤肿瘤细胞.本实验构建了一个高效表达大肠杆菌来源的嘌呤核苷磷酸化酶重组质粒,并利用基因工程菌以15mmol/L 6-甲基嘌呤和60mmol/L 2'-脱氧尿苷为底物合成6-甲基嘌呤-2'-脱氧核苷,在40mmol/L pH7.0的磷酸缓冲液中,2%菌体在55℃反应2h,转化率可达83.78%.用硅胶制备薄层提纯得到白色针状晶体,收率为76.4%.HPLC测定该产物纯度99.3%,核磁共振鉴定该产物为MePdR.  相似文献   

18.
6-甲基嘌呤-2′-脱氧核苷(MePdR)是一种新型抗癌药物,它作为药物前体应用于PNP自杀基因治疗系统可以选择性杀伤肿瘤细胞。本实验构建了一个高效表达大肠杆菌来源的嘌呤核苷磷酸化酶重组质粒,并利用基因工程菌以15mmol/L 6-甲基嘌呤和60mmol/L 2′-脱氧尿苷为底物合成6-甲基嘌呤-2′-脱氧核苷,在40mmol/L pH7.0的磷酸缓冲液中,2%菌体在55℃反应2h,转化率可达83.78%。用硅胶制备薄层提纯得到白色针状晶体,收率为76.4%。HPLC测定该产物纯度99.3%,核磁共振鉴定该产物为MePdR。  相似文献   

19.
Contents of purine alkaloids in different parts of tea ( Camellia sinensis L. cv. Yabukita ) seedlings, seeds and tissue cultures were determined with high-performance liquid chromatography. More than 99% of the caffeine detected was in the leaves of the 4-month-old seedlings. The amount expressed per g fresh weight was higher in older leaves. Theobromine, a precursor of caffeine biosynthesis, was found only in younger leaves. Zero or only trace amounts of theophylline, a degradation product of caffeine, were found in the seedlings. Almost all the caffeine in tea seeds was found in the seed coats. Theobromine and theophilline could not be detected in any part of the seeds.
Tracer experiments using [8-14C]-adenine indicate that (i) caffeine biosynthesis from [8-14C]-adenine occurs only in younger leaves,(ii) "salvage" of [8-14C]-adenine for nucleic acid synthesis takes place in all parts of the seedlings, (iii) considerable degradation of [8-14C]-adenine by conventional purine degradation pathway via uric acid takes place in roots and lower parts of stem tissue.
The results strongly suggest that caffeine is synthesized in younger leaves and accumulated within the leaves. Both caffeine contents and its synthetic activity from adenine were extremely low in tissue culture of tea.  相似文献   

20.
The purine and pyrimidine metabolism of Tetrahymena pyriformis   总被引:1,自引:0,他引:1  
The metabolism of purines and pyrimidines by the ciliated protozoan Tetrahymena was investigated with the use of enzymatic assays and radioactive tracers. A survey of enzymes involved in purine metabolism revealed that the activities of inosine and guanosine phosphorylase (purine nucleoside: orthophosphate ribosyltransferase, E.C. 2.4.2.1) were high, but adenosine phosphorylase activity could not be demonstrated. The apparent Km for guanosine in the system catalyzing its phosphorolysis was 4.1 ± 0.6 × 10?3 M. Pyrophosphorylase activities for IMP and GMP (GMP: pyrophosphate phosphoribosyltransferase, E.C. 2.4.2.8), AMP (AMP: pyrophosphate phosphoribosyltransferase, E.C. 2.4.2.7), and 6-mercaptopurine ribonucleotide were also found in this organism; but a number of purine and pyrimidine analogs did not function as substrates for these enzymes. The metabolism of labeled guanine and hypoxanthine by intact cells was consistent with the presence of the phosphorylases and pyrophosphorylases of purine metabolism found by enzymatic studies. Assays for adenosine kinase (ATP: adenosine 5'-phosphotransferase, E.C. 2.7.1.20) inosine kinase, guanosine kinase, xanthine oxidase (xanthine: O2 oxidoreductase, E.C. 1.2.3.2), and GMP reductase (reduced-NADP: GMP oxidoreductase [deaminating], E.C. 1.6.6.8) were all negative. In pyrimidine metabolism, cytidine-deoxycytidine deaminase (cytidine aminohydrolase, E.C. 3.5.4.5), thymidine phosphorylase (thymidine: orthophosphate ribosyltransferase, E.C. 2.4.2.4), and uridine-deoxyuridine phosphorylase (uridine: orthophosphate ribosyltransferase, E.C. 2.4.2.3) were active; but cytidine kinase, uridine kinase (ATP: uridine 5'-phosphotransferase, E.C. 2.7.1.48), and CMP pyrophosphorylase could not be demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号