首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Translational bypassing is a unique phenomenon of bacteriophage T4 gene 60 mRNA wherein the bacterial ribosome produces a single polypeptide chain from a discontinuous open reading frame (ORF). Upon reaching the 50-nucleotide untranslated region, or coding gap, the ribosome either dissociates or bypasses the interruption to continue translating the remainder of the ORF, generating a subunit of a type II DNA topoisomerase. Mutational and computational analyses have suggested that a compact structure, including a stable hairpin, forms in the coding gap to induce bypassing, yet direct evidence is lacking. Here we have probed the secondary structure of gene 60 mRNA with both Tb3+ ions and the selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) reagent 1M7 under conditions where bypassing is observed. The resulting experimentally informed secondary structure models strongly support the presence of the predicted coding gap hairpin and highlight the benefits of using Tb3+ as a second, complementary probing reagent. Contrary to several previously proposed models, however, the rest of the coding gap is highly reactive with both probing reagents, suggesting that it forms only a short stem–loop. Mutational analyses coupled with functional assays reveal that two possible base-pairings of the coding gap with other regions of the mRNA are not required for bypassing. Such structural autonomy of the coding gap is consistent with its recently discovered role as a mobile genetic element inserted into gene 60 mRNA to inhibit cleavage by homing endonuclease MobA.  相似文献   

3.
Many biological processes cannot be fully understood without detailed knowledge of RNA metabolism. The continuous breakdown and resynthesis of prokaryotic mRNA permit rapid production of new kinds of proteins. In this way, mRNA levels can regulate protein synthesis and cellular growth. Analysing mRNA degradation in prokaryotes has been particularly difficult because most mRNA undergo rapid exponential decay. Prokaryotic mRNAs differ in their susceptibility to degradation by endonucleases and exonucleases, possibly because of variation in their sequencing and structure. In spite of numerous studies, details of mRNA degradation are still largely unknown. This review highlights those aspects of mRNA metabolism which seem most influential in the regulation of gene expression.  相似文献   

4.
5.
Two-cistronic expression plasmids for the wild-type solubilized domain of porcine NADPH-cytochrome P450 reductase (PsCPR) gene in Escherichia coli were systematically constructed using a solubilized domain of porcine cytochrome b5 gene (Psb5 gene) or a derivative of it as the first cistron to examine their utility for second gene expression preventing the translational inhibition caused by the intramolecular local secondary structure of mRNA at the ribosome-binding site (RBS). The mRNAs from the plasmids lacking an RBS for the second cistron (SD2) accumulated very low levels of PsCPR, while those from the plasmids having an SD2 accumulated higher levels of PsCPR. The level of accumulation of PsCPR by the mRNA from plasmid pCbSD-T-CPR-3, which has an SD2 upstream of the termination codon of the first cistron, was higher than for those with an SD2 in the intercistronic region. The predicted intramolecular local secondary structures at the SD2 of mRNAs from these plasmids were stable enough to cause translational initiation inhibition. These results indicate that the use of a two-cistronic expression plasmid is an effective way to overcome translational initiation inhibition. Improved plasmids, pCP1 and pCP2P, were constructed from pCbSD-T-CPR-3. Using these plasmids, the solubilized donain of porcine NADH-cytochrome b5 reductase was also highly accumulated on prevention of the translational initiation inhibition. These plasmids are expected to be useful tools for the comprehensive high-level expression of heterologous genes in E. coli cells.  相似文献   

6.
7.
The regA gene product of bacteriophage T4 is an autogenously controlled translational regulatory protein that plays a role in differential inhibition (translational repression) of a subpopulation of T4-encoded "early" mRNA species. The structural gene for this polypeptide maps within a cluster of phage DNA replication genes, (genes 45-44-62-regA-43-42), all but one of which (gene 43) are under regA-mediated translational control. We have cloned the T4 regA gene, determined its nucleotide sequence, and identified the amino-terminal residues of a plasmid-encoded, hyperproduced regA protein. The results suggest that the T4 regA gene product is a 122 amino acid polypeptide that is mildly basic and hydrophilic in character; these features are consistent with known properties of regA protein derived from T4-infected cells. Computer-assisted analyses of the nucleotide sequences of the regA gene and its three upstream neighbors (genes 45, 44, and 62) suggest the existence of three translational initiation units in this four-gene cluster; one for gene 45, one for genes 44, 62 and regA, and one that serves only the regA gene. The analyses also suggest that the gene 44-62 translational unit harbors a stable RNA structure that obligates translational coupling of these two genes.  相似文献   

8.
9.
We have used site-directed mutagenesis to determine whether the structural context surrounding the AUG triplet influences its ability to be selected as an initiation codon by the eukaryotic preinitiation complex. AUG triplets were introduced in a loop and stem structure naturally occurring at the midpoint of the 129-nucleotides-long 5'-untranslated region of the porcine proopiomelanocortin mRNA; one AUG triplet was inserted in the loop while another was inserted in the stem of the hairpin structure. The proopiomelanocortin cDNA and the mutant cDNAs were inserted downstream from the early promoter of an expression vector derived from simian virus 40 (SV40) and transfected into monkey kidney COS-1 cells. Analysis of the proopiomelanocortin-related peptides present in the culture medium 72 h after transfection revealed that both mutant cDNAs direct the synthesis of more proopiomelanocortin than the non-mutant cDNA. The increased translational efficiency observed with both mutants is probably due to the decreased secondary structures of the shortened 5'-untranslated region. In addition, comparison of the two mutants indicates that the mutant mRNA with the AUG triplet inserted in the loop region of the hairpin structure directs the synthesis of approximately 75% more proopiomelanocortin than the mutant mRNA with the AUG triplet inserted in the stem region of the same hairpin structure, supporting a role for the structural context in the efficiency of translational initiation.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
Abstract: Gene regB of bacteriophage T4 encodes a sequence-specific endoribonuclease which introduces cuts in early phage messenger RNAs. In most cases, cutting takes place in the middle of the tetranucleotide GGAG. Efficient cleavages occur in the motifs located in intergenic regions, some of them being Shine-Dalgarno sequences. When located in a coding sequence, this tetranucleotide is poorly recognized or not at all. In this article, we have reviewed the properties of the RegB endoribonuclease, with emphasis on its possible roles in T4 development. We show that the nuclease RegB plays at least two roles: (i) it inactivates a sub-class of early mRNA by cleaving Shine-Dalgarno sequences, and (ii) it is necessary for the degradationn of early mRNAs, but not of middle and late mRNAs. Accordingly, we found that middle and late mRNAs avoid processing by RegB, probably for different reasons. Most of the middle mRNAs (mRNAs initiated at MotA-dependent promoters) do not contain the motif GGAG in their intergenic regions, whereas about one-third of the late genes have this motif as Shine-Dalgarno sequence. It is not yet known whether the RNase is inactivated early in the phage cycle, or whether it remains active but cannot recognize late mRNAs as substrates.  相似文献   

18.
19.
Temperature-sensitive (ts) mutants of the T4 phage rII gene were islated and used in temperature shift experiments that revelaed two different expressions for the normal rII (rII+) gene function in vivo: (i) an early expression (0 to 12 min postinfection at 30 C) that prevents restriction of T4 growth in Escherichia coli hosts lysogenic for gamma phage, and (ii) a later expression (12 to 18 min postinfection at 30 C) that results in restriction of T4 growth when the phage DNA ligase (gene 30) is missing. The earlier expression appeared to coincide with the period of synthesis of the protein product of the T4 rIIA cistron, whereas the later expression occurred after rIIA protein synthesis had stopped. The synthesis of the protein product of the rIIB cistron continues for several minutes after rIIA protein synthesis ceases (O'Farrell and Gold, 1973). The two rII+ gene expressions might require different molar ratios of the rIIA and rIIB proteins. It is possible that the separate expressions of rII+ gene function are manifestations of different associations between the two rII proteins and other T4-induced proteins that are synthesized or activated at different times after phage infection.  相似文献   

20.
Regulation of the GCN4 gene of Saccharomyces cerevisiae is one of the best-documented instances of gene-specific translational control in an eukaryote. Upstream open reading frames (uORFs) in GCN4 mRNA modulate the flow of scanning ribosomes to the GCN4 start codon according to the availability of amino acids. Recent results suggest that sequences at the termination codons of the uORFs, a general initiation factor, and a protein kinase all make important contributions to the proper functioning of this interesting translational-control element.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号