首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The effect of tetanus toxin on the uptake and release of radiolabelled transmitters from slices prepared from substantia nigra (SN) and striatum of rats has been investigated. Tetanus toxin-500–750 mouse lethal doses (MLD)-injected into the SN 6 h before preparing the slices significantly reduced the calcium-dependent, potassium-evoked release of [3H]GABA. Endogenous GABA levels in the SN and [3H]GABA uptake by nigral slices were unaffected by pretreatment with the toxin. Injections of tetanus toxin (1000–2000 MLD) into the striatum significantly reduced the calcium-dependent, potassium-evoked release of [14C]GABA and also [3H]dopamine, but had no effect on the K+-evoked release of [3H]5-hydroxytryptamine or [14C]acetylcholine. It is concluded that tetanus toxin inhibits GABA release directly and not by interference with synthesis or inactivation processes.  相似文献   

2.
The wide-ranging neuronal actions of excitatory amino acids, such as glutamate, are thought to be mediated mainly by postsynaptic N-methyl-D-aspartate (NMDA) and non-NMDA receptors. We now report the existence of presynaptic glutamate receptors in isolated nerve terminals (synaptosomes) prepared from hippocampus, olfactory bulb, and cerebral cortex. Activation of these receptors by NMDA or non-NMDA agonists, in a concentration-dependent manner, resulted in Ca(2+)-dependent release of noradrenaline from vesicular transmitter stores. The NMDA-stimulated release was potentiated by glycine and was blocked by Mg2+ and selective NMDA antagonists. In contrast, release stimulated by selective non-NMDA agonists was blocked by 6-cyano-7-nitroquinoxaline-2,3- dione, but not by Mg2+ or NMDA antagonists. Our data suggest that the presynaptic glutamate receptors can be classified pharmacologically as both the NMDA and non-NMDA types. These receptors, localized on nerve terminals of the locus ceruleus noradrenergic neurons, may play an important role in interactions between noradrenaline and glutamate.  相似文献   

3.
The isolated nerve terminal (or synaptosome) is the simplest preparation that allows mitochondrial bioenergetics to be studied in a physiological milieu, as well as facilitating investigation of the protein chemistry and regulation of synaptic vesicle exocytosis and recovery and providing a target for the study of the mechanism of action of numerous neurotoxins. This brief review discusses studies from our laboratory that may have provided some insight into these aspects of nerve terminal function.  相似文献   

4.
The kinetics of Ca2(+)-dependent release of glutamate from guinea-pig cerebrocortical synaptosomes evoked by KCl or 4-aminopyridine are investigated using a continuous fluorimetric assay. Release by both agents is biphasic, with a rapid phase complete within 2 s followed by a more extensive slow phase with a half-maximal release in 52 s for KCl-evoked release and greater than 120 s for 4-aminopyridine-evoked release. The two phases of glutamate release may reflect a dual localization of releasable vesicles at the active zone and in the bulk cytoplasm. Decreasing depolarization depresses the extent rather than increasing the time for half-maximal Ca2(+)-dependent release. Both the fast and the slow phases of glutamate release require external Ca2+ and cytoplasmic ATP. KCl depolarization produces a transient "spike" of cytoplasmic free Ca2+ [( Ca2+]c), which recovers to a plateau; the major component of glutamate release occurs during this plateau. Predepolarization in the absence of added external Ca2+, to inhibit transient Ca2+ channels, does not affect the subsequent glutamate release evoked by Ca2+ readdition. Thus, release involves primarily noninactivating Ca2+ channels. For a given increase in [Ca2+]c, KCl and 4-aminopyridine cause equal release of glutamate, while ionomycin releases much less glutamate. This lowered efficiency is not due to ATP depletion. It is concluded that glutamate exocytosis is evoked by localized Ca2+ entering through noninactivating voltage-dependent Ca2+ channels and that nonlocalized Ca2+ entry with ionomycin is inefficient.  相似文献   

5.
In this overview current insights in the regulation of presynaptic transmitter release, mainly acquired in studies using isolated CNS nerve terminals are highlighted. The following aspects are described. (i) The usefulness of pinched-off nerve terminals, so-called synaptosomes, for biochemical and ultrastructural studies of presynaptic stimulus-secretion coupling. (ii) The regulation of neurotransmitter release by multiple Ca2+ channels, with special emphasis on the specificity of different classes of these channels with respect to the release of distinct types of neurotransmitters, that are often co-localized, such as amino acids and neuropeptides. (iii) Possible molecular mechanisms involved in targeting synaptic vesicle (SV) traffic toward the active zone. (iv) The role of presynaptic receptors in regulating transmitter release, with special emphasis on different glutamate subtype receptors. Isolated nerve terminals are of great value as model system in order to obtain a better understanding of the regulation of the release of distinct classes of neurotransmitters in tiny CNS nerve endings.  相似文献   

6.
Polyunsaturated fatty acid (PUFA) levels (an index of the amount of substrate available for lipid peroxidation) were measured in several brain regions from patients who died with Parkinson's disease and age-matched control human postmortem brains. PUFA levels were reduced in parkinsonian substantia nigra compared to other brain regions and to control tissue. However, basal malondialdehyde (MDA; an intermediate in the lipid peroxidation process) levels were increased in parkinsonian nigra compared with other parkinsonian brain regions and control tissue. Expressing basal MDA levels in terms of PUFA content, the difference between parkinsonian and control substantia nigra was even more pronounced. Stimulating MDA production by incubating tissue with FeSO4 plus ascorbic acid, FeSO4 plus H2O2, or air alone produced lower MDA levels in the parkinsonian substantia nigra, probably reflecting the lower PUFA content. These results may indicate that an increased level of lipid peroxidation continues to occur in the parkinsonian nigra up to the time of death, perhaps because of continued exposure to excess free radicals derived from some endogenous or exogenous neurotoxic species.  相似文献   

7.
Abstract: With the advent of cloning, sequencing, and patchclamping techniques, knowledge of the postsynaptic actions of amino acid neurotransmitters has undergone a dramatic advance. The primary sequences of the inhibitory receptors for γ-aminobutyric acid (GABA) (Schofield et al., 1987) and glycine (Grenningloh et al., 1987) are now established, and patch-clamp analysis has elucidated many of the factors that regulate the opening of their ion channels. The excitatory glutamate receptors are being extensively characterized at both the pharmacological (reviewed by Foster and Fagg, 1984) and the electrophysiological (reviewed by Cull-Candy and Usowicz, 1987) level. In this climate, it is perhaps surprising that the fundamental presynaptic release mechanism for the amino acid neurotransmitters remains controversial.  相似文献   

8.
9.
Abstract: The dopaminergic phenotype of neurons in human substantia nigra deteriorates during normal aging, and loss of these neurons is prominent in Parkinson's disease. These degenerative processes are hypothesized to involve oxidative stress. To compare oxidative stress in the nigra and related regions, we measured carbonyl modifications of soluble proteins in postmortem samples of substantia nigra, basal ganglia, and prefrontal cortex from neurologically normal subjects, using an improved 2,4-dinitrophenylhydrazine assay. The protein carbonyl content was found to be about twofold higher in substantia nigra pars compacta than in the other regions. To further analyze this oxidative damage, the distribution of carbonyl groups on soluble proteins was determined by western immunoblot analysis. This method revealed that carbonyl content of the major proteins in each region was linearly dependent on molecular weight. This distribution raises the possibility that protein carbonyl content is controlled by a size-dependent mechanism in vivo. Our results suggest that oxidative stress is elevated in human substantia nigra pars compacta in comparison with other regions and that oxidative damage is higher within the dopaminergic neurons. Elevated oxidative damage may contribute to the degeneration of nigral dopaminergic neurons in aging and in Parkinson's disease.  相似文献   

10.
The action of the polyether antibiotic monensin on the release of gamma-[3H]amino-n-butyric acid [( 3H]GABA) from mouse brain synaptosomes is characterized. Monensin enhances the release of this amino acid transmitter in a dose-dependent manner and does not modify the efflux of the nontransmitter amino acid alpha-[3H]aminoisobutyrate. The absence of external Ca2+ fails to prevent the stimulatory effect of monensin on [3H]GABA release. Furthermore, monensin is less effective in stimulating [3H]GABA release in the presence of Ca2+. The releasing response to monensin is absolutely dependent on external Na+. The blockade of voltage-sensitive Na+ or Ca2+ channels does not modify monensin-induced release of the transmitter. Also, the blockade of the GABA uptake pathway fails to prevent the stimulatory effect of monensin on [3H]GABA release. Although monensin markedly increases Na+ permeability in synaptosomes, these data indicate that the Ca2+-independent monensin-stimulated transmitter release is not mediated by the Na+-dependent uptake pathway. It is concluded that the entrance of Na+ through monensin molecules inserted in the presynaptic membrane might be sufficient to initiate the intraterminal molecular events underlying transmitter release.  相似文献   

11.
Abstract: 57Fe Mössbauer spectroscopy at different temperatures has been used to characterize the nature of purified human neuromelanin isolated from the substantia nigra. The quantitative determination of iron(III) by estimation of the overall area of the Mössbauer spectrum at room temperature reveals an iron content of 2.8 ± 1.4%. No subspectra corresponding to divalent iron could be observed in these spectra. The derived Mössbauer parameters lead to the conclusion that the iron sites in the human neuromelanin are similar to those of human hemosiderin (or ferritin). However, owing to the water insolubility of the purified neuromelanin, it must be concluded that the neuromelanin hemosiderin (or ferritin) is bound in a protein matrix that makes it insoluble and difficult to stain histochemically. This protein attachment to neuromelanin is important in that it is what makes it different from synthetic dopamine melanin.  相似文献   

12.
In the present study, the release of the neuropeptide cholecystokinin-8 (CCK) from purified nerve terminals (synaptosomes) of the rat hippocampus was characterized with respect to the subcellular distribution, the release upon addition of various agents, the release kinetics, the Ca2+ and ATP dependence of release, and the relationship between CCK release and elevations of intraterminal free Ca2+ concentration ([Ca]i). These characteristics were compared with those for the release of classical transmitters in similar preparations. CCK-like immunoreactivity (CCK-LI) is enriched in the purified synaptosomal fraction of hippocampus homogenates and released in a strictly Ca2(+)-dependent manner upon chemical depolarization, addition of 4-aminopyridine, or stimulation with the Ca2+ ionophore ionomycin. The presence of Ca2+ in the medium significantly stimulates the basal efflux of CCK-LI from synaptosomes. The release upon stimulation develops gradually in time with no significant release in the first 10 s and levels off after 3 min of depolarization. At this time, a large amount of CCK-LI is still present inside the synaptosomes. A correlation exists between the release of CCK-LI and the elevations of [Ca]i. The release of CCK-LI is decreased, but not blocked, upon ATP depletion. These characteristics markedly differ from those for classical transmitters, which show a fast component of Ca2(+)-dependent (exocytotic) release, an absolute dependence on cellular ATP, and no marked stimulation of basal efflux in the presence of Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Possible interactions between Met-enkephalin and cholecystokinin (CCK)-containing neurons in the rat substantia nigra were investigated by looking for the effects of various opioid receptor ligands and inhibitors of enkephalin-degrading enzymes on the K(+)-evoked overflow of CCK-like material (CCKLM) from substantia nigra slices. The delta-opioid agonists D-Pen2, D-Pen5-enkephalin (50 microM) and Tyr-D-Thr-Gly-Phe-Leu-Thr (DTLET; 3 microM) enhanced, whereas the mu-opioid agonists Tyr-D-Ala-Gly-MePhe-Gly-ol (DAGO; 10 microM) and MePhe3, D-Pro4-morphiceptin (PL 017; 10 microM) decreased, the K(+)-evoked release of CCKLM. By contrast, the kappa-opioid agonist U-50488 H (5 microM) was inactive. The stimulatory effect of DTLET could be prevented by the delta antagonist ICI-154129 (50 microM), but not by the mu antagonist naloxone (1 microM). Conversely, the latter drug, but not ICI-154129, prevented the inhibitory effect of DAGO and PL 017. A significant increase in CCKLM overflow was observed upon tissue superfusion with the peptidase inhibitors kelatorphan or bestatin plus thiorphan. This effect probably resulted from the stimulation of delta-opioid receptors by endogenous enkephalins protected from degradation, because it could be prevented by ICI-154129 (50 microM). Furthermore the peptidase inhibitors did not enhance CCKLM release further when delta-opioid receptors were stimulated directly by DTLET (3 microM). These data indicate that opioids acting on delta and mu receptors may exert an opposite influence, i.e., excitatory and inhibitory, respectively, on CCK-containing neurons in the rat substantia nigra.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
To study the release of neurotransmitters, i.e., the recruitment of transmitters for release and the regulation of the release process, isolated nerve terminals (synaptosomes) of the rat forebrain were immobilized in Sephadex gel inside a perfusion chamber. In this way, the following were achieved: (a) A very limited pressure stress was exerted on the synaptosomes, so that these remained viable for long periods (greater than 30 min) inside the chamber and did not elute from the chamber, which allowed long-term experiments with repeated stimulations; (b) estimation of the release of various endogenous transmitters, both in a Ca(2+)-dependent (exocytotic) and Ca(2+)-independent manner; (c) a step-like stimulation with depolarizing agents (rise time, 3-4 s) and a high time resolution (600-ms sampling); and (d) negligible reuptake of transmitter into the terminals or extracellular breakdown. It is concluded that this perfusion setup helps to provide new insights in the presynaptic stimulus-secretion coupling, co-transmission, and the exo-endocytosis cycle.  相似文献   

15.
Potassium chloride (25 mM) and (+)-amphetamine (100 microM) both stimulated the release of radioactivity from slices of substantia nigra preincubated with [3H]3,4-dihydroxyphenylethylamine [( 3H]dopamine). Potassium chloride (25 mM) released radioactivity from slices of both zona compacta and zona reticulata. Prior 6-hydroxydopamine (6-OHDA) lesions of one nigrostriatal pathway did not reduce the spontaneous release of radioactivity, or the potassium chloride- or amphetamine-induced release of radioactivity from slices of nigra ipsilateral to the lesion after preincubation with [3H]dopamine. The accumulation of radioactivity following incubation of nigral slices from 6-OHDA-lesioned animals with [3H]dopamine was increased when compared to uptake into slices from intact tissue. In synaptosomal preparations of striatum, nomifensine but not desipramine or fluoxetine inhibited [3H]dopamine uptake. In contrast, nomifensine, desipramine, and fluoxetine all inhibited [3H]dopamine uptake in nigral synaptosomal preparations. Following 6-OHDA lesions of one nigrostriatal pathway the uptake of [3H]dopamine into nigral synaptosomal preparations was unchanged but uptake into striatal preparations was substantially decreased. In contrast, bilateral electrolesions of the dorsal and medial raphe nuclei reduced [3H]dopamine uptake into nigral preparations but not into striatal synaptosomes. The uptake of [3H]5-hydroxytryptamine ([3H]5-HT) into synaptosomal preparations of substantia nigra was abolished by fluoxetine and reduced by desipramine, but was unaffected by nomifensine. In contrast, fluoxetine, desipramine, and nomifensine all inhibited [3H]5-HT uptake into striatal synaptosomal preparations. Following 6-OHDA lesions of one nigro-striatal pathway the uptake of [3H]5-HT into nigral synaptosomal preparations was unchanged but uptake into striatal preparations was reduced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
A superfusion system was used to study the effects of excitatory amino acids (EAA) on release of [3H]dopamine ([3H]DA) previously taken up by rat substantia nigra (SN) slices. The EAA tested (20-250 microM), with the exception of quisqualate and kainate, markedly evoked [3H]DA release from nigral slices when Mg2+ ions were omitted from the superfusion medium. The EAA receptor agonists exhibited the following relative potency in stimulating [3H]DA release: L-glutamate (L-Glu) greater than N-methyl-D-aspartate (NMDA) greater than NM(D,L)A greater than D-Glu much greater than quisqualate = kainate. D-2-Amino-5-phosphonovalerate (100-200 microM), an antagonist for NMDA receptors, substantially reduced [3H]DA release evoked by L-Glu or NMDA. In contrast, L-Glu diethyl ester (100-200 microM) produced a lesser blocking effect on [3H]DA release evoked by the EAA. Further experiments showed that the NMDA-mediated release of [3H]DA was totally suppressed by the omission of Ca2+ or by the addition of tetrodotoxin (0.1 microM) to the superfusion medium. In addition, strychnine, an antagonist for glycine (Gly) receptors, significantly decreased NMDA (100 microM)-evoked as well as glycine (100 microM)-evoked release of [3H]DA from nigral slices. The results shown support the idea that activation of NMDA subtype receptors in SN may trigger a Ca2+-dependent release of DA from dendrites of nigro-striatal DA-containing neurons. Furthermore, a transsynaptic mechanism that may partially involve Gly-containing interneurons is proposed to account for some of the events mediating NMDA receptor activation and DA release in SN.  相似文献   

17.
Abstract: The somatodendritic release of dopamine in substantia nigra previously has been suggested to be nonvesicular in nature and thus to differ from the classical, exocytotic release of dopamine described for the dopaminergic nerve terminal in striatum. We have compared the effects of reserpine, a compound that disrupts vesicular sequestration of monoamines, on the storage and release of dopamine in substantia nigra and striatum of rats. Reserpine administration (5 mg/kg, i.p.) significantly decreased the tissue level of dopamine in substantia nigra pars reticulata, substantia nigra pars compacta, and striatum. In these brain areas, reserpine-induced reductions in tissue dopamine level occurred within 2 h and persisted at 24 h postdrug. In vivo measurements using microdialysis revealed that reserpine administration rapidly decreased the extracellular dopamine concentration to nondetectable levels in substantia nigra as well as in striatum. In both structures, it was observed that reserpine treatment significantly attenuated the release of dopamine evoked by a high dose of amphetamine (10 mg/kg, i.p.) given 2 h later. In contrast, dopamine efflux in response to a low dose of amphetamine (2 mg/kg, i.p.) was not altered by reserpine pretreatment either in substantia nigra or in striatum. The present data suggest the existence, both at the somatodendritic and at the nerve terminal level, of a vesicular pool of dopamine that is the primary site of transmitter storage and that can be displaced by high but not low doses of amphetamine. The physiological release of dopamine in substantia nigra and in striatum is dependent on the integrity of this vesicular store.  相似文献   

18.
alpha-Latrotoxin causes a massive release of endogenous glutamate from guinea-pig cerebrocortical synaptosomes. There appear to be two components to the release. In the first 2 min following addition of 1.3 nM alpha-latrotoxin, glutamate release is largely energy dependent. Superimposed upon this release is a more slowly developing but ultimately much more extensive release of cytoplasmic glutamate together with gamma-aminobutyric acid and nonvesicular amino acids such as aspartate and alpha-aminoisobutyrate. In parallel with this cytoplasmic release there is an extensive depletion of ATP, a massive rise in cytoplasmic free Ca2+ concentration, and a severe restriction of synaptosomal respiratory capacity. The cytoplasmic release is only partially Na+ dependent, eliminating a simple reversal of the plasma membrane acidic amino acid carrier. It is concluded that alpha-latrotoxin releases both transmitter and cytoplasmic pools of amino acids in synaptosomes and causes a major disruption of terminal integrity.  相似文献   

19.
Although the well-known neurotoxic agent bilirubin can induce alterations in neuronal signaling, direct effects on neurotransmitter release have been difficult to demonstrate. In the present study we have used permeabilized nerve terminals (synaptosomes) from rat brain prelabeled with [3H]norepinephrine to examine the effects of bilirubin on transmitter release. Rat cerebrocortical synaptosomes were permeabilized with streptolysin-O (2 U/ml) in the absence or presence of bilirubin (10 M–320 M) and Ca2+ (100 M), and the amount of radiolabeled transmitter released during 5 min to the medium was analysed. Low levels of bilirubin decreased Ca2+-evoked release in a dose-dependent manner, with half-maximal effect at approx 25 M bilirubin. Higher levels of bilirubin (100–320 M) increased [3H]norepinephrine efflux in the absence of Ca2+, suggesting that high bilirubin levels induced leakage of transmitter from vesicles. The nontoxic precursor biliverdin had no effect on Ca2+-dependent exocytosis. Our data indicate that bilirubin directly inhibits both exocytotic release and vesicular storage of brain catecholamines.  相似文献   

20.
Marked reductions in opiate receptor binding (-42%), "enkephalinase" activity (-39%), and Met5-enkephalin levels (-72%) accompanied the well-established dopamine depletion in the substantia nigra pars compacta of Parkinsonian subjects. In contrast, enkephalinergic markers were not significantly modified in caudate nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号