首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
A method to detect viable Cryptosporidium parvum oocysts was developed. Polyclonal immunoglobulin G against C. parvum oocyst and sporozoite surface antigens was purified from rabbit immune serum, biotinylated, and bound to streptoavidin-coated magnetic particles. C. parvum oocysts were captured by a specific antigen-antibody reaction and magnetic separation. The oocysts were then induced to excyst, and DNA was extracted by heating at 95 degrees C for 10 min. A 452-bp fragment of C. parvum DNA was amplified by using a pair of C. parvum-specific primers in PCR. The method detected as few as 10 oocysts in purified preparations and from 30 to 100 oocysts inoculated in fecal samples. The immunomagnetic capture PCR (IC-PCR) product was identified and characterized by a nested PCR that amplified a 210-bp fragment, followed by restriction endonuclease digestion of the IC-PCR and nested-PCR products at the StyI site and a nonradioactive hybridization using an internal oligonucleotide probe labeled with biotin. PCR specificity was also tested, by using DNAs from other organisms as templates. In the control experiments, inactivated oocysts were undetectable, indicating the ability of this method to differentiate between viable and nonviable oocysts. Thus, this system can be used to specifically detect viable C. parvum oocysts in environmental samples with great sensitivity, providing an efficient way to monitor the environment for C. parvum contamination.  相似文献   

3.
The purpose of this study was to characterize the viral symbiont (CPV) of Cryptosporidium parvum sporozoites and evaluate the CPV capsid protein (CPV40) as a target for sensitive detection of the parasite. Recombinant CPV40 was produced in Escherichia coli, purified by affinity chromatography, and used to prepare polyclonal rabbit sera specific for the viral capsid protein. Anti-rCPV40 recognized a 40 kDa and a 30 kDa protein in C. parvum oocysts and appeared to localize to the apical end of the parasite. Anti-rCPV40 serum was capable of detecting as few as 1 C. parvum oocyst in a dot blot assay, the sensitivity being at least 1000-fold greater than sera reactive with total native C. parvum oocyst protein or specific for the 41 kDa oocyst surface antigen. Water samples were seeded with C. parvum oocysts and incubated at 4, 20, or 25 degrees C for greater than 3 months to determine if CPV levels were correlated with oocyst infectivity. Samples were removed monthly and subjected to mouse and cell culture infectivity, as well as PCR analysis for infectivity and viral particle presence. While sporozoite infectivity declined by more than 75% after 1 month at 25 degrees C, the CPV signal was similar to that of control samples at 4 degrees C. By 3 months at 20 degrees C, the C. parvum oocysts were found to be non-infectious, but retained a high CPV signal. This study indicates that CPV is an excellent target for sensitive detection of C. parvum oocysts in water, but may persist for an indefinite time after oocysts become non-infectious.  相似文献   

4.
Current assay methods to detect Cryptosporidium oocysts in water are generally not able to evaluate viability or infectivity. A method was developed for low-level detection of infective oocysts by using HCT-8 cells in culture as hosts to C. parvum reproductive stages. The infective foci were detected by labeling intracellular developmental stages of the parasite in an indirect-antibody assay with a primary antibody specific for reproductive stages and a secondary fluorescein isothiocyanate-conjugated antibody. The complete assay was named the focus detection method (FDM). The infectious foci (indicating that at least one of the four sporozoites released from a viable oocyst had infected a cell) were enumerated by epifluorescence microscopy and confirmed under Nomarski differential interference contrast microscopy. Time series experiments demonstrated that the autoreinfective life cycle in host HCT-8 cells began after 12 h of incubation. Through dilution studies, levels as low as one infectious oocyst were detected. The cell culture FDM compared well to other viability assays. Vital stains and excystation demonstrated that oocyst populations less than 1% viable (by vital dyes) and having a low sporozoite yield following excystation could not infect host cells. Until now, the water industry has relied on an oocyst detection method (under an information collection regulation) that is unable to determine viability. The quantifiable results of the cell culture method described demonstrate two important applications: (i) an infectivity assay that may be used in conjunction with current U.S. Environmental Protection Agency-mandated detection methodologies, and (ii) a method to evaluate oocyst infectivity in survival and disinfection studies.  相似文献   

5.
AIMS: To evaluate four types of filtration cartridges for their capacities, efficiency for capture and release of Cryptosporidium parvum oocysts for detection. METHODS AND RESULTS: Filtration cartridges included in this evaluation were IDEXX Filta-Max, Gelman Envirochek HV, Corning CrypTest, and Filterite Sigma+. Various dosages of C. parvum oocysts were spiked into water samples with a wide range of turbidity (10-50 NTU). Electrochemiluminescence assays were employed to enumerate viable or total number of C. parvum oocysts in these eluates. Among the cartridges tested, Filta-Max consistently showed higher oocyst recovery efficiency, especially with large volume, highly turbid water samples. CONCLUSIONS: Filta-Max filter is the best performer because of its higher oocyst recovery efficiency. SIGNIFICANCE AND IMPACT OF THE STUDY: The overall sensitivities of various C. parvum oocyst detection assays in water samples can be improved if highly efficient oocyst recovery filtration cartridges such as Filta-Max are incorporated in sample preparation.  相似文献   

6.
A viability assay for oocysts of Cryptosporidium parvum based on the inclusion or exclusion of two fluorogenic vital dyes, 4',6-diamidino-2-phenylindole (DAPI) and propidium iodide, was developed by using several different isolates of oocysts. Correlation of this assay with viability measured by in vitro excystation was highly statistically significant, with a calculated correlation coefficient of 0.997. In this research, two similar excystation protocols were utilized, and no significant difference between excystation protocols was detected. Percent excystation of oocyst suspensions could be increased or reduced by inclusion of a preincubation treatment in either excystation protocol, and this alteration was also demonstrated in the viability assay. Oocysts which excluded both dyes would not excyst in vitro unless a further trigger was provided and were more resistant to acid or alkali treatment. The results of this research provide a reproducible, user-friendly assay which is applicable to individual oocysts and also provides a useful adjunct for identification of oocysts in water and environmental samples.  相似文献   

7.
A viability assay for oocysts of Cryptosporidium parvum based on the inclusion or exclusion of two fluorogenic vital dyes, 4',6-diamidino-2-phenylindole (DAPI) and propidium iodide, was developed by using several different isolates of oocysts. Correlation of this assay with viability measured by in vitro excystation was highly statistically significant, with a calculated correlation coefficient of 0.997. In this research, two similar excystation protocols were utilized, and no significant difference between excystation protocols was detected. Percent excystation of oocyst suspensions could be increased or reduced by inclusion of a preincubation treatment in either excystation protocol, and this alteration was also demonstrated in the viability assay. Oocysts which excluded both dyes would not excyst in vitro unless a further trigger was provided and were more resistant to acid or alkali treatment. The results of this research provide a reproducible, user-friendly assay which is applicable to individual oocysts and also provides a useful adjunct for identification of oocysts in water and environmental samples.  相似文献   

8.
9.
The ability to determine inactivation rates of Cryptosporidium parvum oocysts in environmental samples is critical for assessing the public health hazard of this gastrointestinal parasite in watersheds. We compared a dye permeability assay, which tests the differential uptake of the fluorochromes 4'-6-diamidino-2-phenylindole (DAPI) and propidium iodide (PI) by the oocysts (A. T. Campbell, L. J. Robertson, and H. V. Smith, Appl. Environ. Microbiol. 58:3488-3493, 1992), with an in vitro excystation assay, which tests their ability to excyst and, thus, their metabolic potential and potential for infectivity (J.B. Rose, H. Darbin, and C.P. Gerba, Water Sci. Technol. 20:271-276, 1988). Formaldehyde-fixed (killed) oocysts and untreated oocysts were permeabilized with sodium hypochlorite and subjected to both assays. The results of the dye permeability assays were the same, while the excystation assay showed that no excystation occurred in formaldehyde-fixed oocysts. This confirmed that oocyst wall permeability, rather than metabolic activity potential, was the basis of the dye permeability viability assessment. A previously developed protocol (L. J. Anguish and W. C. Ghiorse, Appl. Environ. Microbiol. 63:724-733, 1997) for determining viability of oocysts in soil and sediment was used to examine further the use of oocyst permeability status as an indicator of oocyst viability in fecal material stored at 4 degrees C and in water at various temperatures. Most of the oocysts in fresh calf feces were found to be impermeable to the fluorochromes. They were also capable of excystation, as indicated by the in vitro excystation assay, and were infective, as indicated by a standard mouse infectivity assay. The dye permeability assay further showed that an increase in the intermediate population of oocysts permeable to DAPI but not to PI occurred over time. There was also a steady population of oocysts permeable to both dyes. Further experiments with purified oocysts suspended in distilled water showed that the shift in oocyst populations from impermeable to partially permeable to fully permeable was accelerated at temperatures above 4 degrees C. This sequence of oocyst permeability changes was taken as an indicator of the oocyst inactivation pathway. Using the dye permeability results, inactivation rates of oocysts in two fecal pools stored in the dark at 4 degrees C for 410 and 259 days were estimated to be 0.0040 and 0.0056 oocyst day-1, respectively. The excystation assay gave similar inactivation rates of 0.0046 and 0.0079 oocyst day-1. These results demonstrate the utility of the dye permeability assay as an indicator of potential viability and infectivity of oocysts, especially when combined with improved microscopic methods for detection of oocysts in soil, turbid water, and sediments.  相似文献   

10.
Yao L  Yin J  Zhang X  Liu Q  Li J  Chen L  Zhao Y  Gong P  Liu C 《Experimental parasitology》2007,115(4):333-338
Cryptosporidium parvum is a significant cause of diarrheal disease worldwide. The specific molecules that mediate C. parvum-host interaction and the molecular mechanisms involved in the pathogenesis are unknown. In this study we described a novel phage display method to identify surface adhesion proteins of C. parvum. A cDNA library of the sporozoite and oocyst stages of C. parvum expressed on the surface of T7 phage was screened with intestinal epithelial cells (IECs) from the newborn Cryptosporidium-free Holstein calves. Proteins that selectively and specifically bound to IECs were then enriched using a multi-step panning procedure. Two proteins of C. parvum were selected, one was previously reported (p23), which was an important surface adhesion protein; the other was a novel surface adherence protein (CP12). Sequence analysis showed that CP12 has a N-terminal signal peptide, a transmembrane region, a N-glycosylation site, a casein kinase II phosphorylation site and two N-myristoylation sites. Immunofluorescence assay (IFA) using antibody specific for rCP12 demonstrated that the antibody can specifically bind the surface of sporozoite and oocyst, especially apical region of sporozoite. The surface localization of CP12 and its involvement in the host-parasite interaction suggest that it may serve as an effective target for specific preventive and therapeutic measures for cryptosporidiosis.  相似文献   

11.
12.
In vitro excystation is often used as a measure of viability of encysted protozoan parasites. Parasites that do not excyst in vitro are assumed to be non-viable and non-infectious, whereas those that do excyst are assumed viable. To test the validity of these assumptions, Cryptosporidium parvum oocysts were excysted in vitro using two different excystation protocols, and the non-excysted intact oocysts were isolated using flow cytometry. Non-excysted sorted oocysts readily infected neonatal CD-1 mice. Increasing the duration of the excystation assays from 1 h to 3 h resulted in a higher percent of excysted oocysts, but the remaining non-excysted parasites were still capable of infecting neonatal CD-1 mice. Our results suggest that in vitro excystation is not an accurate measure of the viability or infectious potential of C. parvum oocysts.  相似文献   

13.
The protozoan parasite Cryptosporidium parvum is regarded as a major public health problem world-wide, especially for immunocompromised individuals. Although no effective therapy is presently available, specific immune responses prevent or terminate cryptosporidiosis and passively administered antibodies have been found to reduce the severity of infection. Therefore, as an immunotherapeutic approach against cryptosporidiosis, we set out to develop C. parvum-specific polyclonal antibody libraries, standardised, perpetual mixtures of polyclonal antibodies, for which the genes are available. A combinatorial Fab phage display library was generated from the antibody variable region gene repertoire of mice immunised with C. parvum surface and apical complex glycoproteins which are believed to be involved in mediating C. parvum attachment and invasion. The variable region genes used to construct this starting library were shown to be diverse by nucleotide sequencing. The library was subjected to one round of antigen selection on C. parvum glycoproteins or a C. parvum oocyst/sporozoite preparation. The two selected libraries showed specific reactivity to the glycoproteins as well as to the oocyst/sporozoite preparation, with 50-73% antigen-reactive members. Fingerprint analysis of individual clones from the two antigen-selected libraries showed high diversity, confirming the polyclonality of the selected libraries. Furthermore, immunoblot analysis on the oocyst/sporozoite and glycoprotein preparations with selected library phage showed reactivity to multiple bands, indicating diversity at the antigen level. These C. parvum-specific polyclonal Fab phage display libraries will be converted to libraries of polyclonal full-length antibodies by mass transfer of the selected heavy and light chain variable region gene pairs to a mammalian expression vector. Such polyclonal antibody libraries would be expected to mediate effector functions and provide optimal passive immunity against cryptosporidiosis.  相似文献   

14.
Monoclonal antibodies (MAb) were prepared against the 40-kDa capsid protein of Cryptosporidium parvum virus (CPV) by immunizing mice with purified recombinant CPV40 protein. In immunoblotting analysis, MAbCPV40-1 bound to a 40-kDa protein in extracts of C. parvum oocysts. This 40-kDa protein was localized in the sporozoite cytoplasm by immunofluorescence (IFA) staining with MAbCPV40-1. In a dot-blot assay, MAbCPV40-1 was capable of detecting 10(2) non-bleach-treated and 10(2)-10(3) bleach-treated C. parvum oocysts. MAbCPV40-1 was capable of detecting CPV40 antigen in both soluble and total C. parvum oocyst protein extracts, indicating a potential use for detecting this parasite in environmental samples.  相似文献   

15.
The protozoan parasite Cryptosporidium parvum is known to occur widely in both raw and drinking water and is the cause of waterborne outbreaks of gastroenteritis throughout the world. The routinely used method for the detection of Cryptosporidium oocysts in water is based on an immunofluorescence assay (IFA). It is both time-consuming and nonspecific for the human pathogenic species C. parvum. We have developed a TaqMan polymerase chain reaction (PCR) test that accurately quantifies C. parvum oocysts in treated and untreated water samples. The protocol consisted of the following successive steps: Envirochek capsule filtration, immunomagnetic separation (IMS), thermal lysis followed by DNA purification using Nanosep centrifugal devices and, finally, real-time PCR using fluorescent TaqMan technology. Quantification was accomplished by comparing the fluorescence signals obtained from test samples with those from standard dilutions of C. parvum oocysts. This IMS-real-time PCR assay permits rapid and reliable quantification over six orders of magnitude, with a detection limit of five oocysts for purified oocyst solutions and eight oocysts for spiked water samples. Replicate samples of spiked tap water and Seine River water samples (with approximately 78 and 775 oocysts) were tested. C. parvum oocyst recoveries, which ranged from 47.4% to 99% and from 39.1% to 68.3%, respectively, were significantly higher and less variable than those reported using the traditional US Environmental Protection Agency (USEPA) method 1622. This new molecular method offers a rapid, sensitive and specific alternative for C. parvum oocyst quantification in water.  相似文献   

16.
AIMS: To determine the effect of biotic and abiotic components of soil on the viability and infectivity of Cryptosporidium parvum, and evaluate the suitability of viability tests as a surrogate for oocyst infectivity under various environmental settings. METHODS AND RESULTS: The die-off of C. parvum in saturated and dry loamy soil was monitored over time by immunofluorescence assay (IFA) and PCR to estimate oocysts viability and by cell culture to estimate oocysts infectivity. Pseudomonas aeruginosa activity resulted in digestion of the outer layer of the oocysts, as demonstrated by loss of the ability to react in IFA. Whereas, P. aeruginosa activity did not affect the DNA amplification by PCR. A 1-log reduction in the oocysts infectivity was observed at 30 degrees C in distilled water and in saturated soil while oocysts viability was unchanged. Incubation for 10 days in dry loamy soil at 32 degrees C resulted in a 3-log(10) reduction in their infectivity while no change of oocysts viability was recorded. CONCLUSIONS: Under low temperature, C. parvum oocysts may retain their infectivity for a long time. Soil desiccation and high temperatures enhance the die-off rate of C. parvum. SIGNIFICANCE AND IMPACT OF THE STUDY: Previous die-off studies of C. parvum used viability tests that do not necessarily reflect the oocyst infectivity. Under low temperatures, there was an agreement observed between viability and infectivity tests and oocysts retained their infectivity for a long time. Desiccation and high temperatures enhance the loss of infectivity of C. parvum. The presented die-off data have significant implications on the management of wastewater reuse in warm environments.  相似文献   

17.
To investigate the effect of UV light on Cryptosporidium parvum and Cryptosporidium hominis oocysts in vitro, we exposed intact oocysts to 4-, 10-, 20-, and 40-mJ x cm-2 doses of UV irradiation. Thymine dimers were detected by immunofluorescence microscopy using a monoclonal antibody against cyclobutyl thymine dimers (anti-TDmAb). Dimer-specific fluorescence within sporozoite nuclei was confirmed by colocalization with the nuclear fluorogen 4',6'-diamidino-2-phenylindole (DAPI). Oocyst walls were visualized using either commercial fluorescein isothiocyanate-labeled anti-Cryptosporidium oocyst antibodies (FITC-CmAb) or Texas Red-labeled anti-Cryptosporidium oocyst antibodies (TR-CmAb). The use of FITC-CmAb interfered with TD detection at doses below 40 mJ x cm-2. With the combination of anti-TDmAb, TR-CmAb, and DAPI, dimer-specific fluorescence was detected in sporozoite nuclei within oocysts exposed to 10 to 40 mJ x cm-2 of UV light. Similar results were obtained with C. hominis. C. parvum oocysts exposed to 10 to 40 mJ x cm-2 of UV light failed to infect neonatal mice, confirming that results of our anti-TD immunofluorescence assay paralleled the outcomes of our neonatal mouse infectivity assay. These results suggest that our immunofluorescence assay is suitable for detecting DNA damage in C. parvum and C. hominis oocysts induced following exposure to UV light.  相似文献   

18.
A sensitive and rapid method was developed to detect Cryptosporidium parvum oocysts in drinking water. This molecular assay combined immunomagnetic separation with polymerase chain reaction amplification to detect very low levels of C. parvum oocysts. Magnetic beads coated with anti-cryptosporidium were used to capture oocysts directly from drinking water membrane filter concentrates, at the same time removing polymerase chain reaction inhibitory substances. The DNA was then extracted by the freeze-boil Chelex-100 treatment, followed by polymerase chain reaction. The immunomagnetic separation-polymerase chain reaction product was identified by non-radioactive hybridization using an internal oligonucleotide probe labelled with digoxigenin. This immunomagnetic separation-polymerase chain reaction assay can detect the presence of a single seeded oocyst in 5-100-1 samples of drinking water, thereby assuring the absence of C. parvum contamination in the sample under analysis.  相似文献   

19.
A new strategy for the detection of infectious Cryptosporidium parvum oocysts in water samples, which combines immunomagnetic separation (IMS) for recovery of oocysts with in vitro cell culturing and PCR (CC-PCR), was field tested with a total of 122 raw source water samples and 121 filter backwash water grab samples obtained from 25 sites in the United States. In addition, samples were processed by Percoll-sucrose flotation and oocysts were detected by an immunofluorescence assay (IFA) as a baseline method. Samples of different water quality were seeded with viable C. parvum to evaluate oocyst recovery efficiencies and the performance of the CC-PCR protocol. Mean method oocyst recoveries, including concentration of seeded 10-liter samples, from raw water were 26.1% for IMS and 16.6% for flotation, while recoveries from seeded filter backwash water were 9.1 and 5.8%, respectively. There was full agreement between IFA oocyst counts of IMS-purified seeded samples and CC-PCR results. In natural samples, CC-PCR detected infectious C. parvum in 4.9% (6) of the raw water samples and 7.4% (9) of the filter backwash water samples, while IFA detected oocysts in 13.1% (16) of the raw water samples and 5.8% (7) of the filter backwash water samples. All CC-PCR products were confirmed by cloning and DNA sequence analysis and were greater than 98% homologous to the C. parvum KSU-1 hsp70 gene product. DNA sequence analysis also revealed reproducible nucleotide substitutions among the hsp70 fragments, suggesting that several different strains of infectious C. parvum were detected.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号