首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although widely distributed throughout mammalian tissues, the biological function of cholesterol sulfate remains largely unknown. In these studies we have demonstrated that cholesterol sulfate suppresses de novo sterol synthesis in cultured human fibroblasts. It was further shown in these cultured cells that cholesterol sulfate is a potent inhibitor of the enzyme, 3-hydroxy-3-methylglutaryl coenzyme A reductase (mevalonate: NADP+ oxidoreductase (CoA-acylating), EC 1.1.1.34), the rate-limiting enzyme in cholesterol biosynthesis and the site at which exogenous cholesterol suppresses endogenous cholesterol synthesis. Because cholesterol sulfate inhibited sterologenesis in steroid-sulfatase deficient fibroblasts derived from patients with recessive X-linked ichthyosis, it was inferred that cholesterol sulfate per se and not cholesterol liberated by intracellular desulfation was the inhibitor in these studies. Cholesterol sulfate may be an endogenous regulator of mammalian cholesterol biosynthesis.  相似文献   

2.
Summary Previous studies have demonstrated that as the density of cultured oral epithelial cells increases, there is a concomitant increase in phospholipids and cholesterol ester synthesis and a decrease in that of cholesterol and sterol precursors. Other studies have suggested that the effects of exogenous cholesterol sulfate may be similar to growth responses and influence metabolic steps related to cell density. To further examine this possibility, in the present study lipid synthesis was monitored in hamster cheek pouch epithelial cells in cultures established at different cells densities and in the presence of varying amounts of exogenous cholesterol sulfate. Cell [14C]acetate incorporation into lipids was measured in cultures established at four densities ranging from very subconfluent to very dense (postconfluent) in two media, Dulbecco’s modified Eagle’s medium (DMEM) with 5% fetal bovine serum and KSFM, a non-serum containing keratinocyte medium. Results indicated that the relative proportion of radiolabel incorporated into different lipid classes changed with cell density. In DMEM, the percentage of radiolabel incorporated into total phospholipids and fatty acids increased significantly with increasing cell density whereas percent incorporation into cholesterol, sterol precursors, and cholesterol esters significantly decreased. In KSFM cultures, proportionate phospholipids labeling was significantly increased in more dense cultures whereas cholesterol and cholesterol esters labeling was significantly decreased. In subconfluent and confluent cultures exposed to 10 or 25μM cholesterol sulfate, the relative proportions of phospholipid labeling also increased significantly compared to dimethyl sulfoxide (solvent) controls, whereas sterol precursors, fatty acids, and cholesterol esters labeling was signifcantly decreased. These results indicate that cholesterol sulfate can affect cellular lipid synthesis in a manner similar to that which occurs with increasing cell density, and strengthen the hypothesis that cholesterol sulfate may regulate lipid metabolic pathways related to growth and differentiation.  相似文献   

3.
Fibroblasts from patients with homozygous familial hypercholesterolemia (FH), a disease characterized by accelerated atherogenesis, are known to lack functional low-density-lipoprotein receptors, which ultimately results in increased cholesterol biosynthesis in the cultured cells. [14C]Acetate incorporation in these cells was compared to that of normal fibroblasts and to fibroblasts from patients with Down's syndrome, a disease in which atherosclerosis is rare. Total [14C]acetate incorporation did not differ significantly between normal and Down's fibroblasts, nor did its partitioning into the hexane-extractable and aqueous fractions of the cell hydrolysates. [14C]Acetate incorporation was much greater in FH cells in both the aqueous and hexane-extractable fractions. Preincubation in fetal bovine serum increased acetate incorporation only by FH cells, while 50 μg low-density lipoprotein/ml medium depressed acetate incorporation in all three groups. A C27 sterol, identified by gas chromatography-mass spectrometry as a probable isomer of cholesterol, was present in small amounts in FH fibroblasts, but was not detectable in the normal or Down's cells. The absolute amounts of [14C]acetate incorporated into the non-sterol lipids were greater in the FH fibroblasts, indicating that these cells may have to synthesize, in addition to cholesterol, other required cellular lipids which are delivered to the normal cells by low-density lipoproteins.  相似文献   

4.
This study examined the effects of retinoic acid (RA) on [14C]acetate incorporation and fatty acid composition of hamster embryo fibroblasts (HEF) and two cell lines derived from the same inbred strain but transformed by herpes simplex-2 virus (HSV) or polyoma virus (HFT). Cells were exposed to all trans RA, or dimethylsulfoxide (DMSO), the vehicle for RA, and the lipids labeled with [14C]acetate. Lipids were extracted from the cells, separated by paper chromatography, located by autoradiography, and acetate incorporation determined by liquid scintillation spectrometry. The distribution of fatty acids in total cell lipids was examined by gas chromatography. HEF cells incorporated more acetate into cholesterol than either transformed cell type. The HFT line incorporated more acetate into triglycerides and less into total phospholipids than either the HSV line or the HEF line. RA caused a significant decrease in incorporation of acetate into cholesterol and sphingomyelin in all three cell lines. HEF and HSV cells had decreased incorporation into phosphatidyl inositol-phosphatidyl serine and increased incorporation into triglycerides, changes not evident in the HFT cell. The control fatty acid profiles of the HEF and HSV cells were similar, while the HFT cells had a larger proportion of C16:0 and 18:1 fatty acids. Following treatment with RA all three cell types showed an increase in palmitic and a decrease in oleic acids. The three related cell types showed different [14C]acetate labeling patterns which did not respond uniformly to RA. On the other hand, exposure elicited some like responses in all cell types.  相似文献   

5.
In Lactobacillus plantarum 17-5, lipid synthesis appears to be correlated with protein synthesis. Inhibition of protein synthesis by chloramphenicol (50 mug/ml) caused the nearly simultaneous inhibition of incorporation of radioactive oleic acid into polar lipids before the cessation of growth. In addition, de novo fatty acid synthesis, as determined by the incorporation of radioactive acetate into cellular lipids, was also inhibited. Removal of the antibiotic resulted in the resumption of growth, protein synthesis, and polar lipid synthesis. Inhibition of protein synthesis by leucine deprivation also produced a marked reduction in the incorporation of radioactive oleic acid into the total polar lipids at about the same time that growth stopped (30 to 60 min after the removal of leucine). However, the different classes of lipids behaved differently. For example, the incorporation of oleic acid into cardiolipin was inhibited immediately upon removal of leucine from the cultures, whereas incorporation into phosphatidyl-glycerol was maintained at near normal rates for 60 min after the removal of leucine and then ceased. In contrast, the accumulation of radioactive oleic acid in a neutral lipid identified as diglyceride occurred to a much greater extent in leucine-deprived cultures than in control (+ leucine) cultures. Upon addition of leucine to leucine-deprived cultures, the rates of synthesis of phosphatidyl-glycerol and cardiolipin returned to normal; the amount of radioactivity in the diglyceride fraction decreased to normal levels concomitantly with increased phospholipid synthesis.  相似文献   

6.
In contrast to most tissues, epidermis and its derivatives appear to lack low density lipoprotein (LDL) receptors and exhibit sterologenesis rates unaffected by circulating lipoprotein (LP) cholesterol content. Since LDL receptors have been demonstrated in both cultured squamous cell carcinoma cells and human foreskin keratinocytes, when maintained in low-calcium media, LDL receptor expression may be related to keratinocyte differentiation. We compared receptor binding and internalization of LDL-gold in normal keratinocytes at different stages of growth at physiological calcium concentrations (early, 3-5 days; preconfluent, 6-10 days; postconfluent, 12-17 days), and correlated receptor expression with sterologenesis in LP-replete vs.-depleted media. Whereas in early cultures about 60% of sterologenesis was LP dependent, this fraction declined in preconfluent and confluent cultures despite continued culture growth and little decline in total sterologenesis. Accordingly, LDL receptors were most evident in early cultures, declining in preconfluent cultures in parallel with the decrease in LP-dependent sterol synthesis. In contrast, sterologenesis in human foreskin fibroblasts was profoundly influenced by exogenous LP at all stages of confluence; total and LP-dependent sterologenesis declined in parallel with growth cessation. These studies represent the first demonstration that normal keratinocytes express functional LDL receptors at physiologic calcium concentrations. Moreover, they demonstrate that LDL receptor expression in keratinocytes, in contrast to fibroblasts, can only in part be attributed to growth requirements. Instead, loss of LDL receptor expression serves as a distinctive marker of keratinocyte differentiation and may reflect the specific functional requirements of the epidermis in vivo.  相似文献   

7.
Cerulenin, a specific inhibitor of fatty acids and sterol biosynthesis inhibited the growth of Epidermophyton floccosum, which was reversed when growth medium was supplemented with palmitic acid and sterols. Unsaturated fatty acids partially restored the growth. Cerulenin inhibited both phospholipid and sterol biosynthesis (60-70%) at the minimum inhibitory concentration (0.5 microgram/ml) as demonstrated by [32P]orthophosphoric acid and [14C]acetate incorporation into the respective lipids. Cerulenin-induced inhibition of phospholipid and sterol synthesis was dose dependent up to 0.5 microgram/ml. Exogenously supplied fatty acids and sterols restored the biosynthesis of phospholipids in cerulenin-treated cultures, while that of sterols was enhanced. The biosynthesis of both saturated and unsaturated fatty acids was inhibited by cerulenin.  相似文献   

8.
Recent studies suggest: that the epidermis and pilosebaceous epithelium are important sites of de novo sterol synthesis, and that the rate of cutaneous cholesterol synthesis does not change with alterations in circulating sterol levels. Since cutaneous sterols may be important for permeability barrier function, we studied the effect of experimentally altered barrier function on de novo sterologenesis in the epidermal and dermal layers of the skin. Epidermal sterologenesis appeared to be modulated by the skin's barrier requirements because topical detergent and acetone treatment stimulated de novo synthesis of nonsaponifiable lipids in the epidermis, but not in the dermis. Synthetic activity paralleled both the return of barrier function toward normal and the extent of prior damage to the barrier. Moreover, plastic-wrap occlusion of solvent-treated sites simultaneously corrected both the barrier abnormality and normalized sterol synthesis, further linking increased epidermal sterologenesis to barrier requirements. Whereas topical applications of a variety of other topical lipids did not down-regulate synthesis, epicutaneously applied 25-hydroxycholesterol appeared to diminish synthesis. These results suggest that maintenance of barrier function is one purpose of epidermal de novo nonsaponifiable lipid synthesis, and demonstrate further that, despite a lack of low density lipoprotein receptors, epidermis can regulate its lipid-synthetic apparatus in response to certain specific requirements.  相似文献   

9.
Spinach chloroplasts, isolated by techniques yielding preparations with high O2- evolving activity, showed rates of light-dependent acetate incorporation into lipids 3-4 fold higher than any previously reported. Incorporation rates as high as 500 nmol of acetate/h per mg of chlorophyll were measured in buffered sorbitol solutions containing only NaHCO3 and [1-14C]acetate, and as high as 800 nmol/h per mg of chlorophyll when 0.13 mM-Triton X-100 was also included in the reaction media. The fatty acids synthesized were predominantly oleic (70-80% of the total fatty acid radioactivity) and palmitic (20-25%) with only minor amounts (1-5%) of linoleic acid. Linolenic acid synthesis was not detected in the system in vitro. Free fatty acids accounted for 70-90% of the radioactivity incorporated and the remainder was shared fairly evenly between 1,2-diacylglycerols and polar lipids. Oleic acid constituted 80-90% of the free fatty acids synthesized, but the diacylglycerols and polar lipids contained slightly more palmitic acid than oleic acid. Triton X-100 stimulated the synthesis of diacylglycerols 3-6 fold, but stimulated free fatty acid synthesis only 1-1.5-fold. Added glycerol 1-phosphate stimulated both the synthesis of diacylglycerols and palmitic acid relative to oleic acid, but did not increase acetate incorporation into total chloroplast lipids. CoA and ATP, when added separately, stimulated acetate incorporation into chloroplast lipids to variable extents and had no effect on the types of lipid synthesized, but when added together resulted in 34% of the incorporated acetate appearing in long-chain acyl-CoA. Pyruvate was a much less effective precursor of chloroplast fatty acids than was acetate.  相似文献   

10.
Abstract: We have reported previously that oxysterols inhibit astrogliosis and intracranial glioblastoma growth. To elucidate the mechanism of action of these molecules in vivo, we have investigated their effect on the cholesterol biosynthesis in the injured brain. In a bilateral lesion model, injection of liposomes containing 7β-hydroxycholesterol decreased [3H]acetate incorporation into neutral lipids and cholesterol by 30% and 40%, respectively. Structural analogues were tested using a unilateral lesion model. The injury did not significantly affect cholesterogenesis; injection of 7β-hydroxycholesterol or 7β-hydroxycholesteryl-3-oleate reduced acetate incorporation into cholesterol by 47% and 43%, respectively. Both 7-ketocholesteryl-3-oleate and 7α-hydroxycholesteryl-3-oleate inhibited cholesterogenesis by 32%. As cholesterol and by-products of the cholesterol pathway play a key role in cell division, we have assessed the effect of oxysterols on reactive astrocyte proliferation. The incorporation of bromodeoxyuridine showed that up to 46% of astrocytes were proliferating 24 h after the injury. Injection of 12 nmol of 7β-hydroxycholesterol or 7β-hydroxycholesteryl-3-oleate reduced the labelling index to 26%, whereas the labelling index in the 7-ketocholesteryl-3-oleate-treated cortex was 37%. These findings demonstrate that oxysterols are potent inhibitors of the endogenous cholesterol biosynthesis in brain and show a correlation between cholesterogenesis and reactive astrocyte proliferation.  相似文献   

11.
Results in the present communication demonstrate for the first time that the shunt pathway of mevalonate not leading to sterols is regulated by cholesterol feeding in a reverse fashion to the sterol pathway. Mevalonate incorporation into nonsaponifiable lipids by liver slices was inhibited by cholesterol feeding while the shunt pathway was clearly enhanced. Moreover, inhibition of renal sterologenesis by dietary cholesterol is also reported. These changes in the mevalonate metabolism are closely correlated with the increase observed in the esterified cholesterol content in neonatal chick liver and kidneys after 10 days of 2% cholesterol supplementation of the diet.  相似文献   

12.
Xu X  London E 《Biochemistry》2000,39(5):843-849
Detergent-insoluble membrane domains, enriched in saturated lipids and cholesterol, have been implicated in numerous biological functions. To understand how cholesterol promotes domain formation, the effect of various sterols and sterol derivatives on domain formation in mixtures of the saturated lipid dipalmitoylphosphatidylcholine (DPPC) and a fluorescence quenching analogue of an unsaturated lipid was compared. Quenching measurements demonstrated that several sterols (cholesterol, dihydrocholesterol, epicholesterol, and 25-hydroxycholesterol) promote formation of DPPC-enriched domains. Other sterols and sterol derivatives had little effect on domain formation (cholestane and lanosterol) or, surprisingly, strongly inhibit it (coprostanol, androstenol, cholesterol sulfate, and 4-cholestenone). The effect of sterols on domain formation was closely correlated with their effects on DPPC insolubility. Those sterols that promoted domain formation increased DPPC insolubility, whereas those sterols that inhibit domain formation decreased DPPC insolubility. The effects of sterols on the fluorescence polarization of diphenylhexatriene incorporated into DPPC-containing vesicles were also correlated with sterol structure. These experiments indicate that the effect of sterol on the ability of saturated lipids to form a tightly packed (i.e., tight in the sense that the lipids are closely packed with one another) and ordered state is the key to their effect on domain formation. Those sterols that promote tight packing of saturated lipids promote domain formation, while those sterols that inhibited tight packing of saturated lipids inhibited domain formation. The ability of some sterols to inhibit domain formation (i.e., act as "anti-cholesterols") should be a valuable tool for examining domain formation and properties in cells.  相似文献   

13.
The effects of 3-nitro-2,5-dichlorobenzoic acid (dinoben) and 3-amino-2,4-dichlorobenzoic acid (chloramben) on lipid formation and on the incorporation of various substrates into lipids by intact seeds and subcellular fractions of germinating soybean (Glycine max [L.] Merr. ;Amsoy') were studied. Dinoben (20 mug/ml) inhibited synthesis of total lipids 67%, neutral lipids 73%, glycolipids 51%, and phospholipids 39% in germinating seeds. When polar lipids were analyzed further, inhibition of individual lipid classes was also observed. Chloramben (20 mug/ml) stimulated total lipid synthesis 25%. With the exception of the mitochondrial fraction where malonate thiokinase was absent, dinoben inhibited up to 99% the incorporation of acetate and malonate into lipids, but did not inhibit acetyl-CoA and malonyl-CoA incorporation. Chloramben stimulated the incorporation of all substrates tested into lipids by all fractions except the mitochondrial fraction when malonate was the substrate. When dinoben and chloramben were used in combinations, chloramben did not reverse the inhibitory effect of dinoben.It is concluded that the dinoben inhibitory effect is specific and is associated with the acetate and malonate thiokinase systems. The chloramben effect is stimulatory to either acetyl-CoA carboxylase or fatty acid synthetase or both.  相似文献   

14.
The culture of hepatoblastoma G2 (Hep G2) cells is proposed as an effective model for screening of microbial metabolites--inhibitors of sterol biosynthesis. This model can be applied at early stages of screening procedures and is quite effective for testing of crude extracts of producers' culture broth. The test is based on measurement inhibition of the radiolabelled precursors incorporation in cholesterol and separate fractions of lipids by microbial metabolites in Hep G2 cells. That allows not only to reveal inhibitors of cholesterol biosynthesis, but also to evaluate mechanism of action, including ability to inhibit the synthesis of cholesterol ethers. The cholesterol biosynthesis inhibition was tested at 150 microbial cultures (actinomycetes and imperfect fungi), isolated from soil. The ability to inhibit 14C-acetate incorporation into cholesterol was found in 15-20% of microbial cultures possessing antifungal activity of extracts (culture broth and mycelium).  相似文献   

15.
16.
The properties of an enzyme in rat liver microsomes was described that catalyzed the formation of 25-hydroxycholesteryl ester in the presence of labeled sterol and oleoyl-CoA. The reaction was similar in several respects to that of cholesteryl ester formation by acyl-CoA: cholesterol acyltransferase. Trypsin pretreatment of microsomes inhibited the esterification of both sterols and a similar dose-dependent inhibition was produced by addition of progesterone and several androgens. Microsomes with an enhanced cholesterol content resulting from in vivo treatment with ethinyl estradiol showed increased esterifying activity towards both cholesterol and 25-hydroxycholesterol. Esterification of endogenous microsomal cholesterol was increased by the addition of 25-hydroxycholesterol, concomitant with 25-hydroxycholesteryl ester formation. To assess the relationship between the association of sterols with membranes and sterol ester formation, microsomes were preincubated with either sterol, reisolated by ultracentrifugation in a density gradient and then analyzed chemically or enzymatically. Cholesterol and 25-hydroxycholesterol both associated with microsomes and the added sterol was subsequently esterified. Maximal esterification was only partially dependent on the amount bound. Progesterone, which inhibited sterol esterification, did not bind to microsomes and no inhibition was observed in reisolated microsomes, indicating that the inhibition produced by progesterone was reversible.  相似文献   

17.
2,4-Dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid inhibited the incorporation of [2-(14)C]mevalonate into cholesterol and non-saponifiable lipids. Both compounds inhibited the conversion of [1-(14)C]isopentenyl pyrophosphate into cholesterol and the synthesis of cholesterol and fatty acids from [2-(14)C]acetate. There was no inhibition of the conversion of [1-(14)C]mevalonate into CO(2). At low concentrations (0.5mm) of the compounds there was a stimulation of acetate incorporation into fatty acids.  相似文献   

18.
Biosynthesis of lipids was investigated in growing 293 cells stably expressing fatty acid (FA) transport protein 1 (FATP1), a bifunctional polypeptide with FA transport as well as fatty acyl-CoA synthetase activity. In short-term (30 s) incubations, FA uptake was increased in FATP1 expressing cells (C8 cells) compared with the vector (as determined by BODIPY 3823 staining and radioactive FA uptake). In long-term (4 h) incubations, incorporation of [(14)C]acetate, [3H]oleic acid, or [(14)C]lignoceric acid into 1,2,3-triacyl-sn-glycerol (TG) was elevated in C8 cells compared with vector, whereas incorporation of radiolabel into glycerophospholipids was unaltered. The increase in TG biosynthesis correlated with an increase in 1,2-diacyl-sn-glycerol acyltransferase activity in C8 cells compared with vector. In contrast, incorporation of [(14)C]acetate into sphingomyelin (SM) and cholesterol, and [3H]oleic acid or [(14)C]lignoceric acid into SM was reduced due to a reduction in de novo biosynthesis of these lipids in C8 cells compared with vector. The results indicate that exogenously supplied FAs, and their subsequently produced acyl-CoAs, are preferentially channeled by an FATP1 linked mechanism into the TG biosynthetic pathway and that such internalized lipids down-regulate de novo SM and cholesterol metabolism in actively growing 293 cells.  相似文献   

19.
The synthesis of lipids and their assembly into subcellular membrane fractions of the myelin deficient Quaking mutant and control brains was studied in 18-, 24- and 41-day-old animals using a double label methodology with14C and 3H acetate as precursors. As a general procedure, Quaking mutants were injected intracranially with 50 μCi [14C]acetate and their littermate controls with 300 μCi [3H]acetate. The animals were killed 3 h post-injection, their brains were pooled and subcellular fractions prepared from the common homogenate. An 80-90% decrease in the incorporation of acetate into eleven lipids of myelin in the Quaking mutant was found. This occurred in the face of apparent normal incorporation (relative to microsomes) into lipids of the other main subcellular fractions (nuclear. mitochondrial and synaptosomal) with the exception of decreased incorporation into the myelin-like fraction at 18 and 24 days. Cholesterol and cerebroside were less readily incorporated into Quaking myelin than the other lipids. Although the microsomal synthesis of cholesterol and cerebroside was depressed by about 30% in the Quaking mutant, the incorporation of cholesterol into nuclear, synaptosomal and mitochondrial fractions was unaffected in the mutant. This indicates that sufficient cholesterol is synthesized for the normal assembly of these organelles. In contrast the incorporation of acetate into cholesterol and cerebroside of Quaking myelin was decreased much more than microsomal synthesis. This latter result is consistent with a defect in the process of myclin membrane assembly  相似文献   

20.
Niemann-Pick type C (NPC) is an autosomal recessive lipid storage disorder characterized by lysosomal accumulation of cholesterol and gangliosides resulting from a defect in intracellular lipid trafficking. The NPC1 gene encodes a 1278-amino acid integral membrane protein involved in the sub-cellular trafficking of lipids. The exact biological function of NPC1 remains unclear. Recent evidence suggests that NPC1 is a eukaryotic member of the RND permease family of transport proteins, which when expressed in bacteria is capable of transporting fatty acids. The goal of this project was to assess the role of NPC1 in the transport of fatty acids in primary human fibroblasts using normal fibroblasts and fibroblasts from patients with three lysosomal storage diseases: NPC, mucolipidosis IV, and Sandhoff disease. If NPC1 is a fatty acid transporter, we expect to find fatty acid accumulation only in NPC fibroblasts. We used three experimental approaches to assess the role of NPC1 as a fatty acid transporter. First, we evaluated the accumulation versus metabolism of low density lipoprotein-derived oleic acid. Second, we assessed the amount of free fatty acid present after growth in lipoprotein-containing media. Third, we assessed the cellular accumulation of acriflavine, a fluorescent substrate for a number of resistance-nodulation-cell division permease transporters. Our results indicate that fatty acid flux through NPC1-deficient lysosomes is normal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号