首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Until recently measurement of 25-OH-D3-1 alpha-hydroxylase activity in mammalian kidney has not been possible due to the presence of a protein which inhibits the enzyme by reducing available substrate. However, utilization of sufficient unlabeled 25-OH-D3 (80 nmol/ml renal homogenate) to overcome the effect of the inhibitor while maintaining optimal concentration for 1-hydroxylation has made quantitation of enzyme activity possible. We have modified this existing technique in order to increase the sensitivity and to permit detailed study of 1 alpha-hydroxylate regulation in mouse kidney. The modifications that we have incorporated include (i) simplifying the purification scheme for obtaining measurable 1,25-(OH)2D3 by reducing to one the necessary number of high-performance liquid chromatography steps and (ii) quantifying 1,25-(OH)2D3 by radioligand assay. The sensitivity of the assay is 10 pg, which, corrected for fractionation and recovery (50-60%), allows the measurement of 0.5 fmol 1,25-(OH)2D3 produced per milligram kidney per minute. Moreover, reliability and precision of the assay have been confirmed by demonstrating that samples from carefully matched, identically treated mice have reproducible enzyme activity (interassay coefficient of variation = 9.1%, n = 5) and show appropriate dilution characteristics. We have also demonstrated appropriate modulation of enzyme activity by known effectors of 1-hydroxylation. Kidneys from D-deficient mice exhibit significantly higher enzyme activity (15.28 +/- 1.17, n = 21) than do normal mouse kidneys (5.14 +/- 0.26, n = 33). In contrast, enzyme activity is suppressed significantly in kidneys obtained from calcium-loaded (1.20 +/- 0.04, n = 5) and parathyroidectomized animals (2.94 +/- 0.29, n = 5). Our assay now permits the indepth study of 1 alpha-hydroxylase regulation in mammalian (mouse) kidneys.  相似文献   

2.
The ontogeny of the calcium transport properties and hormonal modulation of the yolk sac membrane in amniote embryos is presently poorly understood. We investigated the role of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) on plasma calcium values, yolk sac morphology and the ability of the yolk sac membrane to transport 45Ca from yolk to embryo. 1,25-(OH)2D3 treatment caused significant hypercalcaemia in 9-, 12- and 15-day embryos. Additionally, this hormone caused a hypertrophy of the endodermal cell layer that comprises the bulk of the yolk sac membrane. Both of these effects were the most dramatic in the 15-day embryo, the oldest age tested. 45Ca added to the yolk was transported into the blood rapidly across the yolk sac membrane. 1,25-(OH)2D3 significantly enhanced this transport in all age groups. [14C]Inulin was also taken across the yolk sac membrane, but at a slower rate than 45Ca; this transport was unaffected by 1,25-(OH)2D3. Thus, the yolk sac responds to 1,25-(OH)2D3 treatment both morphologically and functionally. The mechanism for transport appears to be a specific one, rather than a simple enhancement of non-specific endocytosis.  相似文献   

3.
A sensitive and rapid in vitro assay of 25-hydroxyvitamin D3 [25-(OH)D3]-1 alpha- and 24-hydroxylase activities was developed using rat kidney homogenates. A potent inhibitor of the enzymes in rat plasma was removed by thoroughly perfusing rats with saline. Kidney homogenates prepared from vitamin D-deficient rats preferentially produced tritiated 1 alpha,25-dihydroxyvitamin D3 [1 alpha,25(OH)2D3] from 25(OH) [3H]D3. Addition of 10 microliter or more of rat plasma to 3 ml of 10% kidney homogenates suppressed 1 alpha-hydroxylase activity dose-dependently. Thyroparathyroidectomy (TPTX) of vitamin D-deficient rats greatly abolished 1 alpha-hydroxylase activity. Administration of parathyroid hormone to the TPTX rats increased 1 alpha-hydroxylase activity and that of 1 alpha,25(OH)2D3 enhanced 24-hydroxylase markedly. Since this assay is technically simple, rapid and sensitive, it will be useful in studying the regulatory mechanism in the renal metabolism of 25(OH)D3 in mammals.  相似文献   

4.
The present studies were performed to further characterize a mouse yolk sac protein which is similar or identical to the vitamin D-dependent intestinal calcium-binding protein (CaBP). Yolk sac protein and purified rat intestinal CaBP displayed full identity upon immunodiffusion (Ouchterlony) using antiserum to the rat intestinal CaBP. Immunoreactive CaBP in yolk sac homogenates eluted from gel permeation columns with the low molecular weight peak of 45Ca2+ binding (Chelex assay), and the electrophoretic mobility of the protein was markedly increased by EDTA. On days 11-13 of gestation, the concentrations of immunoreactive CaBP in yolk sac were 4-5-fold higher than in placenta; by days 16-17, the concentrations in yolk sac and placenta were similar. Incubation of yolk sac with [3H]leucine demonstrated synthesis of immunoprecipitable [3H]CaBP. A single band of 3H-labeled protein was seen on sodium dodecyl sulfate gel electrophoresis of the immunoprecipitate. This protein co-migrated with radioactive placental CaBP with an apparent Mr of 10,050. Addition of 1,25-dihydroxycholecalciferol (calcitriol) to organ culture media with or without serum increased the amount and concentration of CaBP in yolk sac (p less than 0.001) at 48 h. CaBP synthesis in yolk sac appeared to be independent of calcitriol concentrations in the maternal circulation since injection of the hormone into the maternal compartment produced no change in yolk sac CaBP despite increases of maternal intestinal and renal CaBP. These studies demonstrate that yolk sac immunoreactive CaBP is synthesized in yolk sac and has an apparent molecular size and calcium-binding properties characteristic of mammalian vitamin D-dependent calcium-binding proteins. The in vitro response of yolk sac CaBP to calcitriol is the first evidence of a vitamin D effect on the fetal membranes and suggests one function for calcitriol receptors in these tissues.  相似文献   

5.
The developing chick embryo acquires calcium from two sources. Until about Day 10 of incubation, the yolk is the only source; thereafter, calcium is also mobilized from the eggshell. We have previously shown that during normal chick embryonic development, vitamin D is involved in regulating yolk calcium mobilization, whereas vitamin K is required for eggshell calcium translocation by the chorioallantoic membrane. We have studied here the biochemical action of 1,25-dihydroxy vitamin D3 in the yolk sac by examining the expression and regulation of the cytosolic vitamin D-dependent calcium-binding protein, calbindin-D28K. Two types of embryos are used for this study, normal embryos developing in ovo and embryos maintained in long-term shell-less culture ex ovo, the latter being dependent solely on the yolk as their calcium source. Our findings are (1) calbindin-D28K is expressed in the embryonic yolk sac, detectable at incubation Days 9 and 14; (2) the embryonic yolk sac calbindin-D28K resembles that of the adult duodenum in both molecular weight (Mr 28,000) and isoelectric point, as well as the presence of E-F hand Ca2(+)-binding structural domains; (3) systemic calcium deficiency caused by shell-less culture of chick embryos results in enhanced expression of calbindin-D28K in the yolk sac during late development; (4) yolk sac calbindin-D28K expression is inducible by 1,25-dihydroxy vitamin D3 treatment in vivo and in vitro; and (5) immunohistochemistry revealed that yolk sac calbindin-D28K is localized exclusively to the cytoplasm of the yolk sac endoderm. These findings indicate that the chick embryonic yolk sac is a genuine target tissue of 1,25-dihydroxy vitamin D3.  相似文献   

6.
The yolk sac of the pregnant rat which functions as a true placenta is a target organ for vitamin D. This tissue can hydroxylate in position 24 both 25-hydroxy- and 1,25-dihydroxyvitamin D3 (25-OHD3 and 1,25-(OH)2D3). The present report describes an in vitro model for the study of 1,25-(OH)2D3 action on the further metabolism of 25-OH[3H]D3 and 1,25-(OH)2[3H]D3 by yolk sac. The tissue explants were preincubated with 1,25-(OH)2D3 for 18 h in a serum-free culture medium. Physiological concentrations of 1,25-(OH)2D3 were the most effective in stimulating (7.5-fold) the 1,25-(OH)2D3 24-hydroxylase, while the 25-OHD3 24-hydroxylase stimulation (4-fold) required a 1,25-(OH)2D3 concentration of 10(-7) M. The stimulating effect of 1,25-(OH)2D3 on the 1,25-(OH)2D3 24-hydroxylase was temperature-dependent, and, since its was inhibited by actinomycin D and cycloheximide, required de novo protein synthesis. 1,24,25-(OH)3D3, 25-OHD3, and 24,25-(OH)2D3 were 10- to 1000-fold less potent than 1,25-(OH)2D3 in inducing the 1,25-(OH)2D3 hydroxylase. Our results strongly suggest that 1,25-(OH)2D3 regulated the 1,25-(OH)2D3 24-hydroxylase by a receptor-mediated process. Furthermore, 1,25-(OH)2D3 at 10(-9) M induced within 4 h an increase of its own degradation and the formation of an as yet unidentified major 1,25-(OH)2[3H]D3 metabolite. We conclude that the yolk sac can participate in the regulation of 1,25-(OH)2D3 concentration in the fetoplacental unit.  相似文献   

7.
A new, rapid assay for 1 alpha-hydroxylase has been developed using 25-hydroxy-[1 alpha-3H]vitamin D3 as the substrate. Using the solubilized and reconstituted chick 1 alpha-hydroxylase, conversion of this substrate to 1,25-dihydroxyvitamin D3 causes the release of tritium into the aqueous medium. This 3H2O can be easily separated from the labeled substrate by passing the reaction mixture through a reverse-phase silica cartridge. The release of tritium is stereospecific as evidenced by the lack of 3H2O formed when 25-hydroxy-[1 beta-3H]vitamin D3 is used as the substrate. In parallel reactions containing the 25-hydroxy-[26,27-3H]vitamin D3 substrate, production of labeled 1,25-dihydroxyvitamin D3 was assessed by extraction and high-performance liquid chromatography and found to agree very closely with the amount of 3H2O produced from 25-hydroxy-[1 alpha-3H]vitamin D3, validating the accuracy of the new assay. Finally, a major advantage of the tritium-release assay for 1 alpha-hydroxylase is that the results are not affected by further metabolism of the 1,25-dihydroxyvitamin D formed in the incubations.  相似文献   

8.
The renal 25-hydroxyvitamin D-3-1 alpha-hydroxylase (1 alpha-hydroxylase) activity and circulating levels of 1,25-dihydroxyvitamin D (1,25(OH)2D) were measured in pregnant guinea-pigs and their offspring. Serum levels of 1,25(OH)2D were significantly elevated in pregnant guinea-pigs but the renal enzyme activity was not different from non-pregnant animals. The fetal renal 1 alpha-hydroxylase activity was about 6-fold higher than the maternal level, whereas circulating 1,25(OH)2D was low. Treatment with pharmacological doses of 1,25(OH)2D3 increased circulating 1,25(OH)2D and depressed the renal 1 alpha-hydroxylases both in the mother and the fetus. In newborn guinea-pigs the enzyme activity was up to 10-times that seen in adults. It declined over the first 3 weeks, showing no difference between the sexes. In sexually mature animals the males had a significantly higher 1 alpha-hydroxylase activity than the female. However, this higher enzyme activity was not correlated to serum testosterone. Around the time the animals reached sexual maturity serum 1,25(OH)2D increased in both sexes. In the males this rise was correlated to an increase in serum testosterone. It is concluded that the maternal renal 1 alpha-hydroxylase activity is unchange in late pregnancy, compared to non-pregnant females. The data indicate that the fetus produces 1,25(OH)2D, and may contribute to the maternal circulating 1,25(OH)2D. The sex difference in 1 alpha-hydroxylase activity previously demonstrated is manifest at about the time of puberty.  相似文献   

9.
Phorbol 12-myristate 13-acetate (100 nM), a potent protein kinase C and macrophage activator, has a biphasic affect on 25(OH)D3-1 alpha-hydroxylase activity in synovial fluid macrophages from arthritis patients. After 5 h, 1 alpha, 25(OH)D3 synthesis fell from 5.2 +/- 0.1 to 1.6 +/- 0.2 pmol/h per 10(6) cells, however, after 24 h and 48 h, synthesis increased to 17.4 +/- 0.3 and 22.3 +/- 1.4 pmol/h per 10(6) cells, respectively. Although an independent short-term mechanism is suggested, protein kinase C may promote macrophage activation, thus increasing long-term 25(OH)D3-1 alpha-hydroxylase expression. Intracellular calcium and cAMP are unlikely to activate the enzyme, since 0.1 microM of the calcium ionophore, A23187, and 1 mM dibutyryl-cAMP inhibited synthesis by 87% and 79%, respectively, after 24 h.  相似文献   

10.
11.
The embryonic rat parietal yolk sac has been previously shown to synthesize a number of basement membrane glycoconjugates including type IV procollagen, laminin, and entactin. In this study, parietal yolk sacs were isolated from 14.5-day rat embryos and incubated in organ culture for 4-7 h with [35S]sulfate, [3H] glucosamine, and/or 3H-labeled amino acids, and the newly synthesized proteoglycans were characterized. The major [35S]sulfate-labeled macromolecule represented approximately 90% of the medium and 80% of the tissue radioactivity. It also represented nearly 80% of the total [3H]glucosamine-labeled glycosaminoglycans. After purification by sequential ion-exchange chromatography and isopycnic CsCI density gradient ultracentrifugation, size-exclusion high-performance liquid chromatography showed a single species with an estimated Mr of 8-9 X 10(5). The intact proteoglycan did not form aggregates in the presence of exogenous hyaluronic acid or cartilage aggregates. Alkaline borohydride treatment released glycosaminoglycan chains with Mr of 2.0 X 10(4) which were susceptible to chondroitinase AC II and chondroitinase ABC digestion. Analysis by high-performance liquid chromatography of the disaccharides generated by chondroitinase ABC digestion revealed that chondroitin 6-sulfate was the predominant isomer. The uronic acid content of the glycosaminoglycans was 92% glucuronic acid and 8% iduronic acid, and the hexosamine content was 96% galactosamine and 4% glucosamine. No significant amounts of N- or O-linked oligosaccharides were detected. Deglycosylation of the proteoglycan with chondroitinase ABC in the presence of protease inhibitors revealed a protein core with an estimated Mr of 1.25-1.35 X 10(5). These results indicated that the major proteoglycan synthesized by the 14.5-day rat embryo parietal yolk sac is a high-density chondroitin sulfate containing small amounts of copolymeric dermatan sulfate. Hyaluronic acid and minor amounts of heparan sulfate proteoglycan were also detected.  相似文献   

12.
We have found that carp and bastard halibut contain 25-hydroxyvitamin D3 (25-D3)-1 alpha-hydroxylase in the liver besides in the kidney by the following in vivo and in vitro experiments. When [3H]-25-D3 was intraperitoneally injected to vitamin D(D)-deficient carp and normal bastard halibut (D-deficient bastard halibut could not be raised because they died during farming), the profiles of high-performance liquid chromatography (HPLC) of the plasma lipid extract showed the formation of a peak corresponding to [3H]-1 alpha,25-dihydroxyvitamin D3 (1,25-D3). When [3H]-25-D3 was incubated with liver homogenates of the fish, a peak corresponding to [3H]-1,25-D3 was also observed in the profile of HPLC. The formation of the metabolite was confirmed by the thermal isomerization into the pre-isomer and mass fragmentography. Although the 1 alpha-hydroxylase was also observed in the kidney, the activity of the enzyme was lower than that in the liver. The results suggest that 25-D3-1 alpha-hydroxylase exists in the liver of carp and bastard halibut and the 25-D3 formed from D3 in the liver is immediately metabolized into 1,25-D3 in the same tissue. The suggestion is supported by the fact that D3 is a major circulating compound with small amounts of 1,25-D3 in the fish while the plasma levels of 25-D3 are under the limit of detection.  相似文献   

13.
Indolyl-3-alkane alpha-hydroxylase, a novel tryptophan-metabolizing enzyme, was prepared in crystalline form from soil isolate organism Pseudomonas XA. Emission spectroscopy and atomic absorption analyses of purified enzyme revealed the presence of iron (0.8 mol/mol of protein), and a number of observations supported the presence of heme prosthetic group (1.1 mol/mol of protein). The S20,w value of indolyl-3-alkane alpha-hydroxylase is 10.2 S, and the molecular weight by sedimentation equilibrium ultracentrifugation is 250,000. The E1%280 of the enzyme is 21, and the isoelectric point by isoelectric focusing on ampholine polyacrylamide gel plates is 4.8. The enzyme catalyzes hydroxylation on the side chain of a variety of 3-substituted indole compounds, including certain tryptophan-containing oligopeptides. The reaction product from tryptamine was identified by proton nuclear magnetic resonance and gas chromatography/mass spectroscopy analyses. While the indole ring remained intact, hydroxylation occurred at the side chain carbon adjacent to the ring. Nuclear magnetic resonance studies indicated that hydroxylation always took place at the same position when the substrate was tryptophan methyl ester, tryptophol, indole-3-propionate, or indole-3-butyrate. No other chemical change occurred when these substrates were incubated with the enzyme. The Km value of indolyl-3-alkane alpha-hydroxylase for L-tryptophan is 2.4 X 10(-6) M, at pH 7.2. The enzyme is inhibited by potassium cyanide (0.1 mM) or hydroxylamine (1mM), but not by NaBH4 (25 mM), aminooxyacetic acid (7mM), quinacrine (1 mM), chlortetracycline (1 mM), p-mercuribenzoate (0.1 mM), or ethylenediaminetetraacetate (1 mM). The plasma half-life (t1/2) of indolyl-3-alkane alpha-hydroxylase in tumor-bearing mice is approximately 25 h.  相似文献   

14.
BACKGROUND: Diabetic teratogenicity relates, partly, to embryonic oxidative stress and the extent of the embryonic damage can apparently be reduced by antioxidants. We investigated the effects of superoxide dismutase-mimics nitroxides, 2,2,6,6-tetramethyl piperidine-N-oxyl (TPL) as an effective antioxidant, on diabetes-induced embryopathy. METHODS: Embryos (10.5 day old) and their yolk sacs from Sabra female rats were cultured for 28 h in the absence or in the presence of nitroxides at 0.05-0.4 mM in control, diabetic subteratogenic, or diabetic teratogenic media, and monitored for growth retardation and congenital anomalies. The oxidant/antioxidant status was examined by oxygen radical absorbance capacity and lipid peroxidation assays, whereas the yolk sac function was evaluated by endocytosis assay. RESULTS: Diabetic culture medium inhibited embryonic and yolk sac growth, induced a high rate of NTDs, reduced yolk sac endocytosis and embryonic antioxidant capacity, and increased lipid peroxidation. These effects were more prominent in the embryos with NTD compared to those without NTD. TPL added to diabetic teratogenic medium improved embryonic and yolk sac growth, reduced the rate of NTDs, and improved yolk sac function. The oxidant/antioxidant status of embryos was also improved. TPL at 1 mM did not damage the embryos cultured in control medium. CONCLUSIONS: In diabetic culture medium, oxidative damage is higher in the malformed rat embryos compared to those without anomalies; the nitroxide provides protection against diabetes-induced teratogenicity in a dose-dependent manner. The yolk sac damage, apparently caused by the same mechanism, might be an additional contributor to the embryonic damage observed in diabetes.  相似文献   

15.
The synthesis of 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) from its precursor, 25-dihydroxyvitamin D(3) (25(OH)D(3)), is catalyzed by the mitochondrial cytochrome P450 enzyme 25-hydroxyvitamin D(3)-1alpha-hydroxylase (1alpha-hydroxylase). It has been generally assumed that 1,25(OH)(2)D(3) inhibits the activity of this enzyme by regulating its expression at the genomic level. We confirmed that 1,25(OH)(2)D(3) reduced the apparent conversion of 25(OH)D(3) to 1,25(OH)(2)D(3) while stimulating the conversion of 1,25(OH)(2)D(3) and 25(OH)D(3) to 1,24,25(OH)(3)D(3) and 24,25(OH)(2)D(3), respectively. However, 1,25(OH)(2)D(3) failed to reduce the abundance of its mRNA or its encoded protein in human keratinocytes. Instead, when catabolism of 1,25(OH)(2)D(3) was blocked with a specific inhibitor of the 25-hydroxyvitamin D(3)-24-hydroxylase (24-hydroxylase) all apparent inhibition of 1alpha-hydroxylase activity by 1,25(OH)(2)D(3) was reversed. Thus, the apparent reduction in 1alpha-hydroxylase activity induced by 1,25(OH)(2)D(3) is due to increased catabolism of both substrate and product by the 24-hydroxylase. We believe this to be a unique mechanism for autoregulation of steroid hormone synthesis.  相似文献   

16.
This investigation was undertaken to determine whether primitive stem cells and/or fully differentiated macrophages were the source of in vitro colonies derived from hematopoietic tissues. The chicken colony-forming cell (CFC) present in uncultured yolk sac was a nonadherent, presumably undifferentiated cell. The efficiency of colony formation in this case was approximately 0.08%. In contrast to uncultured yolk sac, the CFC present in one-week old yolk sac cultures was evidently a macrophage. Yolk sac cultures, which consisted of greater than 99% macrophages, produced colonies with an efficiency of 1-5% while cultures derived from peritoneal macrophages produced colonies with an efficiency of 10%. Silica selectively destroyed macrophages and reduced the colony forming efficiency of cells derived from yolk sac cultures.  相似文献   

17.
Cholate-solubilized chick kidney mitochondria that 1-hydroxylated 25-hydroxyvitamin-D3 (25-OH-D3) upon reconstitution also produced 10-oxo-19-nor-25-OH-D3, which co-eluted with 1,25-dihydroxyvitamin D3 (1,25-(OH)2-D3) on normal phase high performance liquid chromatography (HPLC) with hexane:propanol-2 (9:1), the traditional chromatographic system for isolating 1,25-(OH)2-D3. The 10-oxo derivative was separated from 1,25-(OH)2-D3 by normal phase HPLC with dichloromethane:propanol-2 (19:1) or by reverse phase HPLC with methanol:water (4:1). Unlike 1,25-(OH)2-D3 production, formation of 10-oxo-19-nor-25-OH-D3 did not require a source of reducing equivalents and was blocked by the antioxidants, diphenyl-rho-phenylenediamine, and butylated hydroxytoluene, implicating a free radical or peroxidative synthetic mechanism. Rat kidney mitochondria solubilized with cholate or with cholate and Emulgen 911 produced 10-oxo-19-nor-25-OH-D3 but no detectable 1 alpha,25-(OH)2-D3. These results stress the importance of careful identification of vitamin D metabolites produced in vitro and suggest the use of alternate chromatographic conditions for isolating 1,25-(OH)2-D3 or inclusion of antioxidants in the assay of solubilized 1 alpha-hydroxylase to eliminate contamination of 1,25-dihydroxyvitamin D3 with 10-oxo-19-nor-25-OH-D3.  相似文献   

18.
1. Turkey embryos were incubated in ovo or in long-term shell-less culture (ex ovo) for 14, 18, 22 or 26 days, at which time the concentrations of zinc, copper, iron, manganese and calcium in yolk and yolk sac membrane were determined. 2. Yolk manganese and calcium concentrations increased during incubation in ovo while the concentrations of zinc, copper and iron declined. The concentrations of zinc, copper and iron in yolk from ex ovo embryos did not decline. Yolk calcium concentration increased during incubation ex ovo, although to a much lesser extent than that observed in ovo. 3. The concentration of zinc, copper and iron declined in yolk sac tissue during incubation in ovo whereas no decline was observed for yolk sac tissue from ex ovo embryos. Yolk sac calcium and manganese concentrations increased during incubation in ovo and ex ovo, although the increase in calcium concentration for ex ovo yolk sac was much smaller than that observed in ovo. 4. A peak corresponding to metallothionein (MT) which bound both zinc and copper was isolated from yolk sac cytosol on day 14 of incubation in ovo using gel-permeation column chromatography. 5. Further fractionation of the MT peak by anion exchange chromatography revealed three metal-binding peaks designated MT-1, MT-2a and MT-2b. The majority of the zinc was bound to MT-2a and MT-2b whereas most of the copper was bound to a single peak (MT-2b). 6. The concentrations of zinc and copper in yolk sac cytosol reached a maximum on day 14 of incubation in ovo and declined through to day 28 (hatching).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
1. A highly specific and accurate method based on isotope dilution-mass spectrometry was used for characterization of the renal 25-hydroxyvitamin D3 1 alpha-hydroxylase in untreated guinea pigs with a normal vitamin D status. In previous work, the properties of the enzyme had been determined in rachitic animals only. 2. With intact mitochondria, the reaction required the presence of citric acid-cycle intermediates. The uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone had an inhibitory effect on the isocitrate-supported reaction, indicating that energy-dependent transhydrogenation is of importance. Mitochondrial respiratory-chain inhibitors (cyanide, rotenone, antimycin A) had no effect on the hydroxylation. CO had an inhibitory effect, suggesting participation of a species of cytochrome P-450 in the reaction. A fraction solubilized from mitochondria by cholate became catalytically active in 1 alpha-hydroxylation of 25-hydroxyvitamin D3 after addition of ferredoxin and ferredoxin reductase. The isocitrate-supported reaction catalysed by crude mitochondria had an apparent Km of about 1 microM. 3. An atmosphere containing 50% O2 was found to be necessary for optimal activity. It is thus possible that O2 may be a limiting factor under normal conditions in vivo. 4. The results demonstrate that the mammalian renal 25-hydroxyvitamin D3 1 alpha-hydroxylase is a cytochrome P-450-dependent mixed-function oxidase with properties similar to those previously reported for the same enzyme system in chicken. The present assay and animal system seem to be suitable for further studies on the mechanism of regulation of the mammalian renal 25-hydroxyvitamin D3 1 alpha-hydroxylase under conditions when the vitamin D status is normal.  相似文献   

20.
1. Mitochondria isolated from the kidneys of rachitic pigs have been shown to contain an active 25-hydroxyvitamin D3-1 alpha-hydroxylase. From these mitochondria a cytochrome P-450 has been solubilized with a specific content of 0.02-0.04 nmol/mg protein. 2. In the presence of a bovine adrenal NADPH-ferredoxin reductase, bovine adrenal ferredoxin and NADPH, the cytochrome P-450 supported the formation of 1,25-dihydroxyvitamin D3 from 25-hydroxyvitamin D3. 3. The hydroxylation reaction was linear with time up to 40 min, and with the amount of enzyme up to 0.03 nmol cytochrome P-450. The pH optimum for the reaction was 7.4, and the apparent Km was 3 x 10(-10) mol/mg protein. 4. The results show that 25-hydroxyvitamin D3 is metabolized in mammals by the same enzyme system as has been demonstrated in birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号