首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dorsal periaqueductal gray matter (DPAG) is one of the main output regions of the brainstem for the expression of defense reaction. Recent findings implicating neurokinins in the expression of fear or anxiety-like behaviors, have stimulated interest in the participation of these neuropeptides in the generation of aversive states in the dorsal periaqueductal gray matter. Analyses of traditional measures of the behavior of rats submitted to the elevated plus-maze test in this laboratory have shown that microinjections of substance P (SP) into the DPAG produce anxiogenic-like effects. The present study employs an ethological analysis of the behavior of animals in this test to investigate the involvement of substance P (SP) and its C- and N- fragments (7-11 and 1-7) in the expression of the different aspects of fear upon injection into the DPAG. To this end, rats were implanted with a cannula in the DPAG and injected one week later with 35 and 70 pmol of either substance P, or C- or N- SP fragments and tested immediately afterwards in the elevated plus-maze. The results show that SP and its C terminal fragment, produced increases in scanning, stretched attend posture, head dipping and flat-back approach, whereas the fragment N terminal produced only an increase in rearing. Therefore, the effects of SP and its C terminal fragment were associated to risk assessment behavior, whereas those of N terminal fragment were related to vertical exploratory activity. The results indicate that SP produces anxiogenic effects through activation of neural substrates of aversion in the DPAG and that this effect is probably related to its C terminal fragment.  相似文献   

2.
The role of lysophosphatidic acid (LPA) in the control of emotional behavior remains to be determined. We analyzed the effects of the central administration of 1-oleoyl-LPA (LPA 18∶1) in rats tested for food consumption and anxiety-like and depression-like behaviors. For this purpose, the elevated plus-maze, open field, Y maze, forced swimming and food intake tests were performed. In addition, c-Fos expression in the dorsal periaqueductal gray matter (DPAG) was also determined. The results revealed that the administration of LPA 18∶1 reduced the time in the open arms of the elevated plus-maze and induced hypolocomotion in the open field, suggesting an anxiogenic-like phenotype. Interestingly, these effects were present following LPA 18∶1 infusion under conditions of novelty but not under habituation conditions. In the forced swimming test, the administration of LPA 18∶1 dose-dependently increased depression-like behavior, as evaluated according to immobility time. LPA treatment induced no effects on feeding. However, the immunohistochemical analysis revealed that LPA 18∶1 increased c-Fos expression in the DPAG. The abundant expression of the LPA1 receptor, one of the main targets for LPA 18∶1, was detected in this brain area, which participates in the control of emotional behavior, using immunocytochemistry. These findings indicate that LPA is a relevant transmitter potentially involved in normal and pathological emotional responses, including anxiety and depression.  相似文献   

3.
The effects of intramuscular (i.m.) injections of nandrolone decanoate (15 mg/kg/day), an anabolic-androgenic steroid, on the levels of substance P (SP) and on its N-terminal fragment SP(1-7) were examined in the male rat brain by radioimmunoassay. The results demonstrated that the SP immunoreactivity in amygdala, hypothalamus, striatum, and periaqueductal gray was significantly enhanced, whereas the concentration of the N-terminal fragment SP(1-7) was enhanced in the nucleus accumbens and in periaqueductal gray. In the striatum the steroid induced a decrease in the content of SP(1-7). The relevance of these peptides in connection with anabolic-androgenic steroid-induced aggression is discussed.  相似文献   

4.
M E Hall  J M Stewart 《Peptides》1983,4(5):763-768
Most of the biological actions of substance P (SP) have been thought to be mediated by the carboxy-terminal portion of the peptide. Some of the behavioral effects produced by exogenous SP exhibit a strikingly different structure-activity relationship. The N-terminal heptapeptide fragment of SP, SP(1-7), inhibits nociceptive, aggressive and grooming behaviors and stimulates investigative motor behavior, but the C-terminal hexapeptide fragment analog pyroglutamyl-SP(7-11) exerts opposite effects. While the C-terminal fragment mimics the effects of administered intact SP on motor behaviors, the N-terminal fragment mimics the effects of intact SP on aggressive and nociceptive behaviors. The significant behavioral effects of SP(1-7) and the consistently opposite behavioral effects of N- and C-terminal fragments are important new findings.  相似文献   

5.
Electrical or glutamate stimulation of the dorsal periaqueductal gray matter (DPAG) of rats induces overt defensive behavior, such as freezing or flight, and hyponociception, while glycine and D-serine, a specific NMDA/GLY(B)-site ligand, produced only subtle defensive behavior related to risk assessment and avoidance from the open arms in the elevated plus-maze test. In order to verify whether the GLY(B) site in the DPAG could also be involved in hyponociception, glycine (GLY; 10, 20, 50, and 80 nmol/0.3 microl) and (+/-)-3-amino-1-hydroxy-2-pyrrolidone (HA966; 10 nmol/0.3 microl), a GLY(B)-site antagonist, were microinjected in rats submitted to the radiant heat-induced tail-flick test. GLY increased tail-flick latencies in a dose-dependent way. This hyponociceptive effect was completely reversed by co-administration with HA966. GLY given in the deep layer of superior colliculus did not produce changes in tail-flick latencies. Therefore, the results suggest that the activation of GLY(B) receptors in the DPAG is also involved in the hyponociception elicited by this brain area.  相似文献   

6.
This study was designed to investigate the effects of synthetic mouse pancreatic polypeptide (mPP) on feeding and anxiety in mice. The intracerebroventricular (ICV) injection of mPP (0.003–3 nmol) dose-dependently increased food intake. A significant increase was observed 20 min after ICV injection and continued for 4 h. The intraperitoneal (IP) injection of mPP (0.03–30 nmol) dose-dependently decreased food intake. A significant decrease was observed 20 min after IP injection and continued for 4 h. In the elevated plus maze test, the ICV injection of mPP (0.003–3 nmol) did not affect anxiety behavior. These results suggest that mPP modulates food intake and the Y4 receptor in the brain may contribute to the regulation of feeding, whereas appearing not to influence anxiety in mice.  相似文献   

7.
Leptin is produced in adipose tissue in the periphery, but its satiety effect is exerted in the CNS that it reaches by a saturable transport system across the blood–brain barrier (BBB). The short form of the leptin receptor has been hypothesized to be the transporter, with impaired transport of leptin being implicated in obesity. In Koletsky rats, the splice variant that gives rise to the short form of the leptin receptor contains a point mutation that results in marked obesity. We studied the transport of leptin across the BBB in Koletsky rats and found it to be significantly less than in their lean littermates. By contrast, Sprague–Dawley rats matched in weight to each of these two groups showed no difference in the blood–to–brain influx of leptin. HPLC showed that most of the leptin crossing the BBB in rats remained intact and capillary depletion showed that most of the leptin reached the parenchyma of the brain. The results indicate that the short form of the leptin receptor is involved in the transport of leptin across the BBB.  相似文献   

8.
The neuropeptide cholecystokinin (CCK) has been implicated in fear and anxiety. CCK is found in the CNS in several molecular forms such as the tetrapeptide (CCK-4) and, mainly, the sulfated octapeptide (CCK-8s) fragments. Administration of CCK-4 induces panic attacks in humans and increases the expression of different anxiety-related behaviors in laboratory animals. The effects of CCK-8s on fear and anxiety are less straightforward and seem to be influenced, among other factors, by the route of the peptide administration and the animal model employed. In other to further investigate the role of CCK-8s in fear and anxiety, in the present study we analyzed the effect of CCK-8s in male Wistar rats submitted to the elevated T-maze. This animal model of anxiety was developed in order to separate generalized anxiety (inhibitory avoidance) and panic-like (escape) responses in the same rat. The effect of CCK-8s in this test was also investigated after injection of the peptide into the dorsal periaqueductal gray (DPAG). This brainstem area is rich in CCK receptors and has consistently been implicated in the mediation of fear and anxiety responses. The results showed that both the intraperitoneal and intra-DPAG injections of CCK-8s potentiated one-way escape behavior, suggesting a panicogenic action. In contrast, the injection of the CCK2 receptor antagonist CR2945 inhibited the expression of this behavior, a panicolytic-like effect. Therefore, the elevated T-maze, in contrast to other animal models of anxiety, can detect the anxiety-eliciting effects of CCK-8s both after its systemic and central administration. Also, the results provide further evidence about the involvement of a CCK-mediated mechanism within the DPAG in the regulation of panic-related defensive behaviors.  相似文献   

9.
The present study sought to examine the mechanism of substance P to modulate the antinociceptive action of intrathecal (i.t.) morphine in paw-licking/biting response evoked by subcutaneous injection of capsaicin into the plantar surface of the hindpaw in mice. The i.t. injection of morphine inhibited capsaicin-induced licking/biting response in a dose-dependent manner. Substance P (25 and 50 pmol) injected i.t. alone did not alter capsaicin-induced nociception, whereas substance P at a higher dose of 100 pmol significantly reduced the capsaicin response. Western blots showed the constitutive expression of endopeptidase-24.11 in the dorsal and ventral parts of lumbar spinal cord of mice. The N-terminal fragment of substance P (1–7), which is known as a major product of substance P by endopeptidase-24.11, was more effective than substance P on capsaicin-induced nociception. Combination treatment with substance P (50 pmol) and morphine at a subthreshold dose enhanced the antinociceptive effect of morphine. The enhanced effect of the combination of substance P with morphine was reduced significantly by co-administration of phosphoramidon, an inhibitor of endopeptidase-24.11. Administration of d-isomer of substance P (1–7), [d-Pro2, d-Phe7]substance P (1–7), an inhibitor of [3H] substance P (1–7) binding, or antisera against substance P (1–7) reversed the enhanced antinociceptive effect by co-administration of substance P and morphine. Taken together these data suggest that morphine-induced antinociception may be enhanced through substance P (1–7) formed by the enzymatic degradation of i.t. injected substance P in the spinal cord.  相似文献   

10.
C, N CP MAS and high resolution multinuclear NMR study of methyl

Four new derivatives of methyl

were studied by 1H, 13C, 15N NMR in CDCl3 solutions and by 13C, 15N NMR in the solid state. The replacement of one aryl substituent by another has no influence on the proton and carbon chemical shifts within the sugar moiety, in solution. The differences in 13C chemical shifts Δ = δliquid - δsolid are significant for C-3 (deshielding of -3.4 to -3.8 ppm), C-5 and OMe but not observed for C-2, where the ureido substituent is linked, thus indicating that this fragment of the structure is rigid. The values of Δ in 15N chemical shifts of N-3′ are -2.3 to -2.8 ppm (increase of shielding in the solids); the effect of replacement of substituent at aromatic ring is larger than the contribution of intermolecular H-bond interaction. The values of 15.5–16.1 Hz for 1JC-1′-N and 21.2–21.5 Hz for 1JCO-N indicate that the two C---N-3′ bonds are of significant double bond character.  相似文献   

11.
Intracerebroventricular injection of the octadecaneuropeptide ODN in mouse, at doses of 12.5-1000 ng, reduced the percentage of convulsing animals and increased the latency of convulsions elicited by pentylenetetrazol (50 mg/kg, intraperitoneal [i.p.]). ODN also reduced the percentage of mortality induced by pentylenetetrazol (100 mg/kg, i.p.). The COOH-terminal octapeptide fragment of ODN was approximately equally effective but acted more rapidly than ODN to reverse the convulsant effect of pentylenetetrazol. ODN (100 ng, intracerebroventricular [i.c.v.]) increased the convulsion latency and reduced the percentage of animals that convulsed after the administration of the inverse agonist of benzodiazepine receptors DMCM (13 mg/kg, i.p.), whereas the benzodiazepine receptor antagonist flumazenil (1 mg/kg, subcutaneously) abrogated the protective effect of ODN (100 ng, i.c.v.) on pentylenetetrazol-induced convulsions. ODN (100 ng, i.c.v.) also reduced the percentage of DBA/2J mice displaying audiogenic convulsions. In contrast, ODN did not reduce the percentage of mice displaying tonic or clonic convulsions when electrical interauricular stimulations were applied. It is concluded that ODN, or more likely a proteolytic fragment derived from ODN, reduces pentylenetetrazol-induced convulsions through activation of central-type benzodiazepine receptors.  相似文献   

12.
The purpose of this study was to determine the conformation and vasorelaxant effects of vasoactive intestinal peptide (VIP) self-associated with sterically stabilized phospholipid micelles (SSM) and whether calmodulin modulates both of these processes. Circular dichroism spectroscopy revealed that VIP is unordered in aqueous solution at room temperature but assumes appreciable α helix conformation in SSM. This conformational transition was amplified at 37°C and by a low concentration of calmodulin (0.1 nM). Suffusion of VIP in SSM elicited significant time- and concentration-dependent potentiation of vasodilation relative to that elicited by aqueous VIP in the in situ hamster cheek pouch (P < 0.05). This response was significantly potentiated by calmodulin (0.1 nM). Collectively, these data indicate that exogenous calmodulin interacts with VIP in SSM to elicit conformational transition of VIP molecule from a predominantly random coil in aqueous environment to α helix in SSM. This process is associated with potentiation and prolongation of VIP-induced vasodilation in the in situ peripheral microcirculation.  相似文献   

13.
The behavioral effects of the amino (N)-terminal fragment of substance P (SP(1-7)) on the marmoset (Callithrix penicillata) predator confrontation test of fear/anxiety were investigated. The test apparatus consisted of a figure-eight maze with three parallel arms interconnected at each extremity to a perpendicular arm. A taxidermized oncilla cat (Felis tigrina) was placed outside the maze facing one of its corners. Subjects were submitted to seven 30 min maze habituation trials (HTs), in the absence of the 'predator', and then to six 30 min treatment trials (TTs), in the presence of the 'predator', consisting of four doses of SP(1-7) (5, 50, 250 and 500 microg/kg; IP), saline and sham injection. SP(1-7) treatment reversed, in a dose-dependent way, the fear-induced avoidance behavior due to the predator's presence and increased the frequency of exploratory behaviors. Locomotor activity decreased during successive HTs, yet increased after all SP(1-7) treatments. These results indicate that systemic administration of SP(1-7) produces anxiolytic-like effects in marmosets tested in the predator confrontation model of fear/anxiety.  相似文献   

14.
Ever since the seminal studies of Hans Selye, activation of hypothalamus-pituitary-adrenal (HPA) axis is emblematic of stress. Consequently, the lack of HPA axis responses following the undisputable psychological stress of a panic attack stands out as one of the most intriguing findings of contemporary psychiatry. On the other hand, the defensive behaviors and aversive emotions produced by stimulation of the dorsal periaqueductal gray matter (DPAG) have been proposed as a model of panic attacks. Therefore, we examined whether the plasma levels of ‘stress hormones’ corticotropin and prolactin show any change following the DPAG-evoked freezing and flight behaviors of the rat. Rats bearing an electrode into the DPAG and an intra-atrial catheter were stimulated at 9:00 a.m., 18–24 h after the catheter implantation. Blood samples were withdrawn just before 1-min stimulation of DPAG, immediately after (5 or 15 min) and throughout 3 to 27 h following stimulation. In another experiment, samples were withdrawn either before or following a prolonged stimulation (5 min) of the DPAG with flight threshold intensity. Hormones were measured by either chemiluminescent or double-antibody immunoassays. Hormone plasma levels following freezing and flight behaviors were compared to those of resting or restraint-stressed rats. Data show that stress hormones remain unaltered following the DPAG-evoked defensive behaviors. Not even the 5-min stimulation of DPAG with the flight threshold intensity changed corticotropin plasma levels significantly. As far as we known, this is the first demonstration of the lack of stress hormone responses following the intense emotional arousal and physical exertion of a fear-like behavior in rats. Data add new evidence of DPAG involvement in spontaneous panic attacks.  相似文献   

15.
L J Sim  S A Joseph 《Peptides》1992,13(1):171-176
Potent analgesia is elicited by electrical stimulation of the periaqueductal gray (PAG), dorsal raphe nucleus (DRN) and intralaminar thalamus. Horseradish peroxidase conjugated wheat germ agglutinin (HRP-WGA) was stereotaxically pressure injected into the parafascicular (PF) or central medial (CM) nucleus to identify brainstem afferents to the intralaminar thalamus. WGA-immunoreactive (-ir) neurons were identified in the DRN, PAG and lateral dorsal tegmentum (LDTg) after PF and CM injections. Many retrogradely labeled cells in the DRN and ventral PAG were also serotonin-ir, and a portion of WGA-ir cells in the LDTg were substance P-ir. These results substantiate previous studies implicating the intralaminar thalamus and periaqueductal region, as well as serotonin and substance P, in antinociception.  相似文献   

16.
Corticotropin-releasing factor (CRF) and its receptor subtypes have been implicated in the regulation of endocrine, behavioral and autonomic responses to stress, fear and anxiety. Ovine CRF (oCRF) is a nonspecific CRF receptor agonist that produces anxiogenic-like effects when injected locally into the dorsal aspects of the periaqueductal gray (PAG). This structure is subdivided into four distinct longitudinal columns but their exact functional role is not fully understood. The purpose of the present study was to characterize the effects of oCRF (0.25, 0.5 and 1 microg/0.2 microL) injections into the dorsomedial (dmPAG), dorsolateral (dlPAG) and lateral (lPAG) columns of the PAG using an analysis of the exploratory behavior of rats in the elevated plus-maze (EPM) test. The results showed that microinjections of oCRF intra-dmPAG reduced entries and time spent in the open arms and decreased end-arm exploration and head-dipping. In contrast, oCRF intra-dlPAG or lPAG did not affect the exploratory behavior of the animals in the EPM. These findings point to a columnar specificity for the oCRF effects in the PAG, that is, it increased spatial avoidance measures of the EPM test only in the dmPAG. The proaversive effects of oCRF in the dmPAG gain further relevance when combined with previous immunohistochemical studies showing that CRF-containing projections from the periventricular hypothalamic system arch dorsomedially to the PAG, which could function as an important relay station in the midbrain tectum for avoidance behaviors.  相似文献   

17.
《Hormones and behavior》2009,55(5):584-591
Ever since the seminal studies of Hans Selye, activation of hypothalamus-pituitary-adrenal (HPA) axis is emblematic of stress. Consequently, the lack of HPA axis responses following the undisputable psychological stress of a panic attack stands out as one of the most intriguing findings of contemporary psychiatry. On the other hand, the defensive behaviors and aversive emotions produced by stimulation of the dorsal periaqueductal gray matter (DPAG) have been proposed as a model of panic attacks. Therefore, we examined whether the plasma levels of ‘stress hormones’ corticotropin and prolactin show any change following the DPAG-evoked freezing and flight behaviors of the rat. Rats bearing an electrode into the DPAG and an intra-atrial catheter were stimulated at 9:00 a.m., 18–24 h after the catheter implantation. Blood samples were withdrawn just before 1-min stimulation of DPAG, immediately after (5 or 15 min) and throughout 3 to 27 h following stimulation. In another experiment, samples were withdrawn either before or following a prolonged stimulation (5 min) of the DPAG with flight threshold intensity. Hormones were measured by either chemiluminescent or double-antibody immunoassays. Hormone plasma levels following freezing and flight behaviors were compared to those of resting or restraint-stressed rats. Data show that stress hormones remain unaltered following the DPAG-evoked defensive behaviors. Not even the 5-min stimulation of DPAG with the flight threshold intensity changed corticotropin plasma levels significantly. As far as we known, this is the first demonstration of the lack of stress hormone responses following the intense emotional arousal and physical exertion of a fear-like behavior in rats. Data add new evidence of DPAG involvement in spontaneous panic attacks.  相似文献   

18.
The neural substrates mediating autonomic components of the behavioral defense response reside in the periaqueductal gray (PAG). The cardiovascular components of the defense response evoked from the dorsal PAG (DPAG) have been well described and are dependent, in part, on the integrity of neurons in the region of the parabrachial nucleus as well as the rostral ventrolateral medulla. Descending pathways mediating the ventilatory response associated with activation of DPAG neurons are unknown. The present study was undertaken to test the hypothesis that parabrachial area neurons are also involved in mediating the respiratory response to DPAG stimulation. In urethane-anesthetized, spontaneously breathing rats, electrical stimulation of the DPAG significantly increased respiratory rate, arterial pressure, and heart rate. Changes in respiratory frequency were associated with significant decreases in inspiratory and expiratory durations. After bilateral inhibition of neurons in the lateral parabrachial nucleus (LPBN) region with 5 mM muscimol (n = 6), DPAG-evoked increases in respiration and heart rate were attenuated by 90 +/- 6 and 72 +/- 13%, respectively. The pressor response evoked by DPAG stimulation, however, was attenuated by only 57 +/- 6%. Bilateral blockade of glutamate receptors with 20 mM kynurenic acid (n = 6) in the LPBN also markedly attenuated DPAG-evoked increases in respiration and heart rate (65 +/- 15 and 53 +/- 9% reduction, respectively) but only modestly changed the DPAG-evoked pressor response (34 +/- 16% reduction). These results demonstrate that LPBN neurons play a significant role in the DPAG-mediated respiratory component of behavioral defense responses. This finding supports previous work demonstrating that the dorsolateral pons plays a significant role in mediating most physiological adjustments associated with activation of the DPAG.  相似文献   

19.
Effects of aspartate (2 · 10–5 M), substance P (10–7–10–8 M), and serotonin (5-hydroxytryptamine, 5-HT; 5 · 10–5 M) on the background activity of neurons in the central gray substance (CGS) were studied on slices of the rat midbrain. Aspartate and substance P (transmitters of nociceptive signals), and 5-HT (modulator of transmission of nociceptive influences) were found either to facilitate or to depress the activity of CGS neurons. The predominant effect of substance P or 5-HT applications to neurons of the dorsal CGS part was facilitation, and to neurons of the ventral CGS part, inhibition. The effects of aspartate application on studied CGS neurons were of varying nature, but inhibitory effects were found to prevail.The findings support our earlier hypothesis that assigned the studied neurons to spontaneously discharging inhibitory CGS interneurons, which control the activity of efferent CGS neurons. The role of tested substances in the regulation of CGS neuronal activity and the antinociceptive CGS effects is discussed.Neirofiziologiya/Neurophysiology, Vol. 25, No. 5, pp. 354–362, September–October, 1993.  相似文献   

20.
1. The effects of substance P and its fragments and analogue of a C-terminal fragment on cyclic AMP-dependent phosphorylation of synapsin I in synaptosomal membranes (SM) from cerebral cortex were investigated. 2. SP(I-II) and SP(1-4) at 10(-3) M caused a marked stimulation of synapsin I phosphorylation. 3. A C-terminal fragment of SP (SP6-11) had no effect on phosphorylation of synapsin 1. 4. Analogue of C-terminal fragment [(Tyr8)SP6-11] at 10(-3) M distinctly inhibits phosphorylation of synapsin I. 5. These data suggest that SPI-II and its C- and N-terminal fragments have a modulator function against the phosphorylation of some rat brain proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号