共查询到20条相似文献,搜索用时 0 毫秒
1.
Evolutionary optimization of fluorescent proteins for intracellular FRET 总被引:17,自引:0,他引:17
Fluorescent proteins that exhibit Forster resonance energy transfer (FRET) have made a strong impact as they enable measurement of molecular-scale distances through changes in fluorescence. FRET-based approaches have enabled otherwise intractable measurements of molecular concentrations, binding interactions and catalytic activity, but are limited by the dynamic range and sensitivity of the donor-acceptor pair. To address this problem, we applied a quantitative evolutionary strategy using fluorescence-activated cell sorting to optimize a cyan-yellow fluorescent protein pair for FRET. The resulting pair, CyPet-YPet, exhibited a 20-fold ratiometric FRET signal change, as compared to threefold for the parental pair. The optimized FRET pair enabled high-throughput flow cytometric screening of cells undergoing caspase-3-dependent apoptosis. The CyPet-YPet energy transfer pair provides substantially improved sensitivity and dynamic range for a broad range of molecular imaging and screening applications. 相似文献
2.
3.
FRETcalc plugin for calculation of FRET in non-continuous intracellular compartments 总被引:1,自引:0,他引:1
Stepensky D 《Biochemical and biophysical research communications》2007,359(3):752-758
FRET has emerged as an important tool for studying intracellular processes and interactions between biomolecules. Intracellular donor and acceptor molecules are distributed in individual organelles that usually have complex non-continuous shape. Consequently, background pixels arising from fluorophore-free regions of the cell are proximal to FRET-positive pixels, leading to systemic errors in the estimated FRET values. This study introduces a new FRET(TH) algorithm for FRET estimation by acceptor photobleaching that separates the FRET-positive pixels from the background by applying user-defined thresholds for pixel selection. The FRET(TH) algorithm was validated by analysis of interactions between fluorescently tagged proteins in the endoplasmic reticulum using acquired and simulated images. The novel algorithm showed superior performance to the regular FRET calculation algorithm in acquired images and in most simulations. The developed algorithm was incorporated into the FRETcalc plugin for ImageJ program that enables user-defined choices of thresholds for calculation of FRET by acceptor photobleaching. 相似文献
4.
Ward DT 《Cell calcium》2004,35(3):217-228
As a G protein-coupled receptor (GPCR), the extracellular calcium-sensing receptor (CaR) responds to changes in extracellular free calcium concentration by inducing intracellular signalling. These CaR-induced signals then specifically modulate cellular functions such as parathyroid hormone secretion from the parathyroid glands and calcium reabsorption in the kidney and thus to understand how the CaR functions one must understand how it signals. CaR-induced signalling involves intracellular Ca2+ mobilisation/oscillations as well as the activation of various phospholipases and protein kinases and the suppression of cAMP formation. This review will detail the intracellular pathways by which the CaR is believed to elicit its physiological functions and summarises the evidence for cell- and agonist-specific differential signalling. 相似文献
5.
Johansson DX Brismar H Persson MA 《Biochemical and biophysical research communications》2007,352(2):449-455
The fluorescent proteins ECFP and HcRed were shown to give an easily resolved FRET-signal when expressed as a fusion inside mammalian cells. HeLa-tat cells expressing ECFP, pHcRed, or the fusion protein pHcRed-ECFP were analyzed by flow cytometry after excitation of ECFP. Cells expressing HcRed-ECFP, or ECFP and HcRed, were mixed and FACS-sorted for FRET positive cells: HcRed-ECFP cells were greatly enriched (72 times). Next, cloned human antibodies were fused with ECFP and expressed anchored to the ER membrane. Their cognate antigens (HIV-1 gp120 or gp41) were fused to HcRed and co-expressed in the ER. An increase of 13.5+/-1.5% (mean+/-SEM) and 8.0+/-0.7% in ECFP fluorescence for the specific antibodies reacting with gp120 or gp41, respectively, was noted after photobleaching. A positive control (HcRed-ECFP) gave a 14.8+/-2.6% increase. Surprisingly, the unspecific antibody (anti-TT) showed 12.1+/-1.1% increase, possibly because overexpression in the limited ER compartment gave false FRET signals. 相似文献
6.
Classical models of intracellular signalling describe how small changes in a cell's external environment can bring about major changes in cellular activity. Recent findings from experimental biology indicate that many intracellular signalling systems show a high level of spatial organisation. This permits the modification, by protein kinase or protein phosphatase action, of specific subsets of intracellular proteins - an attribute that is not addressed in classical signalling models. Here we use ideas and concepts from computer science to describe the information processing nature of intracellular signalling pathways and the impact of spatial heterogeneity of their components (e.g. protein kinases and protein phosphatases) on signalling activity. We argue that it is useful to view the signalling ecology as a vast parallel distributed processing network of agents operating in heterogeneous microenvironments, and we conclude with an overview of the mathematical and semantic methodologies that might help clarify this analogy between biological and computational systems. 相似文献
7.
Shingo Kikuta Bi-Huei Hou Ryoichi Sato Wolf B. Frommer 《Bioscience, biotechnology, and biochemistry》2016,80(1):162-165
Trehalose acts as a stress protectant and an autophagy inducer in mammalian cells. The molecular mechanisms of action remain obscure because intracellular trehalose at micromolar level is difficult to quantitate. Here, we show a novel trehalose monitoring technology based on FRET. FLIPsuc90μ?1Venus sensor expressed in mammalian cells enables to quickly and non-destructively detect an infinitesimal amount of intracellular trehalose. 相似文献
8.
9.
10.
11.
12.
13.
14.
González PP Cárdenas M Camacho D Franyuti A Rosas O Lagúnez-Otero J 《Bio Systems》2003,68(2-3):171-185
The theory of behaviour-based systems (or autonomous agents) constitutes a useful approach for the modelling of intracellular signalling networks. In this sense, a cell can be seen as an adaptive autonomous agent or as a society of such agents, where each can exhibit a particular behaviour depending on its cognitive capabilities. We present an intracellular signalling model obtained by integrating several computational techniques into an agent-based paradigm. Cellulat, the model, takes into account two essential aspects of the intracellular signalling networks: (1) cognitive capacities, which are modelled as the agent abilities to interact with the surrounding medium and (2) a spatial organisation, this last obtained using a shared data structure through which the agents communicate between them. We propose a methodology for the modelling of intracellular signalling pathway using Cellulat and we discuss the goal of a virtual laboratory based on our model and presently under development. 相似文献
15.
Confocal imaging of intracellular Ca2+ brings a new level of resolution to the study of hormonal control of intracellular Ca2+ release. This approach has demonstrated the existence of pulsatile circular and spiral waves of Ca+ release induced by receptor activation. The data obtained by confocal imaging support a new framework for understanding intracellular Ca2+ signalling. The goal of this chapter is to review our data on the complexity of intracellular Ca2+ release in Xenopus oocytes, introduce the concept of Ca2+ excitability as a model for Ca2+ release and discuss the implications for encoding intracellular signal information. 相似文献
16.
Anna Kielkowska Izabella Niewczas Louise Fets David Oxley Phillip T Hawkins 《The EMBO journal》2014,33(19):2188-2200
Inositol phospholipids are critical regulators of membrane biology throughout eukaryotes. The general principle by which they perform these roles is conserved across species and involves binding of differentially phosphorylated inositol head groups to specific protein domains. This interaction serves to both recruit and regulate the activity of several different classes of protein which act on membrane surfaces. In mammalian cells, these phosphorylated inositol head groups are predominantly borne by a C38:4 diacylglycerol backbone. We show here that the inositol phospholipids of Dictyostelium are different, being highly enriched in an unusual C34:1e lipid backbone, 1‐hexadecyl‐2‐(11Z‐octadecenoyl)‐sn‐glycero‐3‐phospho‐(1'‐myo‐inositol), in which the sn‐1 position contains an ether‐linked C16:0 chain; they are thus plasmanylinositols. These plasmanylinositols respond acutely to stimulation of cells with chemoattractants, and their levels are regulated by PIPKs, PI3Ks and PTEN. In mammals and now in Dictyostelium, the hydrocarbon chains of inositol phospholipids are a highly selected subset of those available to other phospholipids, suggesting that different molecular selectors are at play in these organisms but serve a common, evolutionarily conserved purpose. 相似文献
17.
18.
Blundell TL Burke DF Chirgadze D Dhanaraj V Hyvönen M Innis CA Parisini E Pellegrini L Sayed M Sibanda BL 《Biological chemistry》2000,381(9-10):955-959
We review here signalling complexes that we have defined using X-ray analysis in our laboratory. They include growth factors and their receptors: nerve growth factor (NGF) and its hetero-hexameric 7S NGF storage complex, hepatocyte growth factor/scatter factor (HGF/SF) NK1 dimers and fibroblast growth factor (FGF1) in complex with its receptor (FGFR2) ectodomain and heparin. We also review our recent structural studies on intracellular signalling complexes, focusing on phosducin transducin GPry, CK2 protein kinase and its complexes, and the cyclin D-dependent kinase, Cdk6, bound to the cell cycle inhibitor p19INK4d. Comparing the structures of these complexes with others we show that the surface area buried in signalling interactions does not always give a good indication of the strength of the interactions. We show that conformational changes are often important in complexes with intermediate buried surface areas of 1500 to 2000 A2, such as Cdk6INK4 interactions. Some interactions involve recognition of continuous epitopes, where there is no necessity for a tertiary structure and very often the binding conformation is induced during the process of interaction, for example phosducin binding to the betagamma subunits (Gtbetagamma) of the heterotrimeric G protein transducin. 相似文献
19.
Universal trafficking components within the cell can be recruited to coordinate and regulate the developmental signalling cascades. We will present ways in which the intracellular trafficking machinery is used to affect and modulate the outcome of signal transduction in developmental contexts, thus regulating multicellular development. Each of the signalling components must reach its proper intracellular destination, in a form that is properly folded and modified. In many instances, the ability to bring components together or segregate them into distinct compartments within the cell actually provides the switch mechanism to turn developmental signalling pathways on or off. The review will begin with a focus on the signal-sending cells, and the ways in which ligand trafficking can impinge on the signalling outcome, via processing, endocytosis and recycling. We will then turn to the signal-receiving cell, and discuss mechanisms by which endocytosis can affect the spatial features of the signal, and the compartmentalization of components downstream to the receptor. 相似文献
20.
Krymskaya VP 《Cellular signalling》2003,15(8):729-739
Tumour suppressors hamartin and tuberin, encoded by tuberous sclerosis complex 1(TSC1) and TSC2 genes, respectively, are critical regulators of cell growth and proliferation. Mutations in TSC1 and TSC2 genes are the cause of an autosomal dominant disorder known as tuberous sclerosis complex (TSC). Another genetic disorder, lymphangioleiomyomatosis (LAM), is also associated with mutations in the TSC2 gene. Hamartin and tuberin control cell growth by negatively regulating S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1), potentially through their upstream modulator mammalian target of rapamycin (mTOR). Growth factors and insulin promote Akt/PKB-dependent phosphorylation of tuberin, which in turn, releases S6K1 from negative regulation by tuberin and results in the activation of S6K1. Although much has been written regarding the molecular genetics of TSC and LAM, which is associated with either the loss of or mutation in the TSC1 and TSC2 genes, few reviews have addressed the intracellular signalling pathways regulated by hamartin and tuberin. The current review will fill the gap in our understanding of their role in cellular signalling networks, and by improving this understanding, an integrated picture regarding the normal function of tuberin and hamartin is beginning to emerge. 相似文献