首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Approximately 98% of turkey erythrocyte phospholipase C (PLC) is cytosolic and is released by hypotonic lysis of the cells and extensive washing of the resultant erythrocyte ghosts. Well washed turkey erythrocyte ghosts retain a fraction of tightly associated PLC, which is activated by the P2y-purinergic receptor and G-protein present in ghost membranes. The particulate PLC is sufficient to couple to all the available purinergic receptor-regulated G-protein. In contrast to ghosts, turkey erythrocyte plasma membrane preparations contain no detectable PLC. To investigate the subcellular location of the ghost-associated PLC, cytoskeletons were prepared by Triton X-100 extraction of turkey erythrocyte ghosts. The ghost-associated PLC was quantitatively recovered in cytoskeleton preparations. Cytoskeleton-associated PLC was solubilized by sodium cholate extraction, partially purified, and shown to reconstitute with PLC-free plasma membrane preparations in an agonist and guanine nucleotide-dependent fashion, indicating that the cytoskeleton-associated PLC is G-protein-regulated. Dissociation of erythrocyte ghost cytoskeletons with the actin-binding protein DNase 1 resulted in a dose-dependent inhibition of agonist and guanine nucleotide-stimulated PLC responses in ghosts and caused release of PLC from ghost or cytoskeleton preparations. These data demonstrate the specific association of a receptor and G-protein-regulated PLC with a component of the detergent-insoluble cytoskeleton and indicate that the integrity of the actin cytoskeleton is important for localization and effective coupling of PLC to the relevant G-protein.  相似文献   

2.
The organization of erythrocyte membrane lipids and proteins has been studied following the release of cytoplasmic components with the non-ionic detergent Triton X-100. After detergent extraction, a detergent-resistant complex called the erythrocyte cytoskeleton is separated from detergent, solubilized lipid and protein by sucrose buoyant density sedimentation. In cytoskeletons prepared under isotonic conditions all of the major erythrocyte membrane proteins are retained except for the integral protein, glycophorin, which is quantitatively solubilized and another integral glycoprotein, band 3, which is only 60% removed. When cytoskeletons are prepared in hypertonic KCl solutions, band 3 is fully solubilized along with bands 2.1 and 4.2 and several minor components. The resulting cytoskeletons have the same morphology as those prepared in isotonic buffer but they are composed of only three major peripheral proteins, spectrin, actin and band 4.1. We have designated this peripheral protein complex the 'shell' of the erythrocyte membrane, and have shown that the attachment of band 3 to the shell satisfies the criteria for a specific interaction. Although Triton did affect erythrocyte shape, cytoskeleton lipid content and the activity of membrane proteases, there was no indication that Triton altered the attachment of band 3 to the shell. We suggest that band 3 attaches to the shell as part of a ternary complex of bands 2.1, 3 and 4.2.  相似文献   

3.
Identification of a membrane skeleton in platelets   总被引:10,自引:2,他引:8       下载免费PDF全文
Platelets have previously been shown to contain actin filaments that are linked, through actin-binding protein, to the glycoprotein (GP) Ib-IX complex, GP Ia, GP IIa, and an unidentified GP of Mr 250,000 on the plasma membrane. The objective of the present study was to use a morphological approach to examine the distribution of these membrane-bound filaments within platelets. Preliminary experiments showed that the Triton X-100 lysis buffers used previously to solubilize platelets completely disrupt the three-dimensional organization of the cytoskeletons. Conditions were established that minimized these postlysis changes. The cytoskeletons remained as platelet-shaped structures. These structures consisted of a network of long actin filaments and a more amorphous layer that outlined the periphery. When Ca2+ was present, the long actin filaments were lost but the amorphous layer at the periphery remained; conditions were established in which this amorphous layer retained the outline of the platelet from which it originated. Immunocytochemical experiments showed that the GP Ib-IX complex and actin-binding protein were associated with the amorphous layer. Analysis of the amorphous material on SDS-polyacrylamide gels showed that it contained actin, actin-binding protein, and all actin-bound GP Ib-IX. Although actin filaments could not be visualized in thin section, the actin presumably was in a filamentous form because it was solubilized by DNase I and bound phalloidin. These studies show that platelets contain a membrane skeleton and suggest that it is distinct from the network of cytoplasmic actin filaments. This membrane skeleton exists as a submembranous lining that, by analogy to the erythrocyte membrane skeleton, may stabilize the plasma membrane and contribute to determining its shape.  相似文献   

4.
The compound p-mercuribenzenefulfonate was found to affect the self-association behavior of both spectrin and actin. The reagent brings about the depolymerization of F-actin, as judged from the decrease in the fluorescence of an attached pyrene label, with a second-order rate constant an order of magnitude less than that for the disruption of isolated erythrocyte cytoskeletons. Therefore, it is unlikely that the depolymerization of actin is the rate-determining step in the mercurial-dependent disruption of the erythrocyte cytoskeleton. Low reagent concentrations caused an initial rapid dissociation of spectrin tetramers at a rate comparable with that of cytoskeleton disruption. Prolonged incubation, or higher reagent concentrations, resulted in subsequent aggregation of spectrin. The reagent also prevented the interaction between spectrin and actin, presumably through its depolymerization of actin and its effects on spectrin. The early event in the disruption of isolated erythrocyte cytoskeletons by p-mercuribenzenesulfonate thus appears to be the dissociation of spectrin oligomers. Subsequent depolymerization of actin brought about by the reagent then results in total disruption of the cytoskeleton.  相似文献   

5.
Following parasitization by Plasmodium falciparum, numerous changes take place in the host erythrocyte membrane. In this study, we used the technique of whole cell mount electron microscopy to determine if the ultrastructure of the erythrocyte cytoskeleton changed following parasitization with knobby and knobless strains of P. falciparum. Using this technique, a network of spectrin filaments (3-10 X 45-120 nm) branching from electron dense junctions (15-25 nm in diameter), the presumed site of bands 4.1 and actin, were visualized. The overall architecture of normal and parasitized erythrocyte cytoskeletons was the same: however, additional patches (35 to 60 nm in size) and aggregates (30 X 150 nm) of electron dense material were present in parasitized skeletons. The ultrastructure of knobby and knobless cytoskeletons was similar, except knobless skeletons usually did not possess the larger aggregates of material. Antigens associated with the erythrocyte cytoskeleton of cells infected with knobby and knobless strains, but not uninfected cells, were demonstrated by indirect immunofluorescence. Results suggest that antigens, associated with the erythrocyte cytoskeleton, may contribute to perturbations in the host erythrocyte membrane.  相似文献   

6.
In this study, the presence of actin in cultured trypanosomatids was investigated using polyclonal antibodies to heterologous actin. Polyclonal antisera to rabbit muscle actin and a monospecific anti-actin antibody react with a 43-kDa polypeptide in extracts of Trypanosoma cruzi, Herpetomonas samuelpessoai and Leishmania mexicana amazonensis on protein immunoblots. The 43-kDa polypeptide co-migrates with skeletal muscle actin and is retained within trypanosomatid cytoskeletons. Attempts to isolate H. samuelpessoai actin through DNase I affinity chromatography showed that the 43-kDa polypeptide did not bind to the column. Instead, low yields of a 47-kDa polypeptide were obtained indicating that the trypanosomatid actin displays unusual DNase I binding behavior when compared to actins from higher eukaryotes. Immunofluorescence studies confirmed that cytoskeletons retain the actin-like protein. In H. samuelpessoai , actin is localized in the region close to the flagellum, whereas in T. cruzi it is more homogeneously distributed. The data presented here show that trypanosomatid actin displays biochemical characteristics similar to actins of other protozoa.  相似文献   

7.
In this study, the presence of actin in cultured trypanosomatids was investigated using polyclonal antibodies to heterologous actin. Polyclonal antisera to rabbit muscle actin and a monospecific anti-actin antibody react with a 43-kDa polypeptide in extracts of Trypanosoma cruzi, Herpetomonas samuelpessoai and Leishmania mexicana amazonensis on protein immunoblots. The 43-kDa polypeptide co-migrates with skeletal muscle actin and is retained within trypanosomatid cytoskeletons. Attempts to isolate H. samuelpessoai actin through DNase I affinity chromatography showed that the 43-kDa polypeptide did not bind to the column. Instead, low yields of a 47-kDa polypeptide were obtained indicating that the trypanosomatid actin displays unusual DNase I binding behavior when compared to actins from higher eukaryotes. Immunofluorescence studies confirmed that cytoskeletons retain the actin-like protein. In H. samuelpessoai, actin is localized in the region close to the flagellum, whereas in T. cruzi it is more homogeneously distributed. The data presented here show that trypanosomatid actin displays biochemical characteristics similar to actins of other protozoa.  相似文献   

8.
Detergent extraction of human blood platelets pre-treated with Taxol to stabilize microtubules allows isolation of marginal band (MB) cytoskeletons. We studied MB cytoskeleton structure using dark-field light microscopy and negative stain electron microscopy (EM). Dark-field illumination clearly demonstrated the "hoop" shape of MB cytoskeletons in unfixed suspensions where the microtubule coils had a mean diameter of 2.87 microns (+/- 0.18 micron, SD). Microtubules were uncoiled by brief exposure to trypsin (2 ng/micrograms protein) or by NaCl (154-600 mM) but not by DNase I, which removed approximately 40% of total actin, but had no effect on dark-field images of microtubule coils. As microtubules uncoiled, a single fiber emerged from the hoop and gradually lengthened as the brightness of the hoop diminished; these fibers correspond to the single microtubules seen by EM. Polypeptides of coiled and uncoiled MB cytoskeletons were analyzed by SDS-PAGE. When microtubules became uncoiled, no changes in the major components (alpha- and beta-tubulin, IEF-51K, or actin) were found. However, a number (greater than 10) of minor polypeptides, each less than 5% of total cytoskeletal protein and with an Mr ranging from 80,000- greater than 260,000, were decreased in "uncoiled" MB cytoskeletons. These results implicate one or more of these minor polypeptides in maintenance of hoop integrity. Dark-field light microscopy thus provides an approach toward investigating the mechanism(s) involved in maintaining the microtubule coil of the platelet marginal band.  相似文献   

9.
As measured by fluorescence microscopy and radioligand binding, C3b/C4b receptors (CR1) became attached to the detergent-insoluble cytoskeleton of human neutrophils when receptors were cross-linked by affinity-purified polyclonal F(ab')2 anti-CR1, dimeric C3b, or Fab monoclonal anti-CR1 followed by F(ab')2 goat anti-mouse F(ab')2. CR1 on neutrophils bearing monovalent anti-CR1 was not attached to the cytoskeleton. In contrast, cross-linked CR1 on erythrocytes and cross-linked MHC Class I on neutrophils were not cytoskeleton associated. A possible role for filamentous actin (F-actin) in the binding of cross-linked CR1 to neutrophil cytoskeleton was suggested by three observations. When neutrophils were differentially extracted with either Low Salt-detergent buffer or High Salt-detergent buffer, stained with FITC-phalloidin, and examined by fluorescent flow cytometry, the residual cytoskeletons generated with the former buffer were shown to contain polymerized F-actin, whereas cytoskeletons generated with the latter buffer were found to be depleted of F-actin. In parallel experiments, High Salt-detergent buffer was also found to release cross-linked CR1 from neutrophils. Second, depolymerization of F-actin by DNAse I released half of the cytoskeletal-associated cross-linked CR1. Third, immunoadsorbed neutrophil CR1, but not MHC Class I or erythrocyte CR1, specifically bound soluble 125I-actin. In addition, Fc receptor and CR3, other phagocytic membrane proteins of neutrophils, specifically bound 125I-actin. These data demonstrate that CR1 cross-linked on neutrophils becomes associated with detergent-insoluble cytoskeleton and that this interaction is mediated either directly or indirectly by actin.  相似文献   

10.
The spectrin-4.1-actin complex isolated from the cytoskeleton of human erythrocyte [3] was found to be similar to muscle F-actin in several aspects: Both the complex and F-actin nucleate cytochalasin-sensitive actin polymerization; both bind dihydrocytochalasin B with similar binding constants; both can be depolymerized by DNase I with loss of cytochalasin binding activity. From these results, we conclude that the actin in the complex is in an oligomeric form. However, the presence of spectrin and band 4.1 in the complex not only stabilized the actin in the complex as evidenced by its resistance to depolymerization in low-ionic-strength conditions and to DNase I as compared with F-actin, but also altered the characteristics of the binding site(s) for cytochalasins believed to be located at the “barbed” (polymerizing) end of the oligomeric actin.  相似文献   

11.
《The Journal of cell biology》1986,103(3):1007-1020
A highly branched filament network is the principal structure in the periphery of detergent-extracted cytoskeletons of macrophages that have been spread on a surface and either freeze or critical point dried, and then rotary shadowed with platinum-carbon. This array of filaments completely fills lamellae extended from the cell and bifurcates to form 0.2-0.5 micron thick layers on the top and bottom of the cell body. Reaction of the macrophage cytoskeletons with anti-actin IgG and with anti-IgG bound to colloidal gold produces dense staining of these filaments, and incubation with myosin subfragment 1 uniformly decorates these filaments, identifying them as actin. 45% of the total cellular actin and approximately 70% of actin-binding protein remains in the detergent-insoluble cell residue. The soluble actin is not filamentous as determined by sedimentation analysis, the DNAase I inhibition assay, and electron microscopy, indicating that the cytoskeleton is not fragmented by detergent extraction. The spacing between the ramifications of the actin network is 94 +/- 47 nm and 118 +/- 72 nm in cytoskeletons prepared for electron microscopy by freeze drying and critical point drying, respectively. Free filament ends are rare, except for a few which project upward from the body of the network or which extend down to the substrate. Filaments of the network intersect predominantly at right angles to form either T-shaped and X-shaped overlaps having striking perpendicularity or else Y-shaped intersections composed of filaments intersecting at 120-130 degrees angles. The actin filament concentration in the lamellae is high, with an average value of 12.5 mg/ml. The concentration was much more uniform in freeze-dried preparations than in critical point-dried specimens, indicating that there is less collapse associated with the freezing technique. The orthogonal actin network of the macrophage cortical cytoplasm resembles actin gels made with actin-binding protein. Reaction of cell cytoskeletons and of an actin gel made with actin- binding protein with anti-actin-binding protein IgG and anti-IgG-coated gold beads resulted in the deposition of clusters of gold at points where filaments intersect and at the ends of filaments that may have been in contact with the membrane before its removal with detergent. In the actin gel made with actin-binding protein, 75% of actin-fiber intersections labeled, and the filament spacing between intersections is consistent with that predicted on theoretical grounds if each added actin-binding protein molecule cross-links two filaments to form an intersection in the gel.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Triton-insoluble cytoskeletons were isolated from Dictyostelium discoideum AX3 cells prior to and following stimulation with 2'deoxy cyclic adenosine monophosphate (cAMP). Temporal changes in the content of actin and a 120,000 dalton actin-binding protein (ABP-120) in cytoskeletons following stimulation were monitored. Both actin and ABP-120 were incorporated into the cytoskeleton at 30-40 seconds following stimulation, which is cotemporal with the onset of pseudopod extension during stimulation of amoebae with chemoattractants. Changes in the content of total cytoskeletal protein and cytoskeletal myosin were determined under the same experimental conditions as controls. These proteins exhibited different kinetics from those of cytoskeletal ABP-120 and actin following the addition of 2'deoxy cAMP. The authors concluded that the association of ABP-120 with the cytoskeleton is regulated during cAMP signalling. Furthermore, these results indicate that ABP-120 is involved in cross-linking newly assembled actin filaments into the cytoskeleton during chemoattractant-stimulated pseudopod extension.  相似文献   

13.
The cytoskeleton and cardiac ion channel expression are closely linked. From the time that newly synthesized channels exit the endoplasmic reticulum, they are either traveling along the microtubule or actin cytoskeletons or likely anchored in the plasma membrane or in internal vesicular pools by those scaffolds. Molecular motors, small GTPases and even the dynamics of the cytoskeletons themselves influence the trafficking and expression of the channels. In some cases, the functioning of the channels themselves has profound influences on the cytoskeleton. Here we provide an overview of the current state of knowledge on the involvement of the actin and microtubule cytoskeletons in the trafficking, targeting and expression of cardiac ion channels and a few channels expressed elsewhere. We highlight, also, some of the many questions that remain about these processes. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.  相似文献   

14.
Actin filaments are polar structures that exhibit a fast growing plus end and a slow growing minus end. According to their organization in cells, in parallel or antiparallel arrays, they can serve, respectively, in protrusions or in contractions. The determination of actin filament polarity in subcellular compartments is therefore required to establish their local function. Myosin binding has previously been the sole method of polarity determination. Here, we report the first direct determination of actin filament polarity in the cell without myosin binding. Negatively stained cytoskeletons of lamellipodia were analyzed by adapting electron tomography and a single particle analysis for filamentous complexes. The results of the stained cytoskeletons confirmed that all actin filament ends facing the cell membrane were the barbed ends. In general, this approach should be applicable to the analysis of actin polarity in tomograms of the actin cytoskeleton.  相似文献   

15.
《The Journal of cell biology》1984,99(4):1335-1342
Erythrocyte ghosts were loaded with pancreatic DNase I and fused with Y- 1 adrenal tumor cells to test the possibility that this enzyme might inhibit the steroidogenic responses of the cells to ACTH and cyclic AMP. Fusion of erythrocyte ghosts loaded with DNase I, but not those containing albumin, ovalbumin, boiled DNase I, or DNase I with excess G- actin, inhibited the increase in production of 20 alpha- dihydroprogesterone produced by ACTH and dibutyryl cyclic AMP; inhibition was concentration-dependent with 50% inhibition by 3 X 10(7) molecules of DNase I per cell. It was found that inhibition by DNase I was exerted at the step in the steroidogenic pathway at which cholesterol is transported to mitochondria where steroidogenesis begins. This was shown by measuring transport of cholesterol into the inner mitochondrial membrane, by measuring the production of pregnenolone by isolated mitochondria and by demonstrating that DNase I was without effect on the conversion of pregnenolone to 20 alpha- dihydroprogesterone (an end-product of steroid synthesis). The actin content of Y-1 cells was measured by two methods based upon inhibition of DNase I and by SDS gels following centrifugation. The cells were found to contain 2-3 X 10(7) molecules of actin per cell of which two- thirds is present as G-actin. Since DNase I is known to bind to G-actin to give a one to one complex, these and other findings suggest that at least some of the G-actin in the cells may be necessary for the steroidogenic responses to ACTH and cyclic AMP.  相似文献   

16.
Mechanisms of actin rearrangements mediating platelet activation.   总被引:22,自引:6,他引:16       下载免费PDF全文
The detergent-insoluble cytoskeleton of the resting human blood platelet contains approximately 2,000 actin filaments approximately 1 micron in length crosslinked at high angles by actin-binding protein and which bind to a spectrin-rich submembrane lamina (Fox, J., J. Boyles, M. Berndt, P. Steffen, and L. Anderson. 1988. J. Cell Biol. 106:1525-1538; Hartwig, J., and M. DeSisto. 1991. J. Cell Biol. 112:407-425). Activation of the platelets by contact with glass results within 30 s in a doubling of the polymerized actin content of the cytoskeleton and the appearance of two distinct new actin structures: bundles of long filaments within filopodia that end at the filopodial tips (filopodial bundles) and a circumferential zone of orthogonally arrayed short filaments within lamellipodia (lamellipodial network). Neither of these structures appears in cells exposed to glass with cytochalasin B present; instead the cytoskeletons have numerous 0.1-0.3-microns-long actin filament fragments attached to the membrane lamina. With the same time course as the glass-induced morphological changes, cytochalasin-sensitive actin nucleating activity, initially low in cytoskeletons of resting platelets, increases 10-fold in cytoskeletons of thrombin-activated platelets. This activity decays with a time course consistent with depolymerization of 0.1-0.3-microns-long actin filaments, and phalloidin inhibits this decay. Cytochalasin-insensitive and calcium-dependent nucleation activity also increases markedly in platelet extracts after thrombin activation of the cells. Prevention of the rise in cytosolic Ca2+ normally associated with platelet activation with the permeant Ca2+ chelator, Quin-2, inhibits formation of lamellipodial networks but not filopodial bundles after glass contact and reduces the cytochalasin B-sensitive nucleation activity by 60% after thrombin treatment. The filopodial bundles, however, are abnormal in that they do not end at the filopodial tips but form loops and return to the cell body. Addition of calcium to chelated cells restores lamellipodial networks, and calcium plus A23187 results in cytoskeletons with highly fragmented actin filaments within seconds. Immunogold labeling with antibodies against gelsolin reveals gelsolin molecules at the ends of filaments attached to the submembrane lamina of resting cytoskeletons and at the ends of some filaments in the lamellipodial networks and filopodial bundles of activated cytoskeletons. Addition of monomeric actin to myosin subfragment 1-labeled activated cytoskeletons leads to new (undecorated) filament growth off the ends of filaments in the filopodial bundles and the lamellipodial network. The simplest explanation for these findings is that gelsolin caps the barbed ends of the filaments in the resting platelet. Uncapping some of these filaments after activation leads to filopodial bundles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Integrin-mediated interactions between cytoskeletal proteins and extracellular fibrinogen are required for platelet adhesion. We have previously demonstrated that the major platelet integrin, alpha(IIb)beta(3), becomes incorporated into the actin cytoskeleton of platelets in an activation-dependent, aggregation-independent manner. To determine if regulatory molecules are also associated with these integrin-rich cytoskeletal complexes, we examined actin cytoskeletons for the presence of kinases and phosphoproteins. Western immunoblot analysis revealed that the tyrosine kinases Src, Fyn, and Lyn are specifically associated with actin cytoskeletons of activated, nonaggregated platelets. However, as noted by others, the cytoskeletal association of focal adhesion kinase depends on platelet aggregation. Actin cytoskeletons isolated from (32)P-labeled platelets also contain a number of phosphorylated proteins. Interestingly, an approximately 18-kDa phosphoprotein was uniquely present in activated platelet cytoskeletons. Collectively, our results demonstrate that actin cytoskeletons of activated, nonaggregated platelets contain not only integrins, but also kinases and phosphoproteins that could regulate platelet adhesion and transmembrane communication.  相似文献   

18.
The presence of an actin-binding protein, tropomyosin, in particles or protein complexes not bound with actin structures were found during an assay of structural rearrangements of actin cytoskeleton. To study the composition and properties of these protein complexes, a novel method of their isolation without destroying cytoskeleton structures has been elaborated. The protein composition of isolated tropomyosin particles was assessed by gel filtration, electrophoresis, and Western blotting. It was demonstrated that they are about 700-kDa multimolecular complexes. In addition to tropomyosin and actin, these complexes contained Hsp70, Hsp90, and myosin-9 identified by mass spectrometry. It was found that the deacetylase inhibitor, trichostatin A, which induced actin cytoskeleton rearrangements, changed the number of tropomyosin particles and caused redistribution of tropomyosin between cytosol and cytoskeleton. These results demonstrate that these multimolecular complexes may participate in the process of reorganization of actin microfilaments.  相似文献   

19.
Rearrangements of the actin cytoskeleton are involved in a variety of cellular processes from locomotion of cells to morphological alterations of the cell surface. One important question is how local interactions of cells with the extracellular space are translated into alterations of their membrane organization. To address this problem, we studied CASK, a member of the membrane-associated guanylate kinase homologues family of adaptor proteins. CASK has been shown to bind the erythrocyte isoform of protein 4.1, a class of proteins that promote formation of actin/spectrin microfilaments. In neurons, CASK also interacts via its PDZ domain with the cytosolic C termini of neurexins, neuron-specific cell-surface proteins. We now show that CASK binds a brain-enriched isoform of protein 4.1, and nucleates local assembly of actin/spectrin filaments. These interactions can be reconstituted on the cytosolic tail of neurexins. Furthermore, CASK can be recovered with actin filaments prepared from rat brain extracts, and neurexins are recruited together with CASK and protein 4.1 into these actin filaments. Thus, analogous to the PDZ-domain protein p55 and glycophorin C at the erythrocyte membrane, a similar complex comprising CASK and neurexins exists in neurons. Our data suggest that intercellular junctions formed by neurexins, such as junctions initiated by beta-neurexins with neuroligins, are at least partially coupled to the actin cytoskeleton via an interaction with CASK and protein 4.1.  相似文献   

20.
We have previously observed that subunits of the chaperonin required for actin production (type-II chaperonin containing T-complex polypeptide 1 [CCT]) localize at sites of microfilament assembly. In this article we extend this observation by showing that substantially substoichiometric CCT reduces the initial rate of pyrene-labeled actin polymerization in vitro where eubacterial chaperonin GroEL had no such effect. CCT subunits bound selectively to F-actin in cosedimentation assays, and CCT reduced elongation rates from both purified actin filament "seeds" and the short and stabilized, minus-end blocked filaments in erythrocyte membrane cytoskeletons. These observations suggest CCT might remain involved in biogenesis of the actin cytoskeleton, by acting at filament (+) ends, beyond its already well-established role in producing new actin monomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号