首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In paraffin sections of rat tissue it is possible to stain mast cell granules blue in contrast to red nuclei, pale blue cytoplasmic ribonucleic acid, and colorless collagen. This is done by the following mixture: 1% methylene blue (pure, not polychrome), 9 ml; 0.1% basic fuchsin, 9 ml; glacial acetic acid, 2 ml. Stain formol-fixed, paraffin-processed sections for 5 min, wash in water and pass through acetone, 2 changes, 10 sec total, to xylene and a polystyrene mounting medium.  相似文献   

2.
Three methods that are adapted to the various consistencies of plants are as follows: 1. Samples are placed for 10-14 hr at 60° C in a 1% aqueous solution of basic fuchsin, to which 10 gm of solid NaOH per 100 ml are added. 2. Samples when taken out of 95% alcohol are placed in a 1% solution of basic fuchsin in 95% alcohol for 24 hr; after washing in water, they are placed in a 15% solution of NaOH at 60° C until cleared. 3. Samples are placed in a 15% aqueous solution of NaOH at 60° C until cleared, then for 24 hr at 60° C in 15% NaOH containing basic fuchsin. After being stained and cleared by one of these three methods, the samples are rinsed in water, dehydrated and then passed into a mixture of absolute alcohol and concentrated HC1 (3:1) for 1-15 min, rinsed in absolute alcohol, cleared in xylene and mounted in Canada balsam. The lignified tissues appear red; the others, transparent.  相似文献   

3.
In this technique alpha cells are stained by basic fuchsin, beta cells by iron-hematoxylin, reticular fibers by ferric tannate, and much by alcian blue. Among 6 commonly used fixatives tested, Bouin's fluid fixation (8-12 hr) gave the best staining results. Procedure: paraffin sections to water; 0.5% Li2CO3 to remove picric acid; 20% tannic acid, 15 min; wash well; 2-4 sec in 0.5% basic fuchsin containing 10% alcohol; rinse, then differentiate in 1% aniline in 90% alcohol until alpha cells are red and beta cells pink; 1% phosphomolybdic acid, 1 min; 5% hematoxylin in 2% iron alum, 0.5 min; wash well; 1% filtered alcian blue SGX, 15 sec; rinse, dehydrate, clear, and mount in synthtic resin. Results: reticular fibers, black; acinar cells, orange to gray; alpha cells, red; collagenous fibers, red; beta cells, gray granules; ducts, bluish-green. The method was tested on rat, rabbit, dog, hamster, cow and man.  相似文献   

4.
A study has been made on the possibility of replacing leucofuchsin by colored basic fuchsin for the histochemical demonstration of aldehydes. Several tissues from mammals and various pertinent fixatives were used. Aldehydes were freed from carbohydrates by oxidation and from thymonucleic acid by hydrolysis.

It was found that the colored form and not necessarily the leucoform of basic fuchsin can be used histochemically in demonstrating aldehydes. The technic used is as follows: (1) Treat with 1.0-0.5% H5IO6 (or in 1% KIO4 in M/1 H2SO4) for 5 to 10 min. and wash thoroughly. For thymonucleic acid hydrolize with N HCl 5 min. at room temperature, 10 min. at 60°C. and 5 min. at room temperature. (2) Stain for 2-3 min. with 0.05% basic fuchsin in 5% ethanol, 3% phenol. (3). Transfer immediately to 1 or 2 changes of 1% sodium bisulphite or potassium metabisulphite in 0.1-0.2 N H2SO4 for a total of 5 min. (4) Rinse with water and treat with M H2SO4 in 95% ethanol for 3-5 min. 6. Wash thoroughly in water and dehydrate, clear, and mount. For glycogen and mucin the following counterstaining solution is recommended: orange G, 0.25 g.; light green SFY, 0.10 g.; phosphotungstic acid 0.50 g.; 50% ethanol, 100 ml.; glacial acetic acid, 0.25 ml.  相似文献   

5.
A selective stain for elastic tissue (designated orcinol-new fuchsin) is described. Two grams of new fuchsin (C.I. No. 678) and 4 gm of orcinol (highest purity) are added to 200 ml of distilled water and the solution boiled for 5 min. Then 25 ml ferric chloride solution (U.S.P. IX) are added and the solution is boiled 5 min longer. The precipitate is collected and dissolved in 100 ml 95% ethanol. This is the staining solution. Sections are deparaffinized and brought to absolute ethanol, stained for 15 min at 37 °C with orcinol-new fuchsin, differentiated for 15 min in 70% ethanol, dehydrated, cleared and covered as usual.  相似文献   

6.
To see small lymphoid nucleoli clearly in 1-2 μ paraffin sections, the staining of contiguous chromatin masses in the nucleus was suppressed by a hydrolysis-aniline blocking sequence, which produces aldehyde from DNA, and attaches aniline to that aldehyde to make a diphenamine base, thus reducing the acidity of the chromatin and its affinity for basic dyes. Nucleolar RNA remains fully stainable by azure B, because the hydrolysis used does not produce aldehyde groups in it, to allow aniline attachment. Technique: Hydrolyse the 10% formol-saline fixed, deparaffinised 1-2 μ section for 4.5-5.0 min in 10% (v/v) HCl in tetra-hydrofuran at 39-40 C, rinse in water, and treat at room temperature in 10% (v/v) aniline in acetic acid for 10 min. Stain 2-4 hr with freshly prepared 0.1% azure B in a 1:10 dilution of tris buffer at pH 7.0. Rinse, blot off excess water, pass through acetone and xylene to a polystyrene mounting. DNA stains pale green to colourless; nucleolar and cytoplasmic RNA, blue.  相似文献   

7.
The epoxy resin was removed from semithin (1 μm) sections by immersing them for 30 sec in sodium methoxide (Mayor et al., J. Biophys. Biochem. Cytol., 9: 909-10, 1961) and then processed as follows: (1) left for 1-3 hr at 60 C in a mixture of formalin, 25 ml; glacial acetic acid, 5 ml; CrO3, 3 gm; and distilled water, 75 ml: (2) oxidized 10 min in a 1:1:6 v/v mixture of 2.5% KMnO4, 5% H2SO4 and distilled water: (3) bleached in 1% oxalic acid, and (4) stained for 15 min in aldehyde fuchsin, 0.125% in 70% alcohol, or in a 1% aqueous solution of toluidine blue. The neurosecretory material is selectively stained.  相似文献   

8.
Thin (0.5-1 μ) sections of plastic-embedded, OsO4-fixed tissues were attached to glass slides by heating to 70 C for 1 min. A saturated solution combining toluidine blue and malachite green was prepared in ethanol (8% of each dye) or water (4% of each dye). Methacrylate or epoxy sections were stained in the ethanol solution for 2-5 min. The water solution was more effective for some epoxy sections (10-80 min). Epoxy sections could be mordanted by 2% KMnO4, in acetone (1 min) before use of the aqueous dye, reducing staining time to 5-10 min and improving contrast. Aqueous basic fuchsin (4%) was used as the counter-stain in all cases; staining time varied from 1-30 min depending upon the embedding medium and desired effects, methacrylate sections requiring the least time. In the completed stain, nuclei were blue to violet; erythrocytes and mitochondria, green; collagen and elastic tissue, magenta; and much and cartilage, bright cherry red. Sections were coated with an acrylic resin spray and examined or photographed with an oil-immersion lens.  相似文献   

9.
The staining schedule was developed for a study of the mycorrhizae of red pine, Pinus resinosa Ait. From 70% alcohol, sections are stained in a saturated solution of chlorazol black E in 70% alcohol, 10-30 min; free dye removed by washing in 95% alcohol; stained 18-24 hr in Pianese III-b; rinsed in 95% alcohol, acidified by the addition of 2 ml of saturated aqueous picric acid per 100 ml, 3-4 changes or until the last change is pale yellow or light green; and rinsing in 95% alcohol to remove the acid. If the acid fuchsin is too intense, a cautious differentiation with 95% alcohol containing 1-3% of a 0.1 N solution of NaOH is made. If too much chlorazol black is removed, the effect can be compensated by overstaining with this dye at the beginning of the process. Sections are dehydrated, cleared, and covered in the usual manner. This stain has applications to plant tissues generally, and is particularly effective for meristematic tissues. It shows details of cytoplasmic structures and gives sharp delineation of primary cell walls.  相似文献   

10.
Rapid, onestep polychromatic staining of 0.75-1.5 μm epoxy sections of glutaraldehyde-osmium fixed tissues can be obtained with mixtures of basic fucbsin and toluidme blue O in alkaline polyethylene glycol ZOO (PEG ZOO). Sections are attached to slides by heating at 100 C for 45 seconds and stained at that temperature for 2-3 minutes with a solution consisting of PEG 200 (50 ml), 0.2 N KOH (0.75 ml), basic fuchsin (1.7 gm), and toluidine blue O (0.3 gm). Red-blue balance and selective staining of different structures can be controlled by varying the amount of toluidine blue added. After rinsing with 10% acetone and rapid drying, sections are covered with immersion oil or mounting medium and a cover-slip. Total time from cutting of a section to finished preparation is less than 6 minutes. This staining solution is stable, does not produce precipitates on the sections, and does not wrinkle or lift the sections from the slides.  相似文献   

11.
Tissues were fixed at 20° C for 1 hr in 1% OsO4, buffered at pH 7.4 with veronal-acetate (Palade's fixative), soaked 5 min in the same buffer without OsO4, then dehydrated in buffer-acetone mixtures of 30, 50, 75 and 90% acetone content, and finally in anhydrous acetone. Infiltration was accomplished through Vestopal-W-acetone mixtures of 1:3, 1:1, 3:1 to undiluted Vestopal. After polymerisation at 60° C for 24 hr, 1-2 μ sections were cut, dried on slides without adhesive, and stained by any of the following methods. (1) Mayer's acid hemalum: Flood the slides with the staining solution and allow to stand at 20°C for 2-3 hr while the water of the solution evaporates; wash in distilled water, 2 min; differentiate in 1% HCl; rinse 1-2 sec in 10% NH,OH. (2) Iron-trioxyhematein (of Hansen): Apply the staining solution as in method 1; wash 3-5 min in 5% acetic acid; restain for 1-12 hr by flooding with a mixture consisting of staining solution, 2 parts, and 1 part of a 1:1 mixture of 2% acetic acid and 2% H2SO4 (observe under microscope for staining intensity); wash 2 min in distilled water and 1 hr in tap water. (3) Iron-hematoxylin (Heidenhain): Mordant 6 hr in 2.5% iron-alum solution; wash 1 min in distilled water; stain in 1% or 0.5% ripened hematoxylin for 3-12 br; differentiate 8 min in 2.5%, and 15 min in 1% iron-alum solution; wash 1 hr in tap water. (4) Aceto-carmine (Schneider): Stain 12-24 hr; wash 0.5-1.0 min in distilled water. (5) Picrofuchsin: Stain 24-48 hr in 1% acid fuchsin dissolved in saturated aqueous picric acid; differentiate for only 1-2 sec in 96% ethanol. (6) Modified Giemsa: Mix 640 ml of a solution of 9.08 gm KH2PO4 in 1000 ml of distilled water and 360 ml of a solution of 11.88 gm Na2HPO4-2H2O in 1000 ml of distilled water. Soak sections in this buffer, 12 hr. Dissolve 1.0 gm of azur I in 125 ml of boiling distilled water; add 0.5 gm of methylene blue; filter and add hot distilled water until a volume of 250 ml is reached (solution “AM”). Dissolve 1.5 gm of eosin, yellowish, in 250 ml of hot distilled water; filter (solution “E”). Mix 1.5 ml of “AM” in 100 ml of buffer with 3 ml of “E” in 100 ml of buffer. Stain 12-24 hr. Differentiate 3 sec in 25 ml methyl benzoate in 75 ml dioxane; 3 sec in 35 ml methyl benzoate in 65 ml acetone; 3 sec in 30 ml acetone in 70 ml methyl benzoate; and 3 sec in 5 ml acetone in 95 ml methyl benzoate. Dehydrated sections may be covered in a neutral synthetic resin (Caedax was used).  相似文献   

12.
Mode of Action of Myxin on Escherichia coli   总被引:4,自引:1,他引:3       下载免费PDF全文
The effect of the new antibiotic, myxin, on the syntheses of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein in Escherichia coli (strains B and 15T(-)) was examined. Within 7 min of the addition of myxin at 5 mug/ml, the synthesis of new bacterial DNA was almost completely inhibited. This was followed by an extensive degradation of the pre-existing DNA to an acid-soluble form. All of the evidence indicated that the primary effect of the antibiotic was on cellular DNA. The synthesis of RNA was completely inhibited after 15 min of exposure to myxin (5 mug/ml), and the synthesis of protein was markedly reduced after 30 min. There was no measurable breakdown of either RNA or protein in the myxin-treated cells. A marked stimulation of (14)C-uracil incorporation was found in the presence of myxin in 15T(-) cells only. This did not result from an increased rate of RNA synthesis but was due to an increase in the proportion of exogenous uracil, relative to endogenous uracil, incorporated into cellular RNA. This probably reflected a partial inhibition of the biosynthesis of uridine monophosphate from orotate. At 4.5 mug of myxin per ml and with 0.8 x 10(8) cells per ml, 50% of the antibiotic was reduced in 15 min from the biologically active oxidized form to the biologically inactive state. Under these conditions, a maximum of 0.6% (27 mumug/ml) of the myxin was retained in the cells.  相似文献   

13.
Frozen sections of formalin-fixed brains containing surgical lesions, were treated with 15% ethanol for 0.5 hr., soaked in 0.5% phosphomolybdic acid for 0.25-1.0 hr., and subsequently treated with 0.05% potassium permanganate for 4-10 min. (The duration of the latter treatment is critical and individually variable). Subsequent procedure is as follows: decolorize in a mixture of equal parts of 1% hydroquinone and 1% oxalic acid; wash thoroughly and soak sections in 1.5% silver nitrate for 20-30 min.; ammoniacal silver nitrate (silver nitrate 0.9 g., distilled water 20 ml., pure ethanol 10 ml., strong ammonia 1.8 ml., 2.5% sodium hydroxide 1.5 ml.) 0.5-1.0 min.; reduce in acidified formalin (distilled water 400 ml., pure ethanol 45 ml., 1% citric acid 13.5 ml., 10% formalin 13.5 ml.) 1 min.; wash, and pass section through 1 % sodium thiosulf ate (0.5-1.0 min.); wash thoroughly and pass sections through graded alcohols and xylene (3 changes); cover in neutral synthetic resin.  相似文献   

14.
Anthers collected between 9 and 10 AM were treated for 1 hr at 26-28 C with a 0.5% solution of colchicine, washed for 2-4 min in water, placed in 0.002 M 8-hydroxyquinoline for 1 hr, washed in water for 10 min and fixed in: methanol, 60 ml; chloroform, 30 ml; distilled water, 20 ml; picric acid, 1 gm and mercuric chloride 1 gm, for 24 hr. After washing they were hydrolysed in 1 N HCl for 15 min at 60 C, stained in leuco basic fuchsin for 30 min, then smeared on a slide in a drop of acetocarmine. The slides were sealed, stored overnight, the paraffin was removed, and the slide passed through a 1:1 mixture of n-butyl alcohol and acetic acid, then through pure n-butyl alcohol and mounted in Canada balsam. The significant features of this procedure are: (1) use of chromosomes in the haploid condition for karyotype analysis, (2) better exaggeration of constrictions for easier interpretation of chromosome types and (3) good spreading in plants with a large chromosome number.  相似文献   

15.
A study has been made on the possibility of replacing leucofuchsin by colored basic fuchsin for the histochemical demonstration of aldehydes. Several tissues from mammals and various pertinent fixatives were used. Aldehydes were freed from carbohydrates by oxidation and from thymonucleic acid by hydrolysis.

It was found that the colored form and not necessarily the leucoform of basic fuchsin can be used histochemically in demonstrating aldehydes. The technic used is as follows: (1) Treat with 1.0–0.5% H5IO6 (or in 1% KIO4 in M/1 H2SO4) for 5 to 10 min. and wash thoroughly. For thymonucleic acid hydrolize with N HCl 5 min. at room temperature, 10 min. at 60°C. and 5 min. at room temperature. (2) Stain for 2–3 min. with 0.05% basic fuchsin in 5% ethanol, 3% phenol. (3). Transfer immediately to 1 or 2 changes of 1% sodium bisulphite or potassium metabisulphite in 0.1–0.2 N H2SO4 for a total of 5 min. (4) Rinse with water and treat with M H2SO4 in 95% ethanol for 3–5 min. 6. Wash thoroughly in water and dehydrate, clear, and mount. For glycogen and mucin the following counterstaining solution is recommended: orange G, 0.25 g.; light green SFY, 0.10 g.; phosphotungstic acid 0.50 g.; 50% ethanol, 100 ml.; glacial acetic acid, 0.25 ml.  相似文献   

16.
An investigation of various formulae for the Endo medium has been made, using about 20 different samples of basic fuchsia. It has been found that some samples are unsatisfactory in the standard formula of the American Public Health Association and others unsatisfactory in the formula given in the Manual of Methods for Pure Culture Study of Bacteria (of the Society of American Bacteriologists). A slight modification of the A. P. H. A. standard formula, however, is enough to make it satisfactory for any sample of basic fuchsin with which it has so far been tried. This modification is the use of 1 ml. of a 1% basic fuchsin solution instead of 0.5 ml. of a 10% solution. This modification in the formula brings about a change of the ratio of sulfite to fuchsin in the finished medium of 12 1/2:1 instead of roughly 3:1; and it is shown that this ratio permits the use of a greater variety of different fuchsins than the one which is in the standard formula.  相似文献   

17.
Differential staining of cell components of spermatozoa is readily accomplished in Epon or Araldite sections 0.5-1 μ thick from rat and hamster testis and epididymis, and stained as follows: 1% aqueous toluidine blue buffered at pH 6, 0.5-3 min at 90 C; washed in distilled water; 1% basic fuchsin in 50% alcohol, 3-5 min at 20-25 C; differentiated with 70% alcohol; allowed to dry; and mounted in a resin of high refraction (DPX was used). Results: acrosome, bright magenta; nucleus, deep blue; mitochondrial sheath of the middle-piece, pinkish purple; and tail, pale red. This procedure combined with staining of collagen by applying 2% aqueous phosphotungstic acid 1-2 min as a mordant, followed by 1% light green in 50% alcohol containing 1% acetic acid, 1-2 min at 20-25 C, gives polychromatic staining and is useful as a general stain for other epoxy-embedded tissues.  相似文献   

18.
Selective staining of dividing nuclei is accomplished as follows: paraffin sections, after hydration, are stained 15 min in a saturated aqueous solution of basic fuchsin, washed, then stained 1.5 min in an equal-volumes mixture of indigo carmine saturated in 70% alcohol, and saturated aqueous picric acid. Removal of excess dye with 3 changes of 70% alcohol, dehydration, clearing and covering in a resinous medium completes the process. Nuclei of dividing cells are stained red; cytoplasm and interphase nuclei, light green. This method has been used successfully for determining the mitotic activity of skin, kidney, liver and other rabbit and mouse tissues. Tissue sections previously prepared as autoradiographs may be stained by this method to facilitate the determination of radioactive labeling of mitotic cells.  相似文献   

19.
A dye mixture, consisting of a celestine blue B dispersion (prepared according to Gray et al. 1956), orange G, and acid fuchsin in one solution, simultaneously stains nuclear elements and gives double contrast staining of cytoplasmic elements. Orange G, 0.16 gm, and acid fuchsin, 0.04 gm, dissolved in 100 ml of celestine blue B dispersion and adjusted to pH 0.8 gives, when applied for 1.5 min, results comparable or superior to other “triple contrast” stains on a wide variety of tissues. No differentiation other than that which occurs during dehydration is necessary.  相似文献   

20.
Materials are fixed in FPA (formalin, 2; propionic acid, 1; 70% ethanol, 17). Paraffin sections on slides are brought to 50% ethanol and stained as follows: (1) in Bismarck brown Y, a 0.02% solution in 0.1% aqueous phenol, 10-30 min; wash 30 sec in 0.7% acetic acid, and wash in distilled water 20-30 sec; (2) in crystal violet, 1% in 70% ethanol alkalinized with 1 drop of 1 N NaOH per 100 ml, 12-35 min; wash 30-60 sec in tap water to remove excess stain, and rinse 0.5 sec in 70% ethanol; then mordant in I2-KI, 1% each in 70% ethanol, 40 sec, and rinse in 70% ethanol 2-5 sec; (3) in a mixture containing 0.4% acid fuchsin and 0.6% crythrosin B in 70% ethanol about 0.5 sec; rinse in 70% ethanol 5-15 sec to remove excess red; dehydrate in 70%, 95%, and absolute ethanol, 2-3 sec each; (4) in fast green FCF, 0.5% in a mixture of equal parts of methyl cellosolve, absolute ethanol, and clove oil, 5-15 sec; rinse in a mixture of clove oil, 10 ml; absolute ethanol, 100 ml; and methyl cellosolve, 10 ml, 5-7 sec; (5) in orange G, 0.75 gm in a mixture of clove oil, 40 ml; absolute ethanol, 40 ml; and methyl cellosolve, 60 ml, 5-30 sec; rinse clean in a 1:1 mixture of xylene and absolute ethanol, 5-20 sec Complete the clearing in pure xylene, 3 changes, 1.5 min in each, and apply a cover glass with synthetic resin. Slides are agitated in all steps except Bismark brown Y, crystal violet, and the xylenes. Contrast and staining intensity are adjusted by varying staining times in the dye solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号