首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We studied the nature of the interaction of delta-hexachlorocyclohexane (delta-HCCH), a pesticide having a stereoisomeric structure similar to inositol, with red blood cells. Cell survival data, measured as percent of hemoglobin released by delta-HCCH, show that the cell lysis increases with post exposure time. delta-HCCH at 55-60 micrograms/ml causes about 70% cell lysis after 24 h of exposure. The nature of interaction of delta-HCCH with membrane components was evaluated by studying the thermotropic transitions and protein structure of ghosts using Raman spectroscopy. Control ghosts show transitions with onset/completion temperatures 30 degrees C/38 degrees C (high temperature transition) and 3 degrees C/10 degrees C (middle temperature transition) when monitored by the I2935/I2850 ratio. The interaction of delta-HCCH drastically broadens the high temperature transition and shifts it to the temperature range of 10-29 degrees C. The plots of (I2880-90/I2850) vs. temperature show two transitions for control ghosts, one extending from -10 degrees C to 3 degrees C (lower temperature transition) and the other from about 7 degrees C to about 15 degrees C (middle temperature transition). Ghosts lysed with delta-HCCH shows only a single and a very broad transition in the range of about -3 degrees C to about 15 degrees C. These changes in the thermal transition properties suggest that delta-HCCH alters lipid and lipid-protein phases of erythrocyte membranes. The comparison of Raman spectra in the amide I and III regions of erythrocyte ghosts and purified band 3 with several amidated compounds reveals that cytoskeleton proteins contain highly amidated residues (probably glutamine and asparagine). The interaction of delta-HCCH with erythrocytes drastically alters the environment of these amidated residues indicating the involvement of cytoskeleton proteins. We conclude that the interaction of delta-HCCH with red blood cells disrupt membrane structure and change the environment of cytoskeleton proteins that could cause cell lysis.  相似文献   

2.
Human red blood cells (RBCs) adhere to and are lysed by schistosomula of Schistosoma mansoni. We have investigated the mechanism of RBC lysis by comparing the dynamic properties of transmembrane protein and lipid probes in adherent ghost membranes with those in control RBCs and in RBCs treated with various membrane perturbants. Fluorescence photobleaching recovery was used to measure the lateral mobility of two integral membrane proteins, glycophorin and band 3, and two lipid analogues, fluorescein phosphatidylethanolamine (Fl-PE) and carbocyanine dyes, in RBCs and ghosts adherent to schistosomula. Adherent ghosts manifested 95-100% immobilization of both membrane proteins and 45-55% immobilization of both lipid probes. In separate experiments, diamide-induced cross-linking of RBC cytoskeletal proteins slowed transmembrane protein diffusion by 30-40%, without affecting either transmembrane protein fractional mobility or lipid probe lateral mobility. Wheat germ agglutinin- and polylysine-induced cross-linking of glycophorin at the extracellular surface caused 80-95% immobilization of the transmembrane proteins, without affecting the fractional mobility of the lipid probe. Egg lysophosphatidylcholine (lysoPC) induced both lysis of RBCs and a concentration-dependent decrease in the lateral mobility of glycophorin, band 3, and Fl-PE in ghost membranes. At a concentration of 8.4 micrograms/ml, lysoPC caused a pattern of protein and lipid immobilization in RBC ghosts identical to that in ghosts adherent to schistosomula. Schistosomula incubated with labeled palmitate released lysoPC into the culture medium at a rate of 1.5 fmol/h per 10(3) organisms. These data suggest that lysoPC is transferred from schistosomula to adherent RBCs, causing their lysis.  相似文献   

3.
Pigs immunized with Actinobacillus pleuropneumoniae ghosts or a formalin-inactivated bacterin were found to be protected against clinical disease in both vaccination groups, whereas colonization of the lungs with A. pleuropneumoniae was only prevented in ghost-vaccinated pigs. Bacterial ghosts are empty cell envelopes created by the expression of a cloned bacteriophage lysis gene and, unlike formalin-inactivated bacteria, suffer no denaturing steps during their production. This quality may lead to a superior presentation of surface antigens to the immune system. Analysis by SDS-PAGE and immunoblotting of the two vaccine preparations revealed different contents of antigenic proteins. In order to better understand the immunogenic properties of A. pleuropneumoniae ghosts and formalin-inactivated bacteria, we compared the serum antibody response induced in both treatment groups. Immune sera were tested on whole cell antigen or purified virulence factors including outer membrane protein preparations (OMPs), outer membrane lipoprotein OmlA1, transferrin binding proteins (TfbA1, TfbA7 and TfbB) and Apx toxins (ApxI, II and III). SDS-PAGE and immunoblots revealed no specific antibody response against the single virulence factors tested in any vaccinated animal. The two vaccination groups showed different recognition patterns of whole cell antigen and OMP-enriched preparations. A 100 kDa protein was recognized significantly stronger by ghost-vaccinated pigs than convalescent pigs. This unique antibody population induced by ghosts could play a determining role in the prevention of lung colonization. The same 100 kDa antigen was recognized by ghost-sera in homologous as well as heterologous serotype A. pleuropneumoniae protein preparations. Indications for a crossprotective potential in the ghost vaccine were supported by studies on rabbit hyperimmune sera.  相似文献   

4.
The spontaneous haemolytic (SH) activity of sera was compared in groups of cultured halibut and sea bass. The optimum assay temperature was determined for each species and different red blood cell donors were tested. The effects of heat inactivation, storage temperature and of different agents like EDTA, EGTA, yeast cell components and bacterial LPS were compared. Halibut sera gave optimum lysis with sheep red blood cells (RBC) at 16 degrees C whereas sea bass sera showed optimum lysis with rabbit RBC at 37 degrees C. The haemolytic activity of halibut sera was inactivated at 45 degrees C while sea bass sera were inactivated at 56 degrees C. The haemolytic activity of halibut sera was significantly reduced during short-term storage at -80 degrees C, whereas the sea bass sera maintained fairly good activity after 1-year storage at -80 degrees C. EGTA and EDTA inhibited the spontaneous haemolytic activity of sera from both the species. Zymosan and MacroGard from yeast cells also inhibited the haemolytic activity of the sera of both species, whereas LPS had a very slight effect. Considerable variation in haemolytic activity was observed within both the halibut and sea bass groups studied.  相似文献   

5.
Resealed ghosts and intact red blood cells were directly compared with respect to their interactions with surface probes and to digestion by pronase. The amount and pattern of labelling of surface proteins by 4.4′-diisothiocyano-2,2′-stilbene disulfonic acid (DIDS) and by pyridoxal phosphate-borohydride (as seen after sodium dodecylsulfate/acrylamide gel electrophoresis) was substantially the same in cells and resealed ghosts under conditions in which a relatively small change would be apparent. In each membrane system, DIDS labels a protein component of apparent molecular weight 95 000 and pyridoxal phosphate labels the same protein plus three glycoprotein components. The sensitivity of surface proteins and of DIDS and pyridoxal phosphate-labelled sites to pronase was also similar in the cells and resealed ghosts. The glycoproteins were digested, in each case, and the 95 000 (molecular weight) protein was largely split into two portions of apparent molecular weights 65 000 and 35 000, with both portions containing DIDS and pyridoxal phosphate binding sites. The pattern of labelling of “leaky” ghosts by pyridoxal phosphate in the presence of hemoglobin was similar to the labelling of intact cells, provided that the pyridoxal phosphate was present on both the outside and inside of the cells. Virtually all of the major protein components visible by staining on acrylamide gels were labelled. It is concluded that none of the probes could detect any substatial differences in reactivity of proteins of the outer surface of the membrane of the ghosts as compared to the cells and that no irreversible changes in membrane protein conformation or arrangement occur as a consequence of lysis and resealing of ghosts, that are detectable by the reported procedures.  相似文献   

6.
Abstract Western blot analysis (immunoblotting) of cell surface-associated proteins from Helicobacter pylori confirmed our previous findings that binding of human IgG is a common property (among H. pylori strains). Purification of the IgG-binding proteins (IGBP) was achieved by two purification steps, affinity chromatography on IgG-Sepharose and nickel chelate affinity chromatography. SDS-PAGE and immunoblotting analysis revealed a 60 kDa protein with affinity for peroxidase labeled human IgG. Solid phase binding assays showed that IgG binds to an immobilized protein (IGBP). The 60 kDa IGBP binds human IgG1, IgG3 and IgM. Binding could be inhibited by the kappa chain of the human IgG, but not with its Fc fragment, nor with IgA or IgM. In addition, rabbit polyclonal antibodies raised against the 60 kDa IGBP blocked IgG binding. Monoclonal antibodies, specific to the Hsp60 heat shock protein of H. pylori recognized the 60 kDa IGBP as revealed by immunoblotting analysis, both in crude preparations and in the purified fractions.  相似文献   

7.
Bacterial ghosts are empty cell envelopes of Gram-negative bacteria that can be used as vehicles for antigen delivery. Ghosts are generated by releasing the bacterial cytoplasmic contents through a channel in the cell envelope that is created by the controlled production of the bacteriophage ϕX174 lysis protein E. While ghosts possess all the immunostimulatory surface properties of the original host strain, they do not pose any of the infectious threats associated with live vaccines. Recently, we have engineered the Escherichia coli autotransporter hemoglobin protease (Hbp) into a platform for the efficient surface display of heterologous proteins in Gram-negative bacteria, HbpD. Using the Mycobacterium tuberculosis vaccine target ESAT6 (early secreted antigenic target of 6 kDa), we have explored the application of HbpD to decorate E. coli and Salmonella ghosts with antigens. The use of different promoter systems enabled the concerted production of HbpD-ESAT6 and lysis protein E. Ghost formation was monitored by determining lysis efficiency based on CFU, the localization of a set of cellular markers, fluorescence microscopy, flow cytometry, and electron microscopy. Hbp-mediated surface display of ESAT6 was monitored using a combination of a protease accessibility assay, fluorescence microscopy, flow cytometry and (immuno-)electron microscopy. Here, we show that the concerted production of HbpD and lysis protein E in E. coli and Salmonella can be used to produce ghosts that efficiently display antigens on their surface. This system holds promise for the development of safe and cost-effective vaccines with optimal intrinsic adjuvant activity and exposure of heterologous antigens to the immune system.  相似文献   

8.
The association of the U4/U6.U5 tri-snRNP with pre-spliceosomes is a poorly understood step in the spliceosome assembly pathway. We have identified two human tri-snRNP proteins (of 65 and 110 kDa) that play an essential role in this process. Characterization by cDNA cloning of the 65 and 110 kDa proteins revealed that they are likely orthologues of the yeast spliceosomal proteins Sad1p and Snu66p, respectively. Immunodepletion of either protein from the HeLa cell nuclear extracts inhibited pre-mRNA splicing due to a block in the formation of mature spliceosomes, but had no effect on the integrity of the U4/U6.U5 tri-snRNP. Spliceosome assembly and splicing catalysis could be restored to the respective depleted extract by the addition of recombinant 65 or 110 kDa protein. Our data demonstrate that both proteins are essential for the recruitment of the tri-snRNP to the pre-spliceosome but not for the maintenance of the tri-snRNP stability. Moreover, since both proteins contain an N-terminal RS domain, they could mediate the association of the tri-snRNP with pre-spliceosomes by interaction with members of the SR protein family.  相似文献   

9.
1. The action of eight purified phospholipases on intact human erythrocytes has been investigated. Four enzymes, e.g. phospholipases A2 from pancreas and Crotalus adamanteus, phospholipase C from Bacillus cereus, and phospholipase D from cabbage produce neither haemolysis nor hydrolysis of phospholipids in intact cells. On the other hand, both phospholipases A2 from bee venom and Naja naja cause a non-haemolytic breakdown of more than 50% of the lecithin, while sphingomyelinase C from Staphylococcus aureus is able to produce a non-lytic degradation of more than 80% of the sphingomyelin. 2. Phospholipase C from Clostridium welchii appeared to be the only lipolytic enzyme tested, which produces haemolysis of human erythrocytes. Evidence is presented that the unique properties of the enzyme itself, rather than possible contaminations in the purified preparation, are responsible for the observed haemolytic effect. 3. With non-sealed ghosts, all phospholipases produce essentially complete breakdown of those phospholipids which can be considered as proper substrates for the enzymes involved. 4. Due to its absolute requirement for Ca2+, pancreatic phospholipase A2 can be trapped inside resealed ghosts in the presence of EDTA, without producing phospholipid breakdown during the resealing procedure. Subsequent addition of Ca2+ stimulates phospholipase A2 activity at the inside of the resealed cell, eventually leading to lysis. Before lysis occurs, however, 25% of the lecithin, half of the phosphatidylethanolamine and some 65% of the phosphatidylserine can be hydrolysed. This observation is explained in relation to an asymmetric phospholipid distribution in red cell membranes.  相似文献   

10.
大黄鱼源溶藻弧菌的鉴定及其菌蜕制备   总被引:3,自引:0,他引:3  
【背景】菌蜕是诱导Phi X174噬菌体裂解基因E(Lysis E)在革兰氏阴性菌中表达后所获得无细胞内容物的细菌空壳。菌蜕生物安全性高,能以类似活菌方式诱导机体产生良好的系统和黏膜免疫应答。【目的】对分离自患溃疡病大黄鱼肝脏中的病原菌株16-3进行种属鉴定,利用温控调节表达系统控制Phi X174噬菌体裂解基因E在该菌株中的表达来制备菌蜕,为防控鱼类溶藻弧菌感染提供有效手段。【方法】采用形态特征观察、生理生化特性测定及16S r RNA基因序列分析等方法对菌株16-3进行鉴定;构建温控裂解质粒p BV220-Lysis E,并将其电转至溶藻弧菌菌株16-3,形成重组溶藻弧菌菌株16-3(p BV220-Lysis E);将不同起始浓度的重组溶藻弧菌培养物同时进行42°C升温诱导,比较其溶菌动力曲线和裂解效率的差异;在最佳条件下制备溶藻弧菌菌株16-3菌蜕,电镜观察其形态与结构,采用倾注平板法测定冻干菌蜕中的活菌数。【结果】综合菌株16-3在形态、生理生化及16S r RNA基因系统发育等方面的特性,确定其为溶藻弧菌;构建了温控裂解质粒p BV220-Lysis E和重组溶藻弧菌菌株16-3(p BV220-Lysis E);溶藻弧菌菌株16-3菌蜕制备的最佳条件是选择起始浓度OD600为0.3的菌液进行诱导,诱导3 h后即可收获菌蜕,其裂解效率为96.9%,但经冻干处理后的菌蜕无活菌残留;电镜观察发现菌株16-3菌蜕保持原细胞的基本形态,但细胞表面有明显的溶菌孔道,且由于细胞内容流失而使细胞表面发生皱缩。【结论】制备出溶藻弧菌菌株16-3菌蜕,为其作为疫苗或疫苗递送载体奠定了基础。  相似文献   

11.
Abstract Crude cell extracts from three strains of Mycobacterium tuberculosis were analyzed for the presence of proteins possessing phosphorylated tyrosine residues. A protein migrating at approximately 55 kDa was detected using an antiphosphotyrosine monoclonal antibody. In addition, less predominant bands were observed between 50 kDa and 60 kDa. That M. tuberculosis contains specific tyrosine phosphorylated proteins implies that M. tuberculosis has tyrosine kinase activity. Examination of other, non-pathogenic mycobacterium species yielded no major antiphosphotyrosine reactive proteins. This suggests that the antiphosphotyrosine reactive protein is specific to M. tuberculosis strains. These results provide evidence that M. tuberculosis contains an antiphosphotyrosine reactive protein.  相似文献   

12.
The binding protein for pore-forming Pseudomonas aeruginosa cytotoxin was solubilized from Ehrlich ascites cell plasma membranes and rabbit and bovine erythrocyte ghosts using nonionic and zwittergent detergents. Analysis of solubilized plasma membranes from Ehrlich cells by a ligand-blot technique after separation by SDS-PAGE/electrophoretic transfer to nitrocellulose or affinity chromatography showed a protein of 70 kDa molecular mass, which binds to cytotoxin. The binding protein solubilized from rabbit erythrocyte ghosts showed a molecular mass of 50 kDa and that from bovine ghosts 55 kDa according to the former test. The binding proteins could be characterized as acidic. They contain a glycan moiety which is, however, not involved in the interaction of cytotoxin with the binding site.  相似文献   

13.
Activated human eosinophils synthesize new proteins   总被引:2,自引:0,他引:2  
In order to study the biochemical consequences of prolonged in vitro activation of human blood eosinophils, aqueous whole cell lysates, cell-free supernatants from resting eosinophils, and cells activated with opsonized zymosan, calcium ionophore (A23187), N-formylmethionylleucylphenylalanine (fMet-Leu-Phe), and phorbol 12-myristate 13-acetate (PMA) were analyzed by polyacrylamide gel electrophoresis (PAGE). In comparison to resting eosinophils, opsonized zymosan-activated eosinophil extracts demonstrated altered protein composition on both the native PAGE and sodium dodecyl sulfate (SDS) -PAGE. Three new polypeptides of apparent molecular mass 24 kDa, 43 kDa and 60 kDa appeared on SDS-PAGE gels when opsonized zymosan-activated eosinophil extracts were electrophoresed. In contrast, extracts from fMet-Leu-Phe, A23187, and PMA-activated eosinophils demonstrated neither altered polypeptide composition nor new polypeptides. Opsonized zymosan also induced the incorporation of L-[35S]methionine into eosinophil proteins and this was completely blocked by pretreating the cells with cycloheximide. This finding suggests that eosinophils activated by certain stimuli synthesize new proteins. These newly synthesized proteins, which are freely secreted into the medium during cell activation, may possess important immunological functions.  相似文献   

14.
gamma-Lysin was purified from Staphylococcus aureus strains Smith 5R and PG23 (a toxic shock syndrome isolate) by a combination of heparin-agarose and hydroxylapatite chromatography. Both strains produced two haemolytic components, designated gamma 1 and gamma 2. Though each component was weakly haemolytic they acted synergistically to potentiate haemolysis on rabbit, sheep and human blood. Rabbit and sheep erythrocytes were more sensitive to lysis by gamma-lysin than human erythrocytes. The molecular mass of gamma 1 was 32 kDa and its pI value was 9.4. gamma 2 had a molecular mass of 36 kDa and a pI value of 9.3. While both trypsin and papain acted synergistically with gamma 2 to induce increased haemolysis, no such synergism was seen with gamma 1. Also, protease inhibitors acted to inhibit synergism between gamma 1 and gamma 2. These findings suggest that gamma 1 could be a protease.  相似文献   

15.
Glucocorticoid action on the immune system   总被引:1,自引:0,他引:1  
Glucocorticoids have profound effects on immune function that are mediated, in part, by steroid-induced cell death. Our studies have been aimed at identifying the mechanism of this lymphocytolytic process using the rat thymocyte as a model system. Administration of glucocorticoids in vivo resulted in internucleosomal cleavage of the lymphocyte genome that was detectable within 2 h of treatment and increased with time after hormone administration. Six h after steroid treatment greater than 50% of the genome was degraded, yet cell viability remained greater than 90% indicating that this event preceded cell death. Furthermore, this process appeared to be mediated by the glucocorticoid receptor since the antagonist RU 486 blocked glucocorticoid-mediated DNA degradation. To further characterize this lymphocytolysis we have analyzed glucocorticoid-treated thymocytes for nucleases. Two families of nuclear proteins have been identified, a 30-32 kDa doublet and a series of 3-4 proteins that are 12-19 kDa, both of which are induced by glucocorticoid treatment (137 +/- 6% and 342 +/- 24%, respectively) and have prominent nuclease activity. These nucleases can also be induced in vitro indicating that glucocorticoids act directly on thymocytes to mediate this response. Moreover, this nuclease induction, like glucocorticoid-mediated DNA degradation, could be blocked by RU 486. Based on these findings we propose a working model of glucocorticoid-mediated lymphocytolysis in which these steroids, acting via a receptor mediated process, induce the expression of a lysis gene product (nuclease) which degrades the genome and results in cell death.  相似文献   

16.
The nematode surface coat is defined as an extracuticular component on the outermost layer of the nematode body wall, visualized only by electron microscopy. Surface coat proteins of Meloidogyne incognita race 3 infective juveniles were characterized by electrophoresis and Western blotting of extracts from radioiodine and biotin-labeled nematodes. Extraction of labeled nematodes with cetyltrimethylammonium bromide yielded a principal protein band larger than 250 kDa and, with water soluble biotin, several faint bands ranging from 31 kDa to 179 kDa. The pattern of labeling was similar for both labeling methods. Western blots of unlabeled proteins were probed with a panel of biotin-lectin conjugates, but only Concanavalin A bound to the principal band. Nematodes labeled with radioiodine and biotin released ¹²⁵I and biotin-labeled molecules into water after 20 hours incubation, indicating that surface coat proteins may be loosely attached to the nematode. Antiserum to the partially purified principal protein bound to the surface of live nematodes and to several proteins on Western blots. Differential patterns of antibody labeling were obtained on immuno-blots of extracts from M. incognita race 1, 2, and 3; Meloidogyne hapla race 2; and Meloidogyne arenaria cytological race B.  相似文献   

17.
A rapid method for reconstitution of bacterial membrane proteins   总被引:2,自引:0,他引:2  
We have devised a simple method for the reconstitution of bacterial membrane proteins directly from small (1-20 ml) volumes of cell culture, thus eliminating the preparation of membrane vesicles. Cells are subjected to simultaneous lysozyme digestion and osmotic lysis, and after brief centrifugation ghosts are solubilized in 1.2% octyl-beta-D-glucopyranoside (octylglucoside) in the presence of added carrier lipid and an osmolyte. Aliquots of the clarified supernatant are suitable for reconstitution, as documented by using extracts from three different Gram-negative cells to recover both inorganic phosphate (Pi)-linked antiport and oxalate:formate exchange activities in proteoliposomes. These proteoliposomes are physically stable, non-leaky and can sustain a membrane potential and, because functional porins do not reconstitute, the artificial system has transport characteristics similar to those found when proteoliposomes are obtained using standard methods. This method should become an important tool for the screening and characterization of large numbers of strains, both wild-type and mutant.  相似文献   

18.
The biosynthesis and processing of material resembling delta sleep-inducing peptide (DSIP) have been studied in mouse anterior pituitary primary cell cultures. Cells were pulse/chase incubated with 3H-labelled amino acids (Gly, Arg or Ala) and cell extracts were immunoprecipitated with DSIP antiserum. Labelled DSIP-related proteins were resolved by SDS/PAGE. Multiple forms of DSIP-immunoprecipitable material were observed, including three precursors of molecular mass 50-60 kDa which were processed to two major groups of intermediates of 35-45 kDa and 9-16.5 kDa. These intermediates appear to be processed to a DSIP-related peptide (molecular mass less than 3 kDa), which co-ran on reversed-phase HPLC with an endogenous form of DSIP in mouse anterior pituitary, but not with rabbit DSIP. This less than 3-kDa peptide incorporated [3H]Gly, but not [3H]Arg or [3H]Ala. In addition, it incorporated [3H]glucosamine, indicating that it was a glycopeptide. Secretion studies showed release of the less than 3-kDa DSIP-like glycopeptide and the 9-16.5-kDa group of intermediates into the medium. The present study demonstrates the biosynthesis of a small DSIP-like glycopeptide in mouse anterior pituitary cells, which is not identical with, but has similarities to, rabbit DSIP.  相似文献   

19.
Glucocorticoids initiate a cytolytic process in lymphoid cells that is characteristic of programmed cell death. In vivo treatment of adrenalectomized rats with glucocorticoids results in the rapid degradation of the thymocyte genome at internucleosomal sites. This DNA degradation occurs prior to cell death, and considerable evidence indicates that this nucleolytic event is central to the initiation of lymphocytolysis. To further characterize this process, we have searched for the gene products in thymocytes which may be responsible for steroid-induced DNA degradation. Adrenalectomized rats were treated in vivo with dexamethasone or a vehicle control; nuclear thymocyte proteins were extracted with 0.6 M NaCl and analyzed for protein content or nuclease activity on sodium dodecyl sulfatepolyacrylamide gels containing calf thymus DNA. Glucocorticoid treatment resulted in the induction of two major protein families, a 30-32-kDa protein doublet and a series of 3-4 proteins of 12-19 kDa, both of which express prominent DNase activity. Induction of the lower molecular weight nucleases increased with time after steroid treatment and paralleled the time course of glucocorticoid-mediated DNA degradation. Nuclease induction was blocked by the glucocorticoid antagonist RU 486, indicating a steroid receptor-mediated process. When nuclei from glucocorticoid-resistant cells were incubated with nuclear extracts from glucocorticoid-treated rats, the DNA was cleaved at internucleosomal sites, whereas extracts from vehicle-treated animals were virtually inactive. Based on these findings we propose that glucocorticoids, acting via a receptor-mediated pathway, induce a nucleolytic "lysis gene" product(s) responsible for lymphocytolysis.  相似文献   

20.
Large unilamellar liposomes prepared by the reverse-phase evaporation method (REVs) were made immunoreactive by incorporating dinitrophenylaminocaproyl-phosphatidylethanolamine (DNP-Cap-PE) or 8-(3-carboxypropyl)-theophylline-dipalmitoylphosphatidylethanolamine (Th-DPPE) into the phospholipid bilayer. Specific lysis in the presence of anti-DNP-BSA and goat anti-theophylline serum respectively, was induced by adding guinea pig serum as source for complement to these liposomes. However, specific lysis was found to be compromised by high levels of nonspecific lysis as monitored by the release of the fluorescent aqueous-space marker 6-carboxyfluorescein. Nonspecific lysis could be prevented without affecting specific lysis by pretreatment of complement or incubation of the reaction mixture with small unilamellar liposomes (SUVs). SUVs of various lipid compositions produced the desired effect; however, when the fraction of negative charge in the SUVs was increased to 30 mol%, specific lysis was inhibited as well. In a similar assay system consisting of hemolysin-sensitized sheep red blood cells it was also found that nonspecific lysis could be inhibited by addition of erythrocyte ghosts to the incubation medium, although specific lysis was somewhat depressed. However, SUVs or REVs of a composition similar to sheep erythrocytes were ineffective indicating a more selective nature of complement-mediated immunoreaction with erythrocyte membranes than with synthetic bilayer membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号