首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactive airway disease predisposes patients to episodes of acute smooth muscle mediated bronchoconstriction. We have for the first time recently demonstrated the expression and function of endogenous ionotropic GABA(A) channels on airway smooth muscle cells. We questioned whether endogenous GABA(A) channels on airway smooth muscle could augment beta-agonist-mediated relaxation. Guinea pig tracheal rings or human bronchial airway smooth muscles were equilibrated in organ baths with continuous digital tension recordings. After pretreatment with or without the selective GABA(A) antagonist gabazine (100 muM), airway muscle was contracted with acetylcholine or beta-ala neurokinin A, followed by relaxation induced by cumulatively increasing concentrations of isoproterenol (1 nM to 1 muM) in the absence or presence of the selective GABA(A) agonist muscimol (10-100 muM). In separate experiments, guinea pig tracheal rings were pretreated with the large conductance K(Ca) channel blocker iberiotoxin (100 nM) after an EC(50) contraction with acetylcholine but before cumulatively increasing concentrations of isoproterenol (1 nM to 1 uM) in the absence or presence of muscimol (100 uM). GABA(A) activation potentiated the relaxant effects of isoproterenol after an acetylcholine or tachykinin-induced contraction in guinea pig tracheal rings or an acetylcholine-induced contraction in human endobronchial smooth muscle. This muscimol-induced potentiation of relaxation was abolished by gabazine pretreatment but persisted after blockade of the maxi K(Ca) channel. Selective activation of endogenous GABA(A) receptors significantly augments beta-agonist-mediated relaxation of guinea pig and human airway smooth muscle, which may have important therapeutic implications for patients in severe bronchospasm.  相似文献   

2.
We have applied the perforated patch whole-cell technique to beta cells within intact pancreatic islets to identify the current underlying the glucose-induced rhythmic firing of action potentials. Trains of depolarizations (to simulate glucose-induced electrical activity) resulted in the gradual (time constant: 2.3 s) development of a small (<0.8 nS) K(+) conductance. The current was dependent on Ca(2+) influx but unaffected by apamin and charybdotoxin, two blockers of Ca(2+)-activated K(+) channels, and was insensitive to tolbutamide (a blocker of ATP-regulated K(+) channels) but partially (>60%) blocked by high (10-20 mM) concentrations of tetraethylammonium. Upon cessation of electrical stimulation, the current deactivated exponentially with a time constant of 6.5 s. This is similar to the interval between two successive bursts of action potentials. We propose that this Ca(2+)-activated K(+) current plays an important role in the generation of oscillatory electrical activity in the beta cell.  相似文献   

3.
Mechanisms underlying the Ca2+-activated K+ channel (K(Ca)) blockers-induced oscillatory contractions were investigated in guinea pig tracheal smooth muscle. The mean oscillatory frequencies induced by charybdotoxin (ChTX; 100 nM) and iberiotoxin (IbTX; 100 nM) were 9.8+/-0.8 (counts/h) and 8.0+/-1.3 (counts/h), respectively. Apamin (1 microM ), a blocker of SK(Ca), induced no contraction in guinea pig trachea and did not affect ChTX-induced oscillatory contractions. In Ca2+ free solution, no ChTX-induced contraction was observed. Nifedipine (100 nM), a blocker of voltage-dependent Ca2+ channels, and SK&F 96365 (10 microM), a blocker of capacitative Ca2+ entry, completely abolished ChTX-induced oscillatory contractions. Ryanodine (1 microM) decreased the amplitude, but increased the frequency of the oscillatory contractions. Thapsigargin (1 microM) changed contractions from the oscillatory type to the sustained type. Moreover, the protein kinase C (PKC) inhibitor, bisindolylamaleimide I (1 microM), decreased the amplitude and frequency, but PKC activator, phorbol 12-myristate 13-acetate (1 microM), increased the frequency of oscillatory contractions. These results suggest that K(Ca) inhibitors-induced oscillatory contractions are initiated by Ca2+ influx through L-type voltage-dependent Ca2+ channels. The ryanodine-sensitive calcium release channels in the sarcoplasmic reticulum may play an important role in maintaining the oscillatory contractions. Moreover, PKC activity modulates these oscillatory contractions.  相似文献   

4.
The present study evaluated the effect of 5-hydroxytryptamine (5-HT) on intestinal Na(+)/H(+) exchanger (NHE) activity and the cellular signaling pathways involved in T84 cells. T84 cells express endogenous NHE1 and NHE2 proteins, detected by immunoblotting, but not NHE3. The rank order for inhibition of NHE activity in acid-loaded T84 cells was 5-(N-ethyl-N-isopropyl)-amiloride (EIPA; IC(50)=519 [465, 579] nM)>cariporide (IC(50)=630 [484, 819] nM)>amiloride (IC(50)=19 [16, 24] microM); the NHE3 inhibitor S3226 was found to be devoid of effect. This different inhibitory sensitivity indicates that both NHE1 and NHE2 isoforms may play an active role in Na(+)-dependent intracellular pH (pH(i)) recovery in T84 cells. Short-term exposure (0.5 h) of T84 cells to 5-HT increased NHE activity in a concentration-dependent manner. The stimulation induced by 5-HT (30 microM) was partially inhibited by both WAY 100135 (300 nM) and ketanserin (300 nM), antagonists of 5-HT(1A) and 5-HT(2) receptors, respectively. NHE activity was significantly increased by 8-OH-DPAT and alpha-methyl-5-HT, agonists of, respectively, 5-HT(1A) and 5-HT(2) receptors. An incubation of T84 cells with anti-G(s) and anti-G(beta) antibodies complexed with lipofectin did not prevent the 5-HT-induced stimulation of NHE activity. Overnight treatment with anti-G(ialpha1,2) and anti-G(q/11) antibodies complexed with lipofectin blocked the stimulatory effect induced by 8-OH-DPAT and alpha-methyl-5-HT, respectively. It is concluded that in T84 cells 5-HT enhances intestinal NHE activity through stimulation of G(ialpha1,2)-coupled 5-HT(1A) and G(q/11)-coupled 5-HT(2) receptors.  相似文献   

5.
[(3)H]noradrenaline ([(3)H]NA) released from sympathetic nerves in the isolated main pulmonary artery of the rabbit was measured in response to field stimulation (2Hz, 1ms, 60V for 3min) in the presence of uptake blockers (cocaine, 3 x10(-5)M and corticosterone, 5 x10(-5)M). The [(3)H]NA-release was fully blocked by the combined application of the selective and irreversible 'N-type' voltage-sensitive Ca(2+)-channel (VSCC)-blocker omega-conotoxin (omega-CgTx) GVIA (10(-8)M) and the 'non-selective' VSCC-blocker aminoglycoside antibiotic neomycin (3x10(-3)M). Na(+)-loading (Na(+)-pump inhibition by K(+)-free perfusion) was required to elicit further NA-release after blockade of VSCCs (omega-CgTx GVIA+neomycin). In K(+)-free solution, in the absence of functioning VSCCs (omega-CgTx GVIA+neomycin), the fast Na(+)-channel activator veratridine (10(-5)M) further potentiated the nerve-evoked release of [(3)H]NA. This NA-release was significantly inhibited by KB-R7943, and fully blocked by Ca(o)(2+)-removal. However, Li(+)-substitution was surprisingly ineffective. The non-selective K(+)-channel blocker 4-aminopyridine (4-AP, 10(-4)M) also further potentiated the nerve-evoked release of NA in K(+)-free solution. This potentiated release was concentration-dependently inhibited by KB-R7943, significantly inhibited by Li(+)-substitution and abolished by Ca(o)(2+)-removal. It is concluded that in Na(+)-loaded sympathetic nerves, in which the VSCCs are blocked, the reverse Na(+)/Ca(2+)-exchange-mediated Ca(2+)-entry is responsible for transmitter release on nerve-stimulation. Theoretically we suppose that the fast Na(+)-channel and the exchanger proteins are close to the vesicle docking sites.  相似文献   

6.
Ca(2+) influx appears to be important for triggering myoblast fusion. It remains, however, unclear how Ca(2+) influx rises prior to myoblast fusion. The present study examines a possible involvement of the voltage-dependent Ca(2+) influx pathways. Treatment with the L-type Ca(2+) channel blockers, diltiazem, and nifedipine did not alter cytosolic Ca(2+) levels. Depolarization with high K(+) solution and activation of Ca(2+) channel with Bay K 8644, and agonist of voltage dependent Ca(2+) channels, failed to elicit increases intracellular Ca(2+) level, indicating the absence of depolarization-operated mechanisms. In contrast, phloretin, an agonist of Ca(2+)-activated potassium (K(Ca)) channels, was able to hyperpolarize membrane potential and promoted Ca(2+) influx. These effects were completely abolished by treatment of charybdotoxin, a specific inhibitor of K(Ca) channels. In addition, gadolinium, a potent stretch-activated channel (SAC) blocker, prevented the phloretin-mediated Ca(2+) increase, indicating the involvement of SACs in Ca(2+) influx. Furthermore, phloretin stimulated precocious myoblast fusion and this effect was blocked with gadolinium or charybdotoxin. Taken together, these results suggest that induced hyperpolarization, but not depolarization increases Ca(2+) influx through stretch-activated channels, and in turn triggers myoblast fusion.  相似文献   

7.
Raising extracellular K+ concentration ([K+](o)) around mesenteric resistance arteries reverses depolarization and contraction to phenylephrine. As smooth muscle depolarizes and intracellular Ca(2+) and tension increase, this effect of K+ is suppressed, whereas efflux of cellular K+ through Ca(2+)-activated K+ (K(Ca)) channels is increased. We investigated whether K+ efflux through K(Ca) suppresses the action of exogenous K+ and whether it prestimulates smooth muscle Na(+)-K(+)-ATPase. Under isometric conditions, 10.8 mM [K+](o) had no effect on arteries contracted >10 mN, unless 100 nM iberiotoxin (IbTX), 100 nM charybdotoxin (ChTX), and/or 50 nM apamin were present. Simultaneous measurements of membrane potential and tension showed that phenylephrine depolarized and contracted arteries to -32.2 +/- 2.3 mV and 13.8 +/- 1.6 mN (n = 5) after blockade of K(Ca), but 10.8 mM K+ reversed fully the responses (107.6 +/- 8.6 and 98.8 +/- 0.6%, respectively). Under isobaric conditions and preconstriction with phenylephrine, 10.7 mM [K+](o) reversed contraction at both 50 mmHg (77.0 +/- 8.5%, n = 9) and 80 mmHg (83.7 +/- 5.5%, n = 5). However, in four additional vessels at 80 mmHg, raising K+ failed to reverse contraction unless ChTX was present. Increases in isometric and decreases in isobaric tension with phenylephrine were augmented by either ChTX or ouabain (100 microM), whereas neither inhibitor altered tension under resting conditions. Inhibition of cellular K+ efflux facilitates hyperpolarization and relaxation to exogenous K+, possibly by indirectly reducing the background activation of Na(+)-K(+)-ATPase.  相似文献   

8.
The Shaker B K(+) conductance (G(K)) collapses (in a reversible manner) if the membrane is depolarized and then repolarized in, 0 K(+), Na(+)-containing solutions (Gómez-Lagunas, F. 1997. J. Physiol. 499:3-15; Gómez-Lagunas, F. 1999. Biophys. J. 77:2988-2998). In this work, the role of Na(+) ions in the collapse of G(K) in 0-K(+) solutions, and in the behavior of the channels in low K(+) was studied. The main findings are as follows. First, in 0-K(+) solutions, the presence of Na(+) ions is an important factor that speeds the collapse of G(K). Second, external Na(+) fosters the drop of G(K) by binding to a site with a K(d) = 3.3 mM. External K(+) competes, in a mutually exclusive manner, with Na(o)(+) for binding to this site, with an estimated K(d) = 80 microM. Third, NMG and choline are relatively inert regarding the stability of G(K); fourth, with [K(o)(+)] = 0, the energy required to relieve Na(i)(+) block of Shaker (French, R.J., and J.B. Wells. 1977. J. Gen. Physiol. 70:707-724; Starkus, J.G., L. Kuschel, M. Rayner, and S. Heinemann. 2000. J. Gen. Physiol. 110:539-550) decreases with the molar fraction of Na(i)(+) (X(Na,i)), in an extent not accounted for by the change in Delta(mu)(Na). Finally, when X(Na,i) = 1, G(K) collapses by the binding of Na(i)(+) to two sites, with apparent K(d)s of 2 and 14.3 mM.  相似文献   

9.
Exercise training has reversible beneficial effects on cardiovascular diseases, e.g. hypertension, which may result from a decrease in systemic vascular resistance. The purpose of this study was to investigate possible mechanisms associated with the changes in vascular reactivity in large and small arteries with vasoconstrictors and vasodilators in rats after exercise. Wistar-Kyoto rats were trained for 8 weeks (Ex group) on a treadmill and compared with sedentary counterparts (Sed group). After the measurement of blood pressure and heart rate at 8 weeks, rat mesenteric arteries and thoracic aortas were excised and prepared as rings for this study. In addition, special care was taken not to damage the endothelium of the preparations. Our results showed that exercise training for 8 weeks (1) not only prevented an increase in blood pressure but also caused a fall in heart rate, (2) attenuated the contractions induced by both prostaglandin F(2alpha) (PGF(2alpha)) and high K(+) in the mesenteric artery, but reduced the PGF(2alpha)-induced contraction in the aorta only, (3) enhanced the relaxation elicited by acetylcholine (ACh) in both mesenteric arteries and aortas, and (4) increased nitrate [an indicator of nitric oxide (NO) formation] in plasma. The enhancement of ACh-induced relaxation in the mesenteric arteries in the Ex group was suppressed by pretreatment with N(omega) -nitro-L-arginine methyl ester (L-NAME), tetraethylammonium (TEA; a nonselective inhibitor of K(+) channels) or charybdotoxin [CTX; a selective inhibitor of large-conductance calcium-activated K(+) (BK(Ca)) channels], whereas in the aorta that response was attenuated by TEA or CTX and almost completely abolished by L-NAME. However, with a combination of L-NAME plus CTX in the mesenteric artery, ACh-induced relaxation was completely abolished in the Sed group, but not in the Ex group. These results suggest that in addition to NO, activation of BK(Ca) channels in the vascular beds, at least in part, also contributes to vasodilatation in animals with exercise training.  相似文献   

10.
In a previous work, we have reported that the ionic nature of the outward current recorded in MCF-7 cells was that of a K+ current. In this study, we have identified a Ca2+-activated K+ channel not yet described in MCF-7 human breast cancer cells. In cells arrested in the early G1 (depolarized cells), increasing [Ca2+]i induced both a shift in the I-V curve toward more negative potentials and an increase in current amplitude at negative and more at positive potential. Currents were inhibited by r-iberiotoxin (r-IbTX, 50 nM) and charybdotoxin (ChTX, 50 nM). These data indicate that human breast cancer cells express large-conductance Ca2+-activated K+ (BK) channels. BK current-density increased in cells synchronized at the end of G1, as compared with those in the early G1 phase. This increased current-density paralleled the enhancement in BK mRNA levels. Blocking BK channels with r-IbTX, ChTX or both induced a slight depolarization in cells arrested in the early G1, late G1, and S phases and accumulated cells in the S phase, but failed to induce cell proliferation. Thus, the expression of the BK channels was cell-cycle-dependent and seems to contribute more to the S phase than to the G1 phase. However, these K+ channels did not regulate the cell proliferation because of their minor role in the membrane potential.  相似文献   

11.
Trypsin premature activation has been thought to be a key event in the initiation phase of acute pancreatitis. Here we test a hypothesis that a sustained increase of cytosolic Ca(2+) concentration ([Ca(2+)](C)) can trigger K(+) influx into pancreas acinar zymogen granules (ZGs) via a Ca(2+)-activated K(+) channel (K(Ca)), and this influx of K(+) then mobilizes bound-Ca(2+) by K(+)/Ca(2+) ion-exchange to increase free Ca(2+) concentration in the ZGs ([Ca(2+)](G)) and release bound-H(+) by K(+)/H(+) ion-exchange to decrease the pH in ZGs (pH(G)). Both the increase of [Ca(2+)](G) and the decrease of pH(G) will facilitate trypsinogen autoactivation and stabilize active trypsin inside ZGs that could lead to acute pancreatitis. The experimental results are consistent with our hypothesis, suggesting that K(+) induced ion-exchanges play a critical role in the initiation of trypsin premature activation in ZGs.  相似文献   

12.
Extracellular signal-regulated protein kinases (ERKs) are important in many cellular functions. We and others have previously reported that prolonged exposure of gastric parietal cells to epidermal growth factor (EGF) enhanced gastric acid secretion stimulated by secretagogues via ERKs. In this study, we examined whether ERKs regulated H(+),K(+)-ATPase alpha-subunit gene expression using a gastric cancer cell line, AGS. EGF induced ERK activity time- and dose-dependently with a maximal effect observed at 10 min and 10 nM, respectively. The MEK inhibitors, U0126 and PD-98059, dose-dependently inhibited the ERK activity stimulated by EGF. To test H(+),K(+)-ATPase alpha-subunit gene expression, we transfected AGS cells with a plasmid containing a canine H(+),K(+)-ATPase alpha-subunit gene promoter fused to a luciferase reporter gene. EGF induced luciferase activity in transfected cells; this effect was inhibited by the MEK inhibitors, suggesting that EGF-induced gene expression involved the ERK pathway. When AGS cells were transfected with the reporter plasmids in conjunction with an expression vector encoding constitutively active MEK1, luciferase activity was strongly enhanced; this effect was attenuated by the MEK inhibitors or by an additional cotransfection of dominant negative MEK1. Taken together, our results led us to conclude that the ERK pathway may mediate H(+),K(+)-ATPase alpha-subunit gene expression, contributing to gastric acid secretion in parietal cells.  相似文献   

13.
The possible roles of endothelial intracellular Ca(2+) concentration ([Ca(2+)](i)), nitric oxide (NO), arachidonic acid (AA) metabolites, and Ca(2+)-activated K(+) (K(Ca)) channels in adrenergically induced vasomotion were examined in pressurized rat mesenteric arteries. Removal of the endothelium or buffering [Ca(2+)](i) selectively in endothelial cells with BAPTA eliminated vasomotion in response to phenylephrine (PE; 10.0 microM). In arteries with intact endothelium, inhibition of NO synthase with N(omega)-nitro-l-arginine methyl ester (l-NAME; 300.0 microM) or N(omega)-nitro-l-arginine (l-NNA; 300.0 microM) did not eliminate vasomotion. Neither inhibition of cGMP formation with 10.0 microM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) nor inhibition of prostanoid formation (10.0 microM indomethacin) eliminated vasomotion. Similarly, inhibition of AA cytochrome P-450 metabolism with an intraluminal application of 17-octadecynoic acid (17-ODYA) or 6-(2-propargyloxyphenyl)hexanoic acid (PPOH) failed to eliminate vasomotion. In contrast, intraluminal application of the K(Ca) channel blockers apamin (250.0 nM) and charybdotoxin (100.0 nM), together, abolished vasomotion and changed synchronous Ca(2+) oscillations in smooth muscle cells to asynchronous propagating Ca(2+) waves. Apamin, charybdotoxin, or iberiotoxin (100.0 nM) alone did not eliminate vasomotion, nor did the combination of apamin and iberiotoxin. The results show that adrenergic vasomotion in rat mesenteric arteries is critically dependent on Ca(2+)-activated K(+) channels in endothelial cells. Because these channels (small- and intermediate-conductance K(Ca) channels) are a recognized component of EDHF, we conclude therefore that EDHF is essential for the development of adrenergically induced vasomotion.  相似文献   

14.
Fluorescent ryanodine revealed the distribution of ryanodine receptors in the submembrane cytoplasm (less than a few micrometers) of cultured bullfrog sympathetic ganglion cells. Rises in cytosolic Ca(2+) ([Ca(2+)](i)) elicited by single or repetitive action potentials (APs) propagated at a high speed (150 microm/s) in constant amplitude and rate of rise in the cytoplasm bearing ryanodine receptors, and then in the slower, waning manner in the deeper region. Ryanodine (10 microM), a ryanodine receptor blocker (and/or a half opener), or thapsigargin (1-2 microM), a Ca(2+)-pump blocker, or omega-conotoxin GVIA (omega-CgTx, 1 microM), a N-type Ca(2+) channel blocker, blocked the fast propagation, but did not affect the slower spread. Ca(2+) entry thus triggered the regenerative activation of Ca(2+)-induced Ca(2+) release (CICR) in the submembrane region, followed by buffered Ca(2+) diffusion in the deeper cytoplasm. Computer simulation assuming Ca(2+) release in the submembrane region reproduced the Ca(2+) dynamics. Ryanodine or thapsigargin decreased the rate of spike repolarization of an AP to 80%, but not in the presence of iberiotoxin (IbTx, 100 nM), a BK-type Ca(2+)-activated K(+) channel blocker, or omega-CgTx, both of which decreased the rate to 50%. The spike repolarization rate and the amplitude of a single AP-induced rise in [Ca(2+)](i) gradually decreased to a plateau during repetition of APs at 50 Hz, but reduced less in the presence of ryanodine or thapsigargin. The amplitude of each of the [Ca(2+)](i) rise correlated well with the reduction in the IbTx-sensitive component of spike repolarization. The apamin-sensitive SK-type Ca(2+)-activated K(+) current, underlying the afterhyperpolarization of APs, increased during repetitive APs, decayed faster than the accompanying rise in [Ca(2+)](i), and was suppressed by CICR blockers. Thus, ryanodine receptors form a functional triad with N-type Ca(2+) channels and BK channels, and a loose coupling with SK channels in bullfrog sympathetic neurons, plastically modulating AP.  相似文献   

15.
Activation of large conductance Ca(2+)-activated K(+) channels is controlled by both cytoplasmic Ca(2+) and membrane potential. To study the mechanism of voltage-dependent gating, we examined mSlo Ca(2+)-activated K(+) currents in excised macropatches from Xenopus oocytes in the virtual absence of Ca(2+) (<1 nM). In response to a voltage step, I(K) activates with an exponential time course, following a brief delay. The delay suggests that rapid transitions precede channel opening. The later exponential time course suggests that activation also involves a slower rate-limiting step. However, the time constant of I(K) relaxation [tau(I(K))] exhibits a complex voltage dependence that is inconsistent with models that contain a single rate limiting step. tau(I(K)) increases weakly with voltage from -500 to -20 mV, with an equivalent charge (z) of only 0.14 e, and displays a stronger voltage dependence from +30 to +140 mV (z = 0.49 e), which then decreases from +180 to +240 mV (z = -0.29 e). Similarly, the steady state G(K)-V relationship exhibits a maximum voltage dependence (z = 2 e) from 0 to +100 mV, and is weakly voltage dependent (z congruent with 0.4 e) at more negative voltages, where P(o) = 10(-5)-10(-6). These results can be understood in terms of a gating scheme where a central transition between a closed and an open conformation is allosterically regulated by the state of four independent and identical voltage sensors. In the absence of Ca(2+), this allosteric mechanism results in a gating scheme with five closed (C) and five open (O) states, where the majority of the channel's voltage dependence results from rapid C-C and O-O transitions, whereas the C-O transitions are rate limiting and weakly voltage dependent. These conclusions not only provide a framework for interpreting studies of large conductance Ca(2+)-activated K(+) channel voltage gating, but also have important implications for understanding the mechanism of Ca(2+) sensitivity.  相似文献   

16.
In guinea pig gallbladder epithelial cells, an increase in intracellular cAMP levels elicits the rise of anion channel activity. We investigated by patch-clamp techniques whether K(+) channels were also activated. In a cell-attached configuration and in the presence of theophylline and forskolin or 8-Br-cAMP in the cellular incubation bath, an increase of the open probability (P(o)) values for Ca(2+)-activated K(+) channels with a single-channel conductance of about 160 pS, for inward current, was observed. The increase in P(o) of these channels was also seen in an inside-out configuration and in the presence of PKA, ATP, and cAMP, but not with cAMP alone; phosphorylation did not influence single-channel conductance. In the inside-out configuration, the opioid loperamide (10(-5) M) was able to reduce P(o) when it was present either in the microelectrode filling solution or on the cytoplasmic side. Detection in the epithelial cells by RT-PCR of the mRNA corresponding to the alpha subunit of large-conductance Ca(2+)-activated K(+) channels (BK(Ca)) indicates that this gallbladder channel could belong to the BK family. Immunohistochemistry experiments confirm that these cells express the BK alpha subunit, which is located on the apical membrane. Other K(+) channels with lower conductance (40 pS) were not activated either by 8-Br-cAMP (cell-attached) or by PKA + ATP + cAMP (inside-out). These channels were insensitive to TEA(+) and loperamide. The data demonstrate that under conditions that induce secretion, phosphorylation activates anion channels as well as Ca(2+)-dependent, loperamide-sensitive K(+) channels present on the apical membrane.  相似文献   

17.
This study examines the roles of voltage-dependent Ca(2+) channels (VDCC), ryanodine receptors (RyRs), large-conductance Ca(2+)-activated K(+) (BK) channels, and small-conductance Ca(2+)-activated K(+) (SK) channels in the regulation of phasic contractions of guinea pig urinary bladder smooth muscle (UBSM). Nisoldipine (100 nM), a dihydropyridine inhibitor of VDCC, abolished spontaneous UBSM contractions. Ryanodine (10 microM) increased contraction frequency and thereby integrated force and, in the presence of the SK blocker apamin, had a greater effect on integrated force than ryanodine alone. Blocking BK (iberiotoxin, 100 nM) or SK (apamin, 100 nM) channels increased contraction amplitude and duration but decreased frequency. The contractile response to iberiotoxin was more pronounced than to apamin. The increases in contraction amplitude and duration to apamin were substantially augmented with ryanodine pretreatment. These results indicate that BK and SK channels have prominent roles as negative feedback elements to limit UBSM contraction amplitude and duration. RyRs also appear to play a significant role as a negative feedback regulator of contraction frequency and duration, and this role is influenced by the activity of SK channels.  相似文献   

18.
Hydrogen peroxide (H(2)O(2)) is a proposed endothelium-derived hyperpolarizing factor and metabolic vasodilator of the coronary circulation, but its mechanisms of action on vascular smooth muscle remain unclear. Voltage-dependent K(+) (K(V)) channels sensitive to 4-aminopyridine (4-AP) contain redox-sensitive thiol groups and may mediate coronary vasodilation to H(2)O(2). This hypothesis was tested by studying the effect of H(2)O(2) on coronary blood flow, isometric tension of arteries, and arteriolar diameter in the presence of K(+) channel antagonists. Infusing H(2)O(2) into the left anterior descending artery of anesthetized dogs increased coronary blood flow in a dose-dependent manner. H(2)O(2) relaxed left circumflex rings contracted with 1 muM U46619, a thromboxane A(2) mimetic, and dilated coronary arterioles pressurized to 60 cmH(2)O. Denuding the endothelium of coronary arteries and arterioles did not affect the ability of H(2)O(2) to cause vasodilation, suggesting a direct smooth muscle mechanism. Arterial and arteriolar relaxation by H(2)O(2) was reversed by 1 mM dithiothreitol, a thiol reductant. H(2)O(2)-induced relaxation was abolished in rings contracted with 60 mM K(+) and by 10 mM tetraethylammonium, a nonselective inhibitor of K(+) channels, and 3 mM 4-AP. Dilation of arterioles by H(2)O(2) was antagonized by 0.3 mM 4-AP but not 100 nM iberiotoxin, an inhibitor of Ca(2+)-activated K(+) channels. H(2)O(2)-induced increases in coronary blood flow were abolished by 3 mM 4-AP. Our data indicate H(2)O(2) increases coronary blood flow by acting directly on vascular smooth muscle. Furthermore, we suggest 4-AP-sensitive K(+) channels, or regulating proteins, serve as redox-sensitive elements controlling coronary blood flow.  相似文献   

19.
The present study examines possible mechanisms by which the flavonoid isokaempferide (IKPF; 5,7,4'-trihydroxy-3-methoxyflavone) from Amburana cearensis, a Brazilian medicinal plant popularly used as bronchodilator, induces relaxation of guinea-pig isolated trachea. In the trachea (with intact epithelium) contracted by carbachol, IKPF (1-1000 microM) caused a graded relaxation, and the epithelium removal increased the sensitivity of the airway smooth muscle to IKPF (EC50, in intact tissue: 77.4 [54.8-109.2] microM; in denuded epithelium: 15.0 [11.3-20.1] microM). The IKPF-induced relaxation was inhibited in 41% by the nitric oxide (NO) synthase inhibitor L-NAME (100 microM); in 31% and 50% by the soluble guanylate cyclase (sGC) inhibitor ODQ (3 and 33 microM); by propranolol (31%) and also by capsaicin (37%). In the trachea pre-contracted by 40 mM KCl the pre-incubation with glibenclamide (33 microM) or iberiotoxin (IbTX, 0.1 microM), selective K(+) channel inhibitors, inhibited the IKPF-induced relaxation by 39% and 38%, respectively. On the other hand, 4-aminopyridine (100 microM), a nonselective K(+) channel antagonist, did not significantly influence the effect of IKPF, while IbTX induced a rightward displacement of the IKPF concentration-response curve. However, in muscle pre-contracted with 120 mM KCl the relaxant effect of IKPF was significantly reduced and not affected by glibenclamide. In conclusion, these results indicate a direct and epithelium-independent relaxant effect of IKPF on smooth muscle fibers. Although this IKPF relaxant action seems to be multi-mediated, it occurs via both Ca(2+) and ATP-sensitive K(+) channels, but some other possible mechanisms unrelated to K(+) channels cannot be excluded.  相似文献   

20.
Iberiotoxin, a toxin purified from the scorpion Buthus tamulus is a 37 amino acid peptide having 68% homology with charybdotoxin. Charybdotoxin blocks large conductance Ca(2+)-activated K+ channels at nanomolar concentrations from the external side only (Miller, C., E. Moczydlowski, R. Latorre, and M. Phillips. 1985. Nature (Lond.). 313:316-318). Like charybdotoxin, iberiotoxin is only able to block the skeletal muscle membrane Ca(2+)-activated K+ channel incorporated into neutral-planar bilayers when applied to the external side. In the presence of iberiotoxin, channel activity is interrupted by quiescent periods that can last for several minutes. From single-channel records it was possible to determine that iberiotoxin binds to Ca(2+)-activate K+ channel in a bimolecular reaction. When the solution bathing the membrane are 300 mM K+ internal and 300 mM Na+ external the toxin second order association rate constant is 3.3 x 10(6) s-1 M-1 and the first order dissociation rate constant is 3.8 x 10(-3) s-1, yielding an apparent equilibrium dissociation constant of 1.16 nM. This constant is 10-fold lower than that of charybdotoxin, and the values for the rate constants showed above indicate that this is mainly due to the very low dissociation rate constant; mean blocked time approximately 5 min. The fact that tetraethylammonium competitively inhibits the iberiotoxin binding to the channel is a strong suggestion that this toxin binds to the channel external vestibule. Increasing the external K+ concentration makes the association rate constant to decrease with no effect on the dissociation reaction indicating that the surface charges located in the external channel vestibule play an important role in modulating toxin binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号