首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutamate synthase [L-glutamate:NADP+ oxidoreductase (transaminating); EC 1.4.1.13](GltS) was purified to homogeneity from Bacillus licheniformis A5. The native enzyme had a molecular weight of approximately 220,000 and was composed of two nonidentical subunits (molecular weights, approximately 158,000 and approximately 54,000). The enzyme was found to contain 8.1 +/- 1 iron atoms and 8.1 +/- 1 acid-labile sulfur atoms per 220,000-dalton dimer. Two flavin moieties were found per 220,000-dalton dimer, with a ratio of flavin adenine dinucleotide to flavin mononucleotide of 1.2. The UV-visible spectrum of the enzyme exhibited maxima at 263,380 and 450 nm. The GltS from B. licheniformis had a requirement for NADPH, alpha-ketoglutarate, and glutamine. Classical hyperbolic kinetics were seen for NADPH affinity, which resulted in an apparent Km value of 13 microM. Nonhyperbolic kinetics were obtained for alpha-ketoglutarate and glutamine affinities, and the reciprocal plots obtained for these substrates were biphasic. The apparent Km values obtained for glutamine were 8 and 100 microM, and the apparent Km values obtained for alpha-ketoglutarate were 6 and 50 microM. GltS activity was found to be relatively insensitive to inhibition by amino acids, keto acids, or various nucleotides. L-Methionine-DL-sulfoximine, L-methionine sulfone, and DL-methionine sulfoxide were found to be potent inhibitors of GltS activity, yielding I0.5 values of 150, 11, and 250 microM, respectively. GltSs were purified from cells grown in the presence of ammonia and nitrate as sole nitrogen sources and were compared. Both yielded identical final specific activities and identical physical (UV-visible spectra, flavin, and iron-sulfur composition) and kinetic characteristics.  相似文献   

2.
Reaction of phenylglyoxal with glutamate dehydrogenase (EC 1.4.1.4), but not with glutamate synthase (EC 2.6.1.53), from Bacillus megaterium resulted in complete loss of enzyme activity. NADPH alone or together with 2-oxoglutarate provided substantial protection from inactivation by phenylglyoxal. Some 2mol of [14C]Phenylglyoxal was incorporated/mol of subunit of glutamate dehydrogenase. Addition of 1mM-NADPH decreased incorporation by 0.7mol. The Ki for phenylglyoxal was 6.7mM and Ks for competition with NADPH was 0.5mM. Complete inactivation of glutamate dehydrogenase by butane-2,3-dione was estimated by extrapolation to result from the loss of 3 of the 19 arginine residues/subunit. NADPH, but not NADH, provided almost complete protection against inactivation. Butane-2,3-dione had only a slight inactivating effect on glutamate synthase. The data suggest that an essential arginine residue may be involved in the binding of NADPH to glutamate dehydrogenase. The enzymes were inactivated by pyridoxal 5'-phosphate and this inactivation increased 3--4-fold in the borate buffer. NADPH completely prevented inactivation by pyridoxal 5'-phosphate.  相似文献   

3.
A pterin deaminase catalyzing the hydrolytic deamination of various pteridines was found in the bacterium, Bacillus megaterium, and partially purified from bacterial extract. The specific activity was raised 90-fold over that of the crude extract. The pH optimum is around 7.3, and the Km value for 6-carboxypterin is 1.3 mM. The molecular weight of the enzyme was estimated by gel filtration to be about 110,000. The enzyme deaminated pterin, 6-carboxypterin, biopterin, 6-methylpterin, 7-methylpterin, xanthopterin, 6-hydroxymethylpterin, sepiapterin, isosepiapterin, folic acid, and 6,7-dimethylpterin to their corresponding lumazines, whereas guanine, 7-carboxypterin, leucopterin, isoxanthopterin, and 6-methylisoxanthopterin did not serve as substrates. The enzyme was inhibited by PCMB and 8-azaguanine.  相似文献   

4.
5.
Purification and properties of NADH oxidase from Bacillus megaterium   总被引:3,自引:0,他引:3  
NADH oxidase, which catalyzes the oxidation of NADH, with the consumption of a stoichiometric amount of oxygen, to NAD+ and hydrogen peroxide was purified from Bacillus megaterium by 5'-AMP Sepharose affinity chromatography to homogeneity. The enzyme is a dimeric protein containing 1 mol of FAD per mol of subunit, Mr = 52,000. The absorption maxima of the native enzyme (oxidized form) were found at 270, 383, and 450 with a shoulder at 475 nm in 50 mM KPi buffer, pH 7.0. The visible absorption bands at 383 and 450 nm disappeared on the addition of NADH under anaerobic conditions and reappeared upon the introduction of air. Thus, the non-covalently bound FAD functioned as a prosthetic group for the enzyme. We tentatively named this new enzyme NADH oxidase (NADH:oxygen oxidoreductase, hydrogen peroxide forming). This enzyme stereospecifically oxidizes the pro-S hydrogen at C-4 of the pyridine ring of NADH.  相似文献   

6.
Glutamate synthase was purified about 250-fold from Nocardia mediterranei U32 and characterized. The native enzyme has a molecular weight of 195,000 +/- 5,000 and is composed of two nonidentical subunits with molecular weights of 145,000 +/- 5,000 and 55,000 +/- 3,000. This enzyme is a complex of iron-sulfur flavoproteins with absorption maxima at 278, 375, 410, and 440 nm. It contains 1.1 mol of flavin adenine dinucleotide, 1.0 mol of flavin mononucleotide, 7.5 mol of nonheme iron, and 7.2 mol of acid-labile sulfur per 200,000 g of protein. Km values for L-glutamine, alpha-ketoglutarate, and NADPH were 77, 53, and 110 microM, respectively. The activity of this glutamate synthase is inhibited by its products (i.e., glutamate and NADP), several amino acids, and tricarboxylic acid cycle intermediates.  相似文献   

7.
Glutamate synthase was purified about 250-fold from Thiobacillus thioparus and was characterized. The molecular weight was estimated as 280,000 g/mol. The enzyme showed absorption maxima at 280, 380, and 450 nm and was inhibited by Atebrin, suggesting that T. thioparus glutamate synthase is a flavoprotein. The enzyme activity was also inhibited by iron chelators and thiolbinding agents. The enzyme was specific for reduced nicotinamide adenine dinucleotide phosphate (NADPH) and alpha-ketoglutarate, but L-glutamine was partially replaced by ammonia as the amino donor. The Km values of glutamate synthase for NADPH, alpha-ketoglutarate, and glutamine were 3.0 muM, 50 muM, and 1.1 mM, respectively. The enzyme had a pH optimum between 7.3 and 7.8. Glutamate synthase from T. thioparus was relatively insensitive to feedback inhibition by single amino acids but was sensitive to the combined effects of several amino acids. Enzymes involved in glutamate synthesis in T. thioparus were studied. Glutamine synthetase and glutamate synthase, as well as two glutamate dehydrogenases (NADH and NADPH dependent), were present in this organism. This levels of glutamate synthase and glutamate dehydrogenase were similar in T. thioparus grown on 0.7 or 7.0 mM ammonium sulfate. The sum of the activities of both glutamate dehydrogenases was only 1/25 of that of glutamate synthase under the assay conditions. It was concluded that the glutamine pathway is important for ammonia assimilation in this autotrophic bacterium.  相似文献   

8.
Chorismatic synthase was purified to apparent homogeneity from Bacillus subtilis. The enzyme required NADPH-dependent flavin reductase, Mg2+, NADPH, and flavin (FMN or FAD) for activity. The molecular weight of chorismate synthase was 24,000 as determined by sodium dedecyl sulfate (SDS)-gel electrophoresis. The enzyme was also isolated in a complex form associated with NADPH-dependent flavin reductase and another enzyme of the aromatic amino acid pathway, dehydroquinate synthase. On SDS-gel electrophoresis, this form was resolved into three bands with molecular weights of 13,000, 17,000, and 24,000. The enzyme complex was easily dissociated and the dissociation resulted in a change in the chromatographic properties of NADPH-dependent flavin reductase which was no longer retained on phosphocellulose whereas chorismate synthase was still adsorbed. Chorismate synthase activity was linear with time and protein concentration, whereas partially purified preparations showed a significant lag period before the reaction took place. Moreover, crude or partially purified enzyme preparations were completely inactivated by dilution and the activity could be recovered by addition of flavin reductase. A possible role of NADPH-dependent flavin reductase in the activation and regulation of chorismate synthase activity is discussed.  相似文献   

9.
1. The bacterial distribution of alanine dehydrogenase (L-alanine:NAD+ oxidoreductase, deaminating, EC 1.4.1.1) was investigated, and high activity was found in Bacillus species. The enzyme has been purified to homogeneity and crystallized from B. sphaericus (IFO 3525), in which the highest activity occurs. 2. The enzyme has a molecular weight of about 230 000, and is composed of six identical subunits (Mr 38 000). 3. The enzyme acts almost specifically on L-alanine, but shows low amino-acceptor specificity; pyruvate and 2-oxobutyrate are the most preferable substrates, and 2-oxovalerate is also animated. The enzyme requires NAD+ as a cofactor, which cannot be replaced by NADP+. 4. The enzyme is stable over a wide pH range (pH 6.0--10.0), and shows maximum reactivity at approximately pH 10.5 and 9.0 for the deamination and amination reactions, respectively. 5. Alanine dehydrogenase is inhibited significantly by HgCl2, p-chloromercuribenzoate and other metals, but none of purine and pyrimidine bases, nucleosides, nucleotides, flavine compounds and pyridoxal 5'-phosphate influence the activity. 6. The reductive amination proceeds through a sequential ordered ternary-binary mechanism. NADH binds first to the enzyme followed by ammonia and pyruvate, and the products are released in the order of L-ALANINE AND NAD+. The Michaelis constants are as follows: NADH (10 microM), ammonia (28.2 mM), pyruvate (1.7 mM), L-alanine (18.9 mM) and NAD+ (0.23 mM). 7. The pro-R hydrogen at C-4 of the reduced nicotinamide ring of NADH is exclusively transferred to pyruvate; the enzyme is A-stereospecific.  相似文献   

10.
Citrate synthase was purified to homogeneity from a Gram-positive bacterium (Bacillus megaterium) for the first time. The Mr of the native enzyme was determined to be 84 000 (S.E.M. +/- 5000). Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and gel filtration in guanidinium chloride revealed a single protein species of Mr 40 300 (S.E.M. +/- 4400), indicating a dimeric enzyme. This dimeric structure was confirmed by cross-linking the native enzyme with dimethyl suberimidate and with glutaraldehyde, followed by electrophoretic analysis. The enzyme follows Michaelis-Menten kinetics with respect to both substrates, acetyl-CoA and oxaloacetate, and is sensitive to non-specific inhibition by a range of adenine nucleotides. In both molecular and catalytic properties the citrate synthase closely resembles the enzyme from eukaryotic sources and contrasts markedly with the larger, hexameric, enzyme from Gram-negative bacteria.  相似文献   

11.
A 250- to 300-fold purification of a nicotinamide adenine denucleotide phosphate (NADP)-dependent glutamate dehydrogenase (GDH, E.C. 1.4.1.4) with a yield of 60% from a thermophilic bacillus is described. More than one NADP-specific GDH was detected by polyacrylamide gel electrophoresis. The enzyme is of high molecular weight (approximately 2 X 10-6), similar to that of the beef and frog liver GDH. The pI of the thermophilic GDH is at pH 5.24. The enzyme is highly thermostable at the pH range of 5.8 to 9.0. The purified GDH, unlike the crude enzyme, was very labile at subzero temperatures. An unidentified factor(s) from the crude cell-free extract prevented the inactivation of the purified GDH at -70 C. Various reactants of the GDH system and D-glutamate also protected, to some extent, the enzyme from inactivation at -70 C. From the Michaelis constants for glutamate (1.1 X 10-2M), NADP (3 X 10-4M), ammonia (2.1 X 10-2M), alpha-ketoglutarate (1.3 X 10-3M), and reduced NADP (5.3 X 10-5M), it is suggested that the enzyme catalyzes in vivo the formation of glutamate from ammonia and alpha-ketoglutarate. The amination of alpha-ketoglutarate and deamination of glutamate by the thermophilic GDH are optimal at the pH values of 7.2 and 8.4, respectively.  相似文献   

12.
Glutamate synthase (EC 1 4 1 14) was purified to homogeneity from a cell\|free extract of Streptomyces lincolnensis by precipitation with streptomycin sulfate and ammonium sulfate, and column chromatography on DEAE\| cellulose, Sepharose 6B, DEAE\|sephadex A\|50, hydroxyapatite and Sephadex G\|150. The enzyme activity is stabilized by addition of α ketoglutarate, PMSF,EDTA, β mercaptoethanol and glycerol. The native enzyme has a molecular weight of 138 000 and is composed of two nonidentical subunits with molecular weights of 81 000 and 57 000. Spectroscopic examination of the enzyme gave absorption maximum at 280 and none at 380 and 440 nm, indicating the absence of iron and flavin. The enzyme shows optimum activity at pH 7.2 and 30℃. Km values for α ketoglutarate, L\|glutamine and NADH were 417, 435, and 52.1 μmol/L, respectively. When NADPH was substituted for NADH as reductant, there was approximately 13% of the control activity. The activity of this glutamate synthase is inhibited by its products (i.e. glutamate and NAD), several metal ions, amino acids and tricarboxylic acid cycle intermediates.  相似文献   

13.
Inmostprocaryotes,theenzymeglutamatesynthase[Lglutamate:NAD(P)+oxidoreductase(transaminating)(EC1.4.1.13or14)](GOGAT),togetherwithglutaminesynthetase[Lglutamate:ammonialigase(ADPforming)(EC6.3.1.2)](GS),hasbeenconsideredtobeanalternativetoglutamatedehydrogenaseinammonia…  相似文献   

14.
Phosphoglycerate phosphomutase has been purified to homogeneity from vegetative cells and germinated spores of Bacillus megaterium, and the spore and cell enzymes appear identical. The enzyme is a monomer of molecular weight 61,000. The compound 2,3-diphosphoglyceric acid is not required for activity, but the enzyme has an absolute and specific requirement for Mn2+. The enzyme is inhibited by ethylenediaminetetraacetate and sulfhydryl reagents, has a pH optimum of about 8.0, and has Km values for 3-phosphoglyceric acid and Mn2+ of 5 x 10(-4) and 4 x 10(-5) M, respectively.  相似文献   

15.
Ammonia assimilation in Bacillus fastidiosus proceeds via the NADP-dependent glutamate dehydrogenase. The enzyme, purified to homogeneity, is composed of identical subunits with a molecular weight of about 48 000 dalton. Presumably the enzyme is a hexamer. The enzyme is specific for NADP (H). The pH optima for the amination and deamination reactions are 7.7 and 8.6, respectively. The temperature optimum is 60°C. Furthermore, temperature stability and apparent Km values for substrates of both the amination and deamination reactions were determined. Several metabolites were tested for their effect on the enzyme activity. Only malate and fumarate showed some inhibitory effect.Abbreviation GDH glutamate dehydrogenase  相似文献   

16.
Three glucose dehydrogenases (GlcDH) from Bacillus megaterium, GlcDH-I, GlcDH-II and GlcDH-IWG3, were purified from Escherichia coli cells harboring one of the hybrid plasmids, pGDK1, pGDK2 and pGDA3, respectively, pGDK1 and pGDK2 contain two isozyme genes, gdhI and gdhII, respectively, from B. megaterium IAM 1030 and pGDA3 contains an isozyme gene from B. megaterium IWG3; GlcDH-IWG3 is a variant of GlcDH-I. GlcDH-I and GlcDH-II have similar pH/activity profiles and the profile for GlcDH-IWG3 is identical to that of GlcDH-I. The pH/stability profiles of these enzymes show that GlcDH-IWG3 is the most stable enzyme in the acidic region, while GlcDH-II is the most stable in the alkaline region, and GlcDH-I is the most unstable throughout the entire pH range examined. As for thermostability, GlcDH-II is the most resistant against heat inactivation at pH 6.5. The values of the first-order rate constant for heat inactivation at 50 degrees C are 0.27 min-1, 0.05 min-1 and 0.11 min-1 for GlcDH-I, GlcDH-II and GlcDH-IWG3, respectively. Kinetic studies show that these enzymes have similar kinetic constant values except that there are some differences in Kia for NAD(P) and Ka (the limiting Michaelis constant) for NAD; the values of the ratio of Kia for NAD and NADP are 11,340 and 8.7 for GlcDH-I, GlcDH-II and GlcDH-IWG3, respectively. GlcDH-I and GlcDH-IWG3 have very similar substrate specificities and GlcDH-II has a slightly higher specificity for D-glucose and 2-deoxy-D-glucose than the others. The results are discussed on the basis of the amino acid substitutions between the enzymes.  相似文献   

17.
Escherichia coli containing the Bacillus subtilis glucose dehydrogenase gene on a plasmid (prL7) was used to produce the enzyme in high quantities. Gluc-DH-S was purified from the cell extract by (NH4)2SO4-precipitation, ion-exchange chromatography and Triazine-dye chromatography to a specific activity of 375 U/mg. The enzyme was apparently homogenous on SDS-PAGE with a subunit molecular mass of 31.5 kDa. Investigation of Gluc-DH-S was performed for comparison with the corresponding properties of Gluc-DH-M. The limiting Michaelis constant at pH 8.0 for NAD+ is Ka = 0.11 mM and for D-glucose Kb = 8.7 mM. The dissociation constant for NAD+ is Kia = 17.1 mM. Similar to Gluc-DH-M, Gluc-DH-S is inactivated by dissociation under weak alkaline conditions at pH 9.0. Complete reactivation is attained by readjustment to pH 6.5. Ultraviolet absorption, fluorescence and CD-spectra of native Gluc-DH-S, as well as fluorescence- and CD-backbone-spectra of the dissociated enzyme were nearly identical to the corresponding spectra of Gluc-DH-M. The aromatic CD-spectrum of dissociated Gluc-DH-S was different, representing a residual ellipticity of tryptophyl moieties in the 290-310 nm region. Density gradient centrifugation proved that this behaviour is due to the formation of inactive dimers in equilibrium with monomers after dissociation. In comparison to Gluc-DH-M, the kinetics of inactivation as well as the time-dependent change of fluorescence intensity at pH 9.0 of Gluc-DH-S showed a higher velocity and a changed course of the dissociation process.  相似文献   

18.
Glutamate dehydrogenase from pig kidney has been purified to homogeneity by means of affinity chromatography on matrix bound Cibacron Blue F3G-A and gel chromatography on Sepharose 6B. The enzyme exhibits allosteric properties with the substrates alpha-ketoglutarate, ammonium, and NADH, respectively. GTP is a strong inhibitor which strengthened the cooperative interactions between the ammonium binding sites. ADP as an activator relieves the inhibition by GTP. Like glutamate dehydrogenase from bovine liver, glutamate dehydrogenase from pig kidney shows the ability of self-association, too. The sedimentation coefficient increases from 13.5 S at 0.07 mg protein/ml to 19.4 S at 1.32 mg protein/ml. In the sodium dodecylsulphate gel electrophoresis the enzyme migrates as a single band with a molecular-weight at 51000.  相似文献   

19.
1) Glucose dehydrogenase from Bacillus megaterium has been purified to a specific activity of 550 U per mg protein. The homogeneity of the purified enzyme was demonstrated by gel electrophoresis and isoelectric focusing. 2) The amino acid composition has been determined. 3) The molecular weight of the native enzyme was found to be 116000 by gel permeation chromatography, in good agreement with the values of 120000 and 118000, which were ascertained electrophoretically according to the method of Hedrick and Smith and by density gradient centrifugation, respectively. 4) In the presence of 0.1% sodium dodecylsulfate and 8M urea, the enzyme dissociates into subunits with a molecular weight of 30000 as determined by dodecylsulfate gel electrophoresis. These values indicate that the native enzyme is composed of four polypeptide chains, each probably possessing one coenzyme binding site, which can be concluded from fluorescent titration of the NADH binding sites. 5) In polyacrylamide disc electrophoresis, samples of the purified enzyme exhibit three bands of activity, which present the native (tetrameric) form of glucose dehydrogenase and two monomeric forms (molecular weight 30000), arising under the conditions of pH and ionic strength of this method. 6) The enzyme shows a sharp pH optimum at pH 8.0 in Tris/HCl buffer, and a shift of the pH optimum to pH 9.0 in acetate/borate buffer. The limiting Michaelis constant at pH 9.0 for NAD is 4.5 mM and 47.5 mM for glucose. The dissociation constant for NAD is 0.69 mM. 7) D-Glucose dehydrogenase is highly specific for beta-D-glucose and is capable of using either NAD or NADP. The enzyme is insensitive to sulfhydryl group inhibitors, heavy metal ions and chelating agents.  相似文献   

20.
1. NADP-dependent glutamate dehydrogenase (EC 1.4.1.4) extracted from nuclear fractions of Saccharomyces cerevisiae was partially purified. The final purification achieved was over 100-fold over the initial extract. 2. Cellulose acetate electrophoresis shows that the preparation is close to homogeneity and that the enzyme is slightly more anionic than cytoplasmic glutamate dehydrogenase. 3. The response of the nuclear activity to variation of pH, of inorganic phosphate and other electrolyte concentration and of the concentration of the reaction substrates has been investigated. Several differences were detected in comparison with cytoplasmic glutamate dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号