首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The integrase encoded by human immunodeficiency virus type 1 (HIV-1) is required for integration of viral DNA into the host cell chromosome. In vitro, integrase mediates a concerted cleavage-ligation reaction (strand transfer) that results in covalent attachment of viral DNA to target DNA. With a substrate that mimics the strand transfer product, integrase carries out disintegration, the reverse of the strand transfer reaction, resolving this integration intermediate into its viral and target DNA parts. We used a set of disintegration substrates to study the catalytic mechanism of HIV-1 integrase and the interaction between the protein and the viral and target DNA sequence. One substrate termed dumbbell consists of a single oligonucleotide that can fold to form a structure that mimics the integration intermediate. Kinetic analysis using the dumbbell substrate showed that integrase turned over, establishing that HIV-1 integrase is an enzyme. Analysis of the disintegration activity on the dumbbell substrate and its derivatives showed that both the viral and target DNA parts of the molecule were required for integrase recognition. Integrase recognized target DNA asymmetrically: the target DNA upstream of the viral DNA joining site played a much more important role than the downstream target DNA in protein-DNA interaction. The site of transesterification was determined by both the DNA sequence of the viral DNA end and the structure of the branched substrate. Using a series of disintegration substrates with various base modifications, we found that integrase had relaxed structural specificity for the hydroxyl group used in transesterification and could tolerate distortion of the double-helical structure of these DNA substrates.  相似文献   

2.
Human immunodeficiency virus type 1 (HIV-1) and other retroviruses require integration of a double-stranded DNA copy of the RNA genome into the host cell chromosome for productive infection. The viral enzyme, integrase, catalyzes the integration of retroviral DNA and represents an attractive target for developing antiretroviral agents. We identified several derivatives of dicaffeoylquinic acids (DCQAs) that inhibit HIV-1 replication in tissue culture and catalytic activities of HIV-1 integrase in vitro. The specific step at which DCQAs inhibit the integration in vitro and the mechanism of inhibition were examined in the present study. Titration experiments with different concentrations of HIV-1 integrase or DNA substrate found that the effect of DCQAs was exerted on the enzyme and not the DNA. In addition to HIV-1, DCQAs also inhibited the in vitro activities of MLV integrase and truncated variants of feline immunodeficiency virus integrase, suggesting that these compounds interacted with the central core domain of integrase. The inhibition on retroviral integrases was relatively specific, and DCQAs had no effect on several other DNA-modifying enzymes and phosphoryltransferases. Kinetic analysis and dialysis experiments showed that the inhibition of integrase by DCQAs was irreversible. The inhibition did not require the presence of a divalent cation and was unaffected by preassembling integrase onto viral DNA. The results suggest that the irreversible inhibition by DCQAs on integrase is directed toward conserved amino acid residues in the central core domain during catalysis.  相似文献   

3.
Human immunodeficiency virus type 1 integrase is one of three viral enzymes, and it realizes a key process of the viral replication cycle, i.e. viral DNA integration into infected cell genome. Integrase recognizes nucleotide sequences located at the ends of the viral DNA U3 and U5 LTRs and catalyzes 3'-processing and strand transfer reactions. To study the interactions between integrase and viral DNA at present work, we used modified integrase substrates mimicking the terminal U5 LTR sequence and containing non-nucleoside insertions in one or/and both strands. It is shown that the substrate modifications have no influence on the integrase binding rate, while the heterocyclic bases removal in the 5th and 6th substrate positions and in the 3rd position of the substrate processed strand distinctly inhibits the integrase catalytic activity. This fact demonstrates these bases significance for the active enzyme/substrate complex formation. On the contrary, modification of the 3rd position within substrate non-processed strand stimulates 3'-processing. Since heterocyclic base elimination results in disruption of the DNA complementary and staking interactions, this result shows that DNA double helix destabilization close to the cleaved bond promotes the 3'-processing.  相似文献   

4.
It has been shown that L-731988, a potent integrase inhibitor, targets a conformation of the integrase enzyme formed when complexed to viral DNA, with the 3′-end dinucleotide already cleaved. It has also been shown that diketo acid inhibitors bind to the strand transfer complex of integrase and are competitive with the host target DNA. However, published X-ray structures of HIV integrase do not include the DNA; thus, there is a need to develop a model representing the strand transfer complex. In this study, we have constructed an active-site model of the HIV-1 integrase complexed with viral DNA using the crystal structure of DNA-bound transposase and have identified a binding mode for inhibitors. This proposed binding mechanism for integrase inhibitors involves interaction with a specific Mg2 + in the active site, accentuated by a hydrophobic interaction in a cavity formed by a flexible loop upon DNA binding. We further validated the integrase active-site model by selectively mutating key residues predicted to play an important role in the binding of inhibitors. Thus, we have a binding model that is applicable to a wide range of potent integrase inhibitors and is consistent with the available resistant mutation data.  相似文献   

5.
6.
HIV-1整合酶是由HIV病毒pol基因编码的分子量为32KD的蛋白质,是HIV病毒复制的必需酶之一,它催化病毒DNA整合入宿主染色体DNA。人类细胞中没有HIV 整合酶的类似物[1],理论上抑制整合酶对人体副作用很小。因此HIV-1整合酶成为继HIV-1蛋白酶,逆转录酶后治疗艾滋病的富有吸引力和合理的靶标。本文综述了HIV整合酶结构,抑制剂的研究以及以HIV-1 整和酶为靶点治疗AIDS方法的最新研究进展。  相似文献   

7.
8.
Retroviral replication depends on successful integration of the viral genetic material into a host cell chromosome. Virally encoded integrase, an enzyme from the DDE(D) nucleotidyltransferase superfamily, is responsible for the key DNA cutting and joining steps associated with this process. Insights into the structural and mechanistic aspects of integration are directly relevant for the development of antiretroviral drugs. Recent breakthroughs have led to biochemical and structural characterization of the principal integration intermediates revealing the tetramer of integrase that catalyzes insertion of both 3' viral DNA ends into a sharply bent target DNA. This review discusses the mechanism of retroviral DNA integration and the mode of action of HIV-1 integrase strand transfer inhibitors in light of the recent visualization of the prototype foamy virus intasome, target DNA capture and strand transfer complexes.  相似文献   

9.
10.
Integrase is the key enzyme that mediates integration of retroviral DNA into cellular DNA which is essential for viral replication. Inhibitors of HIV‐1 that target integrase recognize the nucleoprotein complexes formed by integrase and viral DNA substrate (intasomes) rather than the free enzyme. Atomic resolution structures of HIV‐1 intasomes are therefore required to understand the mechanisms of inhibition and drug resistance. To date, prototype foamy virus (PFV) is the only retrovirus for which such structures have been determined. We show that PFV strand transfer complexes (STC) can be assembled on product DNA without going through the normal forward reaction pathway. The finding that a retroviral STC can be assembled in this way may provide a powerful tool to alleviate the obstacles that impede structural studies of nucleoprotein intermediates in HIV‐1 DNA integration.  相似文献   

11.
Integration of HIV-1 (human immunodeficiency virus type 1) DNA into the genome of the host cell is an essential step in the viral replication cycle that is mediated by the virally encoded integrase protein. We have used atomic force microscopy to study stable complexes formed between HIV-1 integrase and viral DNA and their interaction with host DNA. A tetramer of integrase stably bridges a pair of viral DNA ends, consistent with previous analysis by gel electrophoresis. The intasome, composed of a tetramer of integrase bridging a pair of viral DNA ends, is highly stable to high ionic strength that would strip more loosely associated integrase from internal regions of the viral DNA. We also observed tetramers of integrase associated with single viral DNA ends; time-course experiments suggest that these may be intermediates in intasome assembly. Strikingly, integrase tetramers are only observed in tight association with viral DNA ends. The self-association properties of intasomes suggest that the integrase tetramer within the intasome is different from the integrase tetramer formed at high concentration in solution in the absence of viral DNA. Finally, the integration product remains tightly bound by the integrase tetramer, but the 3′ ends of the target DNA in the complex are not restrained and are free to rotate, resulting in relaxation of initially supercoiled target DNA.  相似文献   

12.
整合酶(integrase,IN)是HIV病毒复制周期中的一个重要酶,一般认为,IN是以四聚体形式发挥其生物活性。本文用DOT软件包研究了IN四聚体与8个不同长度病毒末端DNA的结合模式,以及病毒DNA长度对二者识别的影响。结果表明,IN有3个DNA结合区域,其中两个是病毒DNA结合区域,另外一个是宿主DNA结合区域。模拟结果与实验数据吻合较好,本研究为基于整合酶结构的药物研发及整合酶整合机理的研究提供了良好的基础。  相似文献   

13.
The key DNA cutting and joining steps of retroviral DNA integration are carried out by the viral integrase protein. Structures of the individual domains of integrase have been determined, but their organization in the active complex with viral DNA is unknown. We show that HIV-1 integrase forms stable synaptic complexes in which a tetramer of integrase is stably associated with a pair of viral DNA ends. The viral DNA is processed within these complexes, which go on to capture the target DNA and integrate the viral DNA ends. The joining of the two viral DNA ends to target DNA occurs sequentially, with a stable intermediate complex in which only one DNA end is joined. The integration product also remains stably associated with integrase and likely requires disassembly before completion of the integration process by cellular enzymes. The results define the series of stable nucleoprotein complexes that mediate retroviral DNA integration.  相似文献   

14.
In the search for inhibitors of HIV integrase, the enzyme involved in the integration of viral DNA into host DNA, we have synthesized and studied a number of analogs of the heterocyclic molecule, chloroquine.  相似文献   

15.
Integration of human immunodeficiency virus type 1 DNA into the infected cell genome is one of the key steps of the viral replication cycle. Therefore viral enzyme integrase, which realizes the integration, is of interest as a target for new antiviral drugs. Conjugates of 11-mer single stranded oligonucleotides with hydrophobic molecules are shown to be efficient integrase inhibitors since they induce dissociation of the integrase-viral DNA complex. The effect of the oligonucleotide length and structure as well as the structure of hydrophobic molecules on the conjugate inhibitory activity has been studied. Conjugates with eosin and oleic acid are shown to be the most active. Conjugates of these molecules with 2'-O-methyl-oligonucleotide inhibit integrase at 50-100 nM and have no influence on a number of other DNA-binding enzymes.  相似文献   

16.
Integrase is the only viral protein necessary for integration of retroviral DNA into chromosomal DNA of the host cell. Biochemical analysis of human immunodeficiency virus type 1 (HIV-1) integrase with purified protein and synthetic DNA substrates has revealed extensive information regarding the mechanism of action of the enzyme, as well as identification of critical residues and functional domains. Since in vitro reactions are carried out in the absence of other viral proteins and they analyze strand transfer of only one end of the donor substrate, they do not define completely the process of integration as it occurs during the course of viral infection. In an effort to further understand the role of integrase during viral infection, we initially constructed a panel of 24 HIV-1 mutants with specific alanine substitutions throughout the integrase coding region and analyzed them in a human T-cell line infection. Of these mutant viruses, 12 were capable of sustained viral replication, 11 were replication defective, and 1 was temperature sensitive for viral growth. The replication defective viruses express and correctly process the integrase and Gag proteins. Using this panel of mutants and an additional set of 18 mutant viruses, we identified nine amino acids which, when replaced with alanine, destroy integrase activity. Although none of the replication-defective mutants are able to integrate into the host genome, a subset of them with alterations in the catalytic triad are capable of Tat-mediated transactivation of an indicator gene linked to the viral long terminal repeat promoter. We present evidence that integration of the HIV-1 provirus is essential not only for productive infection of T cells but also for virus passage in both cultured peripheral blood lymphocytes and macrophage cells.  相似文献   

17.
Retroviral integrase prepares viral DNA for integration by removing 2 nucleotides from each end of unintegrated DNA in a reaction referred to as processing. However, it has been known since the processing assay was first described that avian integrases frequently nick 3 nucleotides, as well as 2 nucleotides, from viral DNA ends when reaction mixtures contain Mn2+. We now report that specificity for the biologically relevant "-2" site is enhanced when the serine at amino acid 124 of Rous sarcoma virus (RSV) integrase is replaced by alanine, valine, glycine, lysine, or aspartate. The protein with a serine-to-aspartate substitution exhibited especially high fidelity for the correct site, as evidenced by a ratio of -2 nicks to -3 nicks that was more than 40-fold greater than that for the wild-type enzyme in reactions with Mn2+. Even with Mg2+, the substituted proteins exhibited greater specificity than the wild type, especially the S124D protein. Moreover, this protein was more efficient than the wild type at processing viral DNA ends. Unexpectedly, however, the S124D protein was significantly impaired at catalyzing the insertion of viral DNA ends in reactions with Mn2+ and joining was undetectable in reactions with Mg2+. Thus, the S124D protein has separated the processing and joining activities of integrase. Similar results were found for human immunodeficiency virus integrase with the analogous substitution. No proteins with comparable properties have been described. Moreover, RSV virions containing integrase with the S124D mutation were unable to replicate in cell cultures. Together, these data suggest that integrase has evolved to have submaximal processing activity so that it can also catalyze DNA joining.  相似文献   

18.
HIV-1 integrase (IN) is the key enzyme catalyzing the proviral DNA integration step. Although the enzyme catalyzes the integration step accurately in vitro, whether IN is sufficient for in vivo integration and how it interacts with the cellular machinery remains unclear. We set up a yeast cellular integration system where integrase was expressed as the sole HIV-1 protein and targeted the chromosomes. In this simple eukaryotic model, integrase is necessary and sufficient for the insertion of a DNA containing viral LTRs into the genome, thereby allowing the study of the isolated integration step independently of other viral mechanisms. Furthermore, the yeast system was used to identify cellular mechanisms involved in the integration step and allowed us to show the role of homologous recombination systems. We demonstrated physical interactions between HIV-1 IN and RAD51 protein and showed that HIV-1 integrase activity could be inhibited both in the cell and in vitro by RAD51 protein. Our data allowed the identification of RAD51 as a novel in vitro IN cofactor able to down regulate the activity of this retroviral enzyme, thereby acting as a potential cellular restriction factor to HIV infection.  相似文献   

19.
Integration of the viral cDNA into host chromosomes is required for viral replication. Human immunodeficiency virus integrase catalyzes two sequential reactions, 3'-processing (3'-P) and strand transfer (ST). The first integrase inhibitors are undergoing clinical trial, but interactions of inhibitors with integrase and DNA are not well understood in the absence of a co-crystal structure. To increase our understanding of integrase interactions with DNA, we examined integrase catalysis with oligonucleotides containing DNA backbone, base, and groove modifications placed at unique positions surrounding the 3'-processing site. 3'-Processing was blocked with substrates containing constrained sugars and alpha-anomeric residues, suggesting that integrase requires flexibility of the phosphodiester backbone at the 3'-P site. Of several benzo[a]pyrene 7,8-diol 9,10-epoxide (BaP DE) adducts tested, only the adduct in the minor groove at the 3'-P site inhibited 3'-P, suggesting the importance of the minor groove contacts for 3'-P. ST occurred in the presence of bulky BaP DE DNA adducts attached to the end of the viral DNA suggesting opening of the active site for ST. Position-specific effects of these BaP DE DNA adducts were found for inhibition of integrase by diketo acids. Together, these results demonstrate the importance of DNA structure and specific contacts with the viral DNA processing site for inhibition by integrase inhibitors.  相似文献   

20.
Integration of the proviral DNA into the genome of infected cells is a key step of HIV-1 replication. Integration is catalyzed by the viral enzyme integrase (IN). 6-oxocytidine-containing oligonucleotides were found to be efficient inhibitors of integrase in vitro. The inhibitory effect is sequence-specific and strictly requires the presence of the 6-oxocytidine base. It is due to the impairment of the integrase binding to its substrate and does not involve an auto-structure of the oligonucleotide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号