首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Male mice of 7 different strains were injected i.p. with 400 mg/kg of butylated hydroxytoluene (BHT). 2 and 4 days later, the incorporation of thymidine into pulmonary DNA was significantly increased in all treated animals and this was accompanied by an increase in lung weight and pulmonary DNA. Thymidine kinase activity and DNA polymerase activity were enhanced in the lungs of BHT-treated animals and maximum activity of these enzymes appeared to precede maximum thymidine incorporation by 24 h. 3 days after BHT a good correlation was found between administered dose and thymidine kinase activity. Measuring the activity of this enzyme might serve as a convenient biochemical marker to follow and to quantitate BHT-produced cell proliferation in lung. The concentrations of cyclic AMP and the activity of adenylate cyclase were not altered by BHT on days 1-9 after administration. BHT produced also some dose-dependent, time-dependent increases in the activities of pulmonary 5'-nucleotidase and glucose-6-phosphate dehydrogenase (G6PDH), but had little effect on isocitric dehydrogenase (ICDH), pyruvate kinase (PK) and lactic dehydrogenase (LDH).  相似文献   

2.
The present investigations on rat lung show that metabolic changes occurring around the 20th gestational day are accompanied by multiple alterations in the quantitative pattern of enzymes. This involves increases in two lysosomal enzymes (N-acetyl beta-glucosaminidase and beta-galactosidase) and a rise and fall in pyruvate kinase and alpha-glucosidase. The striking transient upsurge of adenylate kinase, however, is postponed until after birth. The normal diminution of thymidine kinase and peptidylproline hydroxylase is drastically enhanced by an injection of cortisol to fetal rats. Studies on human pulmonary tissues consisted in determining enzyme concentration from the ninth to the 21st week of gestation and an histologically normal adult lungs. The results show that the 15th to the 21st week of gestation is the period of increase in pyruvate kinase, adenylate kinase and alpha-glucosidase. The rise during the development of several enzymes (e.g., 5'-nucleotidase, alkaline phosphatase, and gamma-glutamyl transpeptidase) and the decline in thymidine kinase and peptidylproline hydroxylase, however, dose not begin until after the 21st week of gestation.  相似文献   

3.
—The effects of hypothyroidism and several degrees of undernutrition on the development of cerebellar weight, DNA, and thymidine kinase activity were studied in young rats ranging in age from 2 to 22 days. Early propylthiouracil treatment caused a delayed cerebellar cell multiplication. The activity of cerebellar thymidine kinase was suppressed at ages 2 and 5 days and was in excess of control values on days 15 and 22, thus resulting in a delay in the developmental spectrum for thymidine kinase, and extending the time span of activity beyond that of controls. Undernutrition led to varying degrees of reduced cell proliferation at experimental ages 5, 12, and 19 days. Cerebella from the most undernourished animals showed significant differences from controls in thymidine kinase activity at ages 5 and 12 days. Comparisons between sub-groups from within the oversized litters at 5 and 12 days suggested that changes in thymidine kinase activity relate to the degree of undernutrition to which the sub-group is subjected and that during development there may be a critical degree of undernutrition at which a particular essential enzyme becomes affected. This study emphasizes the biochemical similarities and differences between neonatal hypothyroidism and undernutrition, while pointing out the difficulties which exist in biochemical separation of components of the two conditions. Further evidence is presented that thymidine kinase is responsive to hormonal stimuli during cerebellar development and may play an important role in the regulation of DNA biosynthesis in brain as well as other organs.  相似文献   

4.
5.
The antioxidant, butylated hydroxytoluene (BHT), causes lung toxicity in mice followed by regenerative repair, and can also modulate the development of carcinogen-induced lung adenomas. We are investigating changes in pulmonary biochemistry following BHT treatment in order to understand the mechanisms of BHT-induced pulmonary regenerative repair. BHT administration lowered cytosolic Ca2+-activated neutral protease (calpain) activity, increased the activity of the endogenous calpain inhibitor, calpastatin, increased the extent of photoincorporation of 8-N3-[32P]cAMP into a Mr 37,000 proteolytic product derived from cAMP-dependent protein kinase regulatory (R) subunits, and increased membrane-associated protease activity. All of these changes were dependent on the BHT dosage; the altered proteolytic activities occurred at a dose lower than that which caused observable lung toxicity as assessed by the lung weight/body weight ratio. Decreased cytosolic calpain activity was detectable within 1 day after BHT administration, was lowest at 4-7 days, and had not returned to control levels by Day 21, a time when normal lung morphology had been regained. The decrease in calpain activity cannot fully be accounted for by increased calpastatin activity; upon separation of these proteins by DEAE chromatography, the amount of calpain activity from BHT-treated mice remained lower than the corresponding peak from control mice. Increased photolabeling of the Mr 37,000 protein began at 1 day and continued to increase up to 4 days after BHT. All of the cytosolic changes preceded the increased particulate proteolytic activity by 1-2 days. R-subunits which have dissociated from their catalytic subunits are more susceptible to degradation by calpain, but BHT treatment did not enhance subunit dissociation as determined by the elution profile of 8-N3-[32P]cAMP-labeled R-subunits following DEAE chromatography. A large percentage of the particulate protease activity was inhibited by calpastatin, leupeptin, and E-64, all of which are known to inhibit calpain activity; this suggested that calpain accounted for most of this activity. Changes in the activities of proteases which catalyze limited proteolysis reactions may play an important role in the repair of acute lung injury.  相似文献   

6.
The validity of using the incorporation of [3H]thymidine into DNA as an indicator of epidermal keratinocyte proliferation in vitro has been investigated. Other parameters of cell proliferation, direct count of cell number and measurement of DNA content, consistently fail to correlate with changes in [3H]thymidine incorporation into DNA in primary and first passage cultures of rabbit and human epidermal keratinocytes. Maximum incorporation of [3H]thymidine precedes the active growth period by three days. Incorporation declines markedly during the proliferative period. Thymidine kinase activity decreases during the proliferative growth phase. Incorporation of another pyrimidine nucleotide precursor, [14C]aspartic acid, suggests that in epidermal keratinocytes in vitro the extent of utilization of the salvage and the de novo pathways may be inversely related. In such cases [3H]thymidine incorporation into TCA precipitable material fails to reflect accurately cell proliferation.  相似文献   

7.
Biphasic effects of 1,25-dihydroxyvitamin D-3 on DNA synthesis were shown in primary cultured (24 h) chick embryo myoblasts exposed to physiological concentrations of the hormone. The sterol stimulated [3H]thymidine incorporation into DNA in proliferating myoblasts, e.g., at early stages of culture prior to cell fusion or in high serum-treated cells. The opposite effects were observed during the subsequent stage of myoblast differentiation in low-serum media. The mitogenic effect of 1,25-dihydroxyvitamin D-3 was correlated with an increase in c-myc mRNA and a decrease in c-fos mRNA levels, whereas its inhibitory action on DNA synthesis was accompanied by increased myofibrillar and microsomal protein synthesis and an elevation of creatine kinase activity, the latter suggesting a stimulation of muscle cell differentiation by the sterol. These data are in agreement with the results of previous morphological studies. Treatment of myoblasts with the calcium ionophore X-537 A or the phorbol ester TPA caused only a transient stimulation of [3H]thymidine incorporation into DNA, which occurred earlier than the response elicited by 1,25-dihydroxyvitamin D-3, suggesting that changes in intracellular Ca2+ and kinase C activity are not major mediators of the hormone effects. A similar temporal profile of changes in calmodulin mRNA levels as that of [3H]thymidine incorporation into DNA was observed after treatment of myoblasts with the sterol, in accordance with the role of calmodulin in the regulation of cell proliferation. 1,25-dihydroxyvitamin D-3 may play a function in embryonic muscle growth and differentiation.  相似文献   

8.
To determine the respective role of thymidine kinase and thymidylate synthase activities in the hyperoxia-induced decrease in DNA synthesis and their relationship with cell replication, we measured these two enzyme activities in primary cultures of porcine aortic endothelial cells under different O2 concentrations for various durations. In confluent cells, exposure to 95% O2 for 5 days reduced thymidine kinase activity to 15% of control values; thymidylate synthase activity was unaffected. In preconfluent cells exposed to 95% O2 for 2 days, similar results were obtained, together with evidence for arrest in cell proliferation. Thymidylate synthase activity could therefore not be related to decreased cell proliferation under hyperoxia. [3H]thymidine incorporation into DNA, thymidine kinase activity, and cell proliferation were all similarly affected under exposure to graded O2 concentration for 2 days. Thymidine kinase appears to be a key enzyme in the modulation of DNA synthesis from thymidine and in its replication in endothelial cells.  相似文献   

9.
Cultured rat cells deficient in endogenous thymidine kinase activity (tk) were stably transformed with a recombination-indicator DNA substrate constructed in vitro by rearrangement of the herpes simplex virus tk gene sequences into a partially redundant permutation of the functional gene. The recombination-indicator DNA did not express tk, but was designed to allow formation of a functional tk gene via homologous recombination. A clonal cell line (519) was isolated that harbored several permuted herpes simplex virus tk genes. 519 cells spontaneously produced progeny that survived in medium containing hypoxanthine, aminopterin, and thymidine. Acquisition of resistance to hypoxanthine, aminopterin, and thymidine was accompanied by the rearrangement of the defective tk gene to functional configuration. The rearrangement apparently occurred by unequal exchange between one permuted tk gene and a replicated copy of itself. Recombination was between 500-base-pair tracts of DNA sequence homology that were separated by 3.4 kilobases. Exchanges occurred spontaneously at a frequency of approximately 5 X 10(-6) events per cell per generation. Recombination also mediated reversion to the tk- phenotype; however, the predominant mechanism by which cells escaped death in the presence of drugs rendered toxic by thymidine kinase was not recombination, but rather inactivation of the intact tk gene.  相似文献   

10.
Inhibition of the proliferation of Daudi cells by exposure to human lymphoblastoid interferons is associated with an early and marked decrease in the incorporation into DNA of exogenous [3H]thymidine when cells are incubated with trace amounts of this precursor. In contrast, incorporation of exogenous deoxyadenosine into DNA is unchanged under the same conditions. Interferon treatment results in a lowering of thymidine kinase activity, an effect which may be largely responsible for the inhibition of incorporation of labelled thymidine into DNA. At higher concentrations of exogenous thymidine, which minimize the contribution of intracellular sources to the dTTP pool, the inhibition of thymidine incorporation is abolished. Under conditions in which exogenous thymidine is rigorously excluded from the medium or, conversely, in which cells are entirely dependent on exogenous thymidine for growth, the magnitude of the inhibition of cell proliferation by interferons is the same as under normal culture conditions. We conclude that, even though cell growth is impaired, the rate of DNA synthesis is not grossly inhibited up to 48 h after commencement of interferon treatment. Furthermore, changes in neither the utilization of exogenous thymidine nor the synthesis of nucleotides de novo are responsible for the effect on cell proliferation.  相似文献   

11.
The food additive butylated hydroxytoluene (BHT) promotes tumorigenesis in mouse lung. Chronic BHT exposure is accompanied by pulmonary inflammation and several studies indicate that elevated levels of reactive oxygen species (ROS) are involved in its promoting activity. The link between BHT and elevated ROS involves formation of quinone methide (QM) metabolites; these electrophiles form adducts with a variety of lung proteins including several enzymes that protect cells from oxidative stress. Studies in vitro demonstrated that QM alkylation of cytoprotective enzymes is accompanied by inactivation, so an objective of the present investigation was to determine if inactivation also occurs in vivo. Two groups of mice were exposed to BHT by intraperitoneal injection, one for 10 days and the other for 24 days, and proteins from lung cytosols were examined for damage. Analysis by Western blotting demonstrated that BHT treatment caused substantial increases in protein carbonylation, nitration and adduction by 4-hydroxynonenal, confirming the occurrence of sustained oxidative and nitrosative stress over the treatment period required for tumor promotion. Effects of BHT on the activities and/or levels of a representative group of antioxidant/protective enzymes in mouse lung also were assessed; NAD(P)H:quinone reductase and glutathione reductase were unaffected, however carbonyl reductase activity decreased 50–60%. Superoxide dismutase and glutathione peroxidase activities increased 2- and 1.5-fold, respectively, and glutamate-cysteine ligase catalytic subunit expression increased 32–39% relative to untreated mice. Glutathione S-transferase (GST) activity decreased 50–60% but concentrations of the predominant isoforms, GSTM1 and P1, were not affected. GSTP1 was substantially more susceptible than M1 to adduction and inhibition by treatment with BHT–QM in vitro, suggesting that lower GST activity in mice after BHT treatment is due to adduction of the P1 isoform. The results of this study provide additional insight into mechanisms of BHT-induced oxidative damage and further support a link between inflammation and tumor promotion in mouse lung.  相似文献   

12.
Mucosal healing requires enterocyte migration (restitution) supplemented by proliferation. Proliferation and migration may be studied independently by thymidine uptake and proliferation-blocked cell migration using human Caco-2 enterocyte monolayers in culture. Since epidermal growth factor (EGF) promotes mucosal healing and the EGF receptor is a tyrosine kinase, we hypothesized that tyrosine kinases might therefore modulate enterocyte migration and proliferation. The tyrosine kinase inhibitors genistein and 2, 5-dihydroxymethylcinnamate, which block kinase ATP-binding and substrate-binding sites, respectively, were studied alone and with EGF. Proliferation was blocked with mitomycin. Although each inhibitor decreased basal and EGF-stimulated monolayer expansion when cell proliferation occurred, neither genistein nor 2, 5-dihydroxymethylcinnamate decreased migration when proliferation was blocked. However, each inhibitor prevented EGF stimulation of proliferation-blocked migration and thymidine uptake. More substantial inhibition of basal proliferation by genistein correlated with increased protein-linked DNA breaks, which may reflect nonspecific inhibition of DNA topoisomerase activity by genistein. The more specific 2,5-dihydroxymeth-ylcinnamate blocked changes in the α2 integrin subunit organization which may modulate EGF-stimulated migration. Antiproliferative effects of tyrosine kinase inhibitors decrease basal monolayer expansion but true basal enterocyte migration appears independent of tyrosine kinase regulation. However, a specific tyrosine kinase-dependent modulation of cell-matrix interaction inhibits EGF-stimulated migration. © 1994 Wiley-Liss, Inc.  相似文献   

13.
Mice were injected i.p. with 250 or 400 mg/kg of butylated hydroxytoluene (BHT). In vivo incorporation of thymidine into pulmonary DNA was measured on days 1-7 after BHT. 2, 3 and 4 days after BHT, DNA synthesis was inhibited by a 24-h exposure to 100% oxygen, whereas on days 5, 6 and 7 after BHT, oxygen failed to depress synthesis. A similar pattern was observed when incorporation of leucine into protein was measured: 2 and 4 days after BHT, oxygen decreased leucine incorporation, but had no effect 6 days after BHT or in animals not pretreated with BHT. It is concluded that the cells proliferating early after BHT, the type II alveolar cells, are more susceptible to the cytotoxic effects of oxygen than are interstitial and capillary endothelial cells.  相似文献   

14.
Vascular remodeling due to excessive proliferation of endothelial and smooth muscle cells is a hallmark feature of pulmonary hypertension. microRNAs (miRNAs) are a class of small, non-coding RNA fragments that have recently been associated with remodeling of pulmonary arteries, in particular by silencing the bone morphogenetic protein receptor type II (BMPR2). Here we identified a novel pathway involving the concerted action of miR-125a, BMPR2 and cyclin-dependent kinase inhibitors (CDKN) that controls a proliferative phenotype of endothelial cells. An in silico approach predicted miR-125a to target BMPR2. Functional inhibition of miR-125a resulted in increased proliferation of these cells, an effect that was found accompanied by upregulation of BMPR2 and reduced expression of the tumor suppressors CDKN1A (p21) and CDKN2A (p16). These data were confirmed in experimental pulmonary hypertension in vivo. Levels of miR-125a were elevated in lung tissue of hypoxic animals that develop pulmonary hypertension. In contrast, circulating levels of miR-125a were found to be lower in mice with pulmonary hypertension as compared to control mice. Similar findings were observed in a small cohort of patients with precapillary pulmonary hypertension. These translational data emphasize the pathogenetic role of miR-125a in pulmonary vascular remodeling.  相似文献   

15.
The role in cell multiplication and maturation of several factors present in the late fetal lung was explored on isolated fetal rat pulmonary fibroblasts and alveolar epithelial type II cells cultivated in serum-free medium. The low degree of reciprocal contamination of each cell population was assessed by immunocytochemistry. Epidermal Growth Factor (EGF) stimulated thymidine incorporation and DNA accumulation in both cell types. In type II cells, it increased labeled-choline incorporation into surfactant phosphatidylcholine (PC), consistently with previous data obtained with lung explant cultures, but not into non-surfactant PC. Insulin-like growth factor (IGF)-I slightly stimulated DNA accumulation in fibroblasts although it did not significantly stimulate thymidine incorporation, contrary to IGF-II which presented a dose-dependent stimulating activity of thymidine incorporation. Neither IGF-I nor IGF-II stimulated type II cell growth. IGFs thus appear to primarily control the growth of lung mesenchyme. In type II cells, they stimulated the most non-surfactant PC biosynthesis. Gastrin releasing peptide (GRP) which was recently reported to promote fetal lung growth in vivo and to stimulate surfactant biosynthesis in lung organ culture revealed as a growth factor for type II cells only, at concentrations below 10 −9 M. At concentration 10 −8 M, although it did not affect DNA synthesis, GRP tended to increase surfactant and non-surfactant-PC biosynthesis. Retinoic acid inhibited thymidine incorporation into type II cells on a dose-dependent manner but nevertheless enhanced surfactant-PC biosynthesis to a similar extent as EGF. It is suggested that retinoic acid may represent a differentiation or maturation factor for the alveolar epithelium.  相似文献   

16.
The role in cell multiplication and maturation of several factors present in the late fetal lung was explored on isolated fetal rat pulmonary fibroblasts and alveolar epithelial type II cells cultivated in serum-free medium. The low degree of reciprocal contamination of each cell population was assessed by immunocytochemistry. Epidermal Growth Factor (EGF) stimulated thymidine incorporation and DNA accumulation in both cell types. In type II cells, it increased labeled-choline incorporation into surfactant phosphatidylcholine (PC), consistently with previous data obtained with lung explant cultures, but not into non-surfactant PC. Insulin-like growth factor (IGF)-I slightly stimulated DNA accumulation in fibroblasts although it did not significantly stimulate thymidine incorporation, contrary to IGF-II which presented a dose-dependent stimulating activity of thymidine incorporation. Neither IGF-I nor IGF-II stimulated type II cell growth. IGFs thus appear to primarily control the growth of lung mesenchyme. In type II cells, they stimulated the most non-surfactant PC biosynthesis. Gastrin releasing peptide (GRP) which was recently reported to promote fetal lung growth in vivo and to stimulate surfactant biosynthesis in lung organ culture revealed as a growth factor for type II cells only, at concentrations below 10(-9) M. At concentration 10(-8) M, although it did not affect DNA synthesis, GRP tended to increase surfactant and non-surfactant-PC biosynthesis. Retinoic acid inhibited thymidine incorporation into type II cells on a dose-dependent manner but nevertheless enhanced surfactant-PC biosynthesis to a similar extent as EGF. It is suggested that retinoic acid may represent a differentiation or maturation factor for the alveolar epithelium.  相似文献   

17.
18.
A single dose of erythropoietin stimulates DNA synthesis in the spleen of the polycythemic mouse with the maximum effect occurring 48 h after the hormone is administered. The increase in DNA synthesis is accompanied by morphologic evidence of increased erythropoiesis and by increases in the activities per cell of both thymidine kinase and cytoplasmic high molecular weight DNA polymerase-alpha. The activity of low molecular weight DNA polymerase-beta does not change significantly. Spleen cells from mice which had received either erythropoietin or saline 48 h previously were separated into 7 density classes on discontinuous bovine serum albumin gradients. Following the administration of erythropoietin, thymidine incorporation and thymidine kinase activity showed the greatest relative increases per nucleated cell in layers 3, 4 and 5 of the gradient. DNA polymerase-alpha showed the greatest increase in cells of the denser layers 5, 6 and 7. Each layer contained normoblasts and lymphocytes. The less well differentiated erythroid elements constituted a larger proportion of cells in layers of lower density. Increases in the rates of thymidine incorporation were better correlated with increases in thymidine kinase activity than with increases in DNA polymerase activities. Measurement of iron incorporation into heme confirm the morphological impression that the cell type responsible for increased thymidine incorporation and increased DNA polymerase-alpha activity is the young normblast.  相似文献   

19.
The validity of using the incorporation of [3H]thymidine into DNA as an indicator of epidermal keratinocyte proliferation in vitro has been investigated. Other parameters of cell proliferation, direct count of cell number and measurement of DNA content, consistently fail to correlate with changes in [3H]thymidine incorporation into DNA in primary and first passage cultures of rabbit and human epidermal keratinocytes. Maximum incorporation of [3H]thymidine precedes the active growth period by three days. Incorporation declines markedly during the proliferative period. Thymidine kinase activity decreases during the proliferative growth phase. Incorporation of another pyrimidine nucleotide precursor, [14C]aspartic acid, suggests that in epidermal keratinocytes in vitro the extent of utilization of the salvage and the de novo pathways may be inversely related. In such cases [3H]thymidine incorporation into TCA precipitable material fails to reflect accurately cell proliferation.  相似文献   

20.
The effects of hydroxyurea have been investigated on three events of the cell cycle, S-phase, mitosis, and the cyclic synthesis of thymidine kinase, in the synchronous plasmodium of the myxomycete Physarum. DNA synthesis was slowed down with limited action on other macromolecular syntheses and any increase of thymidine kinase that had already been triggered was indistinguishable from that of the control. When DNA synthesis was inhibited, the onset of the following cyclic increase of thymidine kinase synthesis occurred at the same time as in the control, but mitosis was delayed in a very early prophase stage. The arrest of thymidine kinase synthesis occurred after completion of the delayed mitosis. All these effects were suppressed when the action of hydroxyurea was prevented by the addition, to the medium, of the four deoxyribonucleosides. These observations show that (1). The blockage of S-phase does not prevent the nuclei from entering a very early prophase stage but does prevent them from proceeding through metaphase. (2) The transient blockage of DNA synthesis does not perturb the normal timing of the triggering of thymidine kinase synthesis. (3) The signal which triggers the arrest of thymidine kinase synthesis is postmitotic but does not require extensive DNA synthesis. The effect of hydroxyurea is not limited to an inhibition of S-phase. The blockage of DNA replication also led to the dissociation of the normal coordination between two other events of the cell cycle, mitosis and thymidine kinase synthesis. This observation could have strong implications in cell synchronization with chemical agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号