首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stereochemistry of the hydrogen transfer to NAD catalyzed by ribitol dehydrogenase (ribitol:NAD 2-oxidoreductase, EC 1.1.1.56) from Klebsiella pneumoniae and D-mannitol-1-phosphate dehydrogenase (D-mannitol-1-phosphate:NAD 2-oxidoreductase, EC 1.1.1.17) from Escherichia coli was investigated. [4-3H]NAD was enzymatically reduced with nonlabelled ribitol in the presence of ribitol dehydrogenase and with nonlabelled D-mannitol 1-phosphate and D-mannitol 1-phosphate dehydrogenase, respectively. In both cases the [4-3H]-NADH produced was isolated and the chirality at the C-4 position determined. It was found that after the transfer of hydride, the label was in both reactions exclusively confined to the (4R) position of the newly formed [4-3H]NADH. In order to explain these results, the hydrogen transferred from the nonlabelled substrates to [4-3H]NAD must have entered the (4S) position of the nicotinamide ring. These data indicate for both investigated inducible dehydrogenases a classification as B or (S) type enzymes. Ribitol also can be dehydrogenated by the constitutive A-type L-iditol dehydrogenase (L-iditol:NAD 5-oxidoreductase, EC 1.1.1.14) from sheep liver. When L-iditol dehydrogenase utilizes ribitol as hydrogen donor, the same A-type classification for this oxidoreductase, as expected, holds true. For the first time, opposite chirality of hydrogen transfer to NAD in one organic reaction--ribitol + NAD = D-ribu + NADH + H--is observed when two different dehydrogenases, the inducible ribitol dehydrogenase from K. pneumoniae and the constitutive L-iditol dehydrogenase from sheep liver, are used as enzymes. This result contradicts the previous generalization that the chirality of hydrogen transfer to the coenzyme for the same reaction is independent of the source of the catalyzing enzyme.  相似文献   

2.
Different enantiomeric isomers, sn-glycerol-1-phosphate and sn-glycerol-3-phosphate, are used as the glycerophosphate backbones of phospholipids in the cellular membranes of Archaea and the remaining two kingdoms, respectively. In Archaea, sn-glycerol-1-phosphate dehydrogenase is involved in the generation of sn-glycerol-1-phosphate, while sn-glycerol-3-phosphate dehydrogenase synthesizes the enantiomer in Eukarya and Bacteria. The coordinates of sn-glycerol-3-phosphate dehydrogenase are available, although neither the tertiary structure nor the reaction mechanism of sn-glycerol-1-phosphate dehydrogenase is known. Database searching revealed that the archaeal enzyme shows sequence similarity to glycerol dehydrogenase, dehydroquinate synthase and alcohol dehydrogenase IV. The glycerol dehydrogenase, with coordinates that are available today, is closely related to the archaeal enzyme. Using the structure of glycerol dehydrogenase as the template, we built a model structure of the Methanothermobacter thermautotrophicus sn-glycerol-1-phosphate dehydrogenase, which could explain the chirality of the product. Based on the model structure, we determined the following: (1) the enzyme requires a Zn(2+) ion for its activity; (2) the enzyme selectively uses the pro-R hydrogen of the NAD(P)H; (3) the putative active site and the reaction mechanism were predicted; and (4) the archaeal enzyme does not share its evolutionary origin with sn-glycerol-3-phosphate dehydrogenase.  相似文献   

3.
After removal of tightly bound NAD(+) by using charcoal, a preparation of d-glucose 6-phosphate-1 l-myoinositol 1-phosphate cyclase catalysed the reduction of 5-keto-d-glucitol 6-phosphate and 5-keto-d-glucose 6-phosphate by [4-(3)H]NADH to give [5-(3)H]-glucitol 6-phosphate and [5-(3)H]glucose 6-phosphate respectively. The position of the tritium atom in the latter was shown by degradation. Both enzyme-catalysed reductions were strongly inhibited by 2-deoxy-d-glucose 6-phosphate, a powerful competitive inhibitor of inositol cyclase. The charcoal-treated enzyme preparation also converted 5-keto-d-glucose 6-phosphate into [(3)H]myoinositol 1-phosphate in the presence of [4-(3)H]NADH, but less effectively. These partial reactions of inositol cyclase are interpreted as providing strong evidence for the formation of 5-keto-d-glucose 6-phosphate as an enzyme-bound intermediate in the conversion of d-glucose 6-phosphate into 1 l-myoinositol 1-phosphate. The enzyme was partially inactivated by NaBH(4) in the presence of NAD(+). Glucose 6-phosphate did not increase the inactivation, and there was no inactivation in the absence of NAD(+). There was no evidence for Schiff base formation during the cyclization. d-Glucitol 6-phosphate (l-sorbitol 1-phosphate) was a good inhibitor of the overall reaction. It did not inactivate the enzyme. The apparent molecular weight of inositol cyclase as determined by Sephadex chromatography was 2.15x10(5).  相似文献   

4.
Hepatocytes were isolated from female rats and incubated with [1,1,3,3-2H4]glycerol or [2-2H]glycerol. The deuterium excess in phosphatidylcholines, sn-glycerol 3-phosphate and other organic acids was determined by g.l.c./mass spectrometry. The unlabelled fraction of the major phosphatidylcholines decreased exponentially, and the turnover was not changed by the presence of ethanol. The relative contribution of the two deuterated glycerols was about the same in the major phosphatidylcholine as in sn-glycerol 3-phosphate, indicating that formation by acylation of dihydroxyacetone phosphate is insignificant. [1,1,3,3-2H4]Glycerol had lost deuterium to a larger extent when it was incorporated in the phosphatidylcholine than when it was incorporated in sn-glycerol-3-phosphate, indicating that the phosphatidylcholines are formed from a separate pool of sn-glycerol 3-phosphate. Deuterium at C-2 was transferred between sn-glycerol 3-phosphate molecules to about 25%. Ethanol decreased the extent of deuterium transfer, the extent of glycerol uptake and the loss of deuterium at C-1 and C-3 in sn-glycerol 3-phosphate. The results indicate that the oxidation to dihydroxyacetone phosphate was inhibited by the NADH formed during ethanol oxidation. [2-2H]Glycerol also labelled an alcohol dehydrogenase substrate, malate and lactate, indicating oxidation of sn-glycerol 3-phosphate in the cytosol. The two acids appeared to be formed in reductions with different pools of NADH.  相似文献   

5.
A sn-glycerol-3-phosphate dehydrogenase (sn-glycerol-3-phosphate:NAD+ 2-oxidoreductase, EC 1.1.1.8) has been purified from the unicellular green alga Chlamydomonas reinhardtii 3400-fold to a specific activity of 34 mumol/mg protein per min by a simple procedure involving two chromatographic steps on affinity dyes. The pH optimum for reduction of dihydroxyacetone phosphate was 6.8 and for glycerol 3-phosphate oxidation it was 9.5. In the direction of dihydroxyacetone phosphate reduction, the enzyme showed Michaelis-Menten kinetics. The enzyme reacted specifically with NADH and dihydroxyacetone phosphate as substrates with affinity constants of 16 and 12 microM, respectively. Product inhibition as well as competitive inhibition pattern indicated a random-bi-bi reaction mechanism for sn-glycerol-3-phosphate dehydrogenase from C. reinhardtii. The effective control of dihydroxyacetone reduction catalysed via this enzyme by ATP, Pi and NAD gave evidence for a physiological role of the enzyme in plastidic glycolysis.  相似文献   

6.
C T Grubmeyer  K W Chu  S Insinga 《Biochemistry》1987,26(12):3369-3373
Salmonella typhimurium histidinol dehydrogenase produces histidine from the amino alcohol histidinol by two sequential NAD-linked oxidations which form and oxidize a stable enzyme-bound histidinaldehyde intermediate. The enzyme was found to catalyze the exchange of 3H between histidinol and [4(R)-3H]NADH and between NAD and [4(S)-3H]NADH. The latter reaction proceeded at rates greater than kcat for the net reaction and was about 3-fold faster than the former. Histidine did not support an NAD/NADH exchange, demonstrating kinetic irreversibility in the second half-reaction. Specific activity measurements on [3H]histidinol produced during the histidinol/NADH exchange reaction showed that only a single hydrogen was exchanged between the two reactants, demonstrating that under the conditions employed this exchange reaction arises only from the reversal of the alcohol dehydrogenase step and not the aldehyde dehydrogenase reaction. The kinetics of the NAD/NADH exchange reaction demonstrated a hyperbolic dependence on the concentration of NAD and NADH when the two were present in a 1:2 molar ratio. The histidinol/NADH exchange showed severe inhibition by high NAD and NADH under the same conditions, indicating that histidinol cannot dissociate directly from the ternary enzyme-NAD-histidinol complex; in other words, the binding of substrate is ordered with histidinol leading. Binding studies indicated that [3H]histidinol bound to 1.7 sites on the dimeric enzyme (0.85 site/monomer) with a KD of 10 microM. No binding of [3H]NAD or [3H]NADH was detected. The nucleotides could, however, displace histidinol dehydrogenase from Cibacron Blue-agarose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Placental aldose reductase (EC 1.1.1.21) was incubated with glucose in the presence of [4A-2H] NADPH prepared in the oxidation of [2-2H] isocitrate by isocitrate dehydrogenase (EC 1.1.1.42) or [4B-2H] NADPH prepared in the oxidation of [1-2H] glucose-6-phosphate dehydrogenase (EC 1.1.1.49). The sorbitol formed from [4A-2H] NADPH contained deuterium and from [4B-2H] NADPH it did not. Therefore, aldose reductase in an A-type enzyme.  相似文献   

8.
The purified mitochondrial NADH dehydrogenase enzyme has been shown to catalyze a rapid [4B-3H] NADH-H2O exchange reaction. When the enzyme is subjected to a single freeze-thaw cycle there is a complete loss of NADH dehydrogenation without a measurable decrease in the [4B-3H] NADH-H2O exchange. Complete loss of the [4B-3H] NADH-H2O exchange follows brief exposure to ultraviolet photoirradiation. The differential sensitivity of the water exchange reaction and the dehydrogenase activity suggests a direct involvement of the enzymes flavin cofactor in the catalysis of the [4B-3H] NADH-H2O exchange. Arylazido-beta-alanyl NAD+ (A3'-0-[3-[N-4-azido-2-nitrophenyl)amino] propionyl]NAD+) is shown to be a potent photodependent inhibitor of the [4B-3H] NADH-H2O exchange activity following photoirradiation with visible light. This is consistent with the observed photodependent inhibition of the dehydrogenase activity by this photoprobe (Chen, S. and Guillory, R.J. (1981) J. Biol. Chem. 256, 8318-8323).  相似文献   

9.
The isotopic discrimination, diastereotopic specificity and intramolecular hydrogen transfer characterizing the reaction catalyzed by phosphomannoisomerase are examined. During the monodirectional conversion of D-[2-3H]mannose 6-phosphate to D-fructose 6-phosphate and D-fructose 1,6-bisphosphate, the reaction velocity is one order of magnitude lower than with D-[U-14C]mannose 6-phosphate and little tritium (less than 6%) is transferred intramolecularly. Inorganic phosphate decreases the reaction velocity but favours the intramolecular transfer of tritium. Likewise, when D-[1-3H]fructose 6-phosphate prepared from D-[1-3H]glucose is exposed solely to phosphomannoisomerase, the generation of tritiated metabolites is virtually restricted to 3H2O and occurs at a much lower rate than the production of D-[U-14C]mannose 6-phosphate from D-[U-14C]fructose 6-phosphate. However, no 3H2O is formed when D-[1-3H]fructose 6-phosphate generated from D-[2-3H]glucose is exposed to phosphomannoisomerase, indicating that the diastereotopic specificity of the latter enzyme represents a mirror image of that of phosphoglucoisomerase. Advantage is taken of such a contrasting enzymic behaviour to assess the back-and-forth flow through the reaction catalyzed by phosphomannoisomerase in intact cells exposed to D-[1-3H]glucose, D-[5-3H]glucose or D-[6-3H]glucose. Relative to the rate of glycolysis, this back-and-forth flow amounted to approx. 4% in human erythrocytes and rat parotid cells, 9% in tumoral cells of the RINm5F line and 47% in rat pancreatic islets.  相似文献   

10.
The metabolism of [2-3H]lactate was studied in isolated hepatocytes from fed and starved rats metabolizing ethanol and lactate in the absence and presence of fructose. The yields of 3H in ethanol, water, glucose and glycerol were determined. The rate of ethanol oxidation (3 mumol/min per g wet wt.) was the same for fed and starved rats with and without fructose. From the detritiation of labelled lactate and the labelling pattern of ethanol and glucose, we calculated the rate of reoxidation of NADH catalysed by lactate dehydrogenase, alcohol dehydrogenase and triosephosphate dehydrogenase. The calculated flux of reducing equivalents from NADH to pyruvate was of the same order of magnitude as previously found with [3H]ethanol or [3H]xylitol as the labelled substrate [Vind & Grunnet (1982) Biochim. Biophys. Acta 720, 295-302]. The results suggest that the cytoplasm can be regarded as a single compartment with respect to NAD(H). The rate of reduction of acetaldehyde and pyruvate was correlated with the concentration of these metabolites and NADH, and was highest in fed rats and during fructose metabolism. The rate of reoxidation of NADH catalysed by lactate dehydrogenase was only a few per cent of the maximal activity of the enzymes, but the rate of reoxidation of NADH catalysed by alcohol dehydrogenase was equal to or higher than the maximal activity as measured in vitro, suggesting that the dissociation of enzyme-bound NAD+ as well as NADH may be rate-limiting steps in the alcohol dehydrogenase reaction.  相似文献   

11.
A radiometric method has been devised for the determination of small quantities of NADH formed in preceding dehydrogenase reactions. In a coupled enzymatic reaction, phosphoglycerate kinase (PGK) catalyzes the transfer of [32P]orthophosphate from [gamma-32P]ATP to 3-phosphoglycerate; the intermediate, 1,3-[1-32P]diphosphoglycerate, is dephosphorylated by glyceraldehyde-3-phosphate dehydrogenase (GAP-DH). [32P]Orthophosphate is released proportionally to NADH and can be measured after adsorption of [gamma-32P]ATP to activated charcoal. With this method, 0.2 pmol of NADH are detectable in the presence of a 10(4)-fold excess of NAD over NADH.  相似文献   

12.
alpha-L-Glycerolphosphate dehydrogenase (sn-glycerol-3-phosphate:NAD+ 2-oxidoreductase, EC 1.1.1.8) from Saccharomyces carlsbergensis was purified 400-fold. The enzyme preparation is free of interfering activities, such as glyceraldehyde phosphate dehydrogenase, alcohol dehydrogenase, triose phosphate isomerase and glycerolphosphatase. At pH 7.0 it is specific for NADH (Km = 0.027 mM with 0.8 mM dihydroxyacetone phosphate) and dihydroxyacetone phosphate (Km = 0.2 mM with 0.2 mM NADH). Between pH 5.0 and 6.0 the enzyme functions with NADPH, but only at 7% of the rate with NADH. Various anions (I- greater than SO42- greater than Br- greater than Cl-) act as inhibitors competing with the substrate dihydroxyacetone phosphate. Inorganic phosphate (Ki = 0.1 mM), pyrophosphate and arsenate are strong inhibitors. The nucleotides ATP and ADP are also inhibitory, but their action seems to be of the same type as the general anion competition (Ki = 0.73 mM for ATP). The results are consistent with the notion that the enzyme may regulate the redox potential of the NAD+/NADH couple during fermentation.  相似文献   

13.
The enzyme sn-glycerol-1-phosphate dehydrogenase (Gro1PDH, EC 1.1.1.261) is key to the formation of the enantiomeric configuration of the glycerophosphate backbone (sn-glycerol-1-phosphate) of archaeal ether lipids. This enzyme catalyzes the reversible conversion between dihydroxyacetone phosphate and glycerol-1-phosphate. To date, no information about the active site and catalytic mechanism of this enzyme has been reported. Using the sequence and structural information for glycerol dehydrogenase, we constructed six mutants (D144N, D144A, D191N, H271A, H287A and D191N/H271A) of Gro1PDH from Aeropyrum pernix K1 and examined their characteristics to clarify the active site of this enzyme. The enzyme was found to be a zinc-dependent metalloenzyme, containing one zinc ion for every monomer protein that was essential for activity. Site-directed mutagenesis of D144 increased the activity of the enzyme. Mutants D144N and D144A exhibited low affinity for the substrates and higher activity than the wild type, but their affinity for the zinc ion was the same as that of the wild type. Mutants D191N, H271A and H287A had a low affinity for the zinc ion and a low activity compared with the wild type. The double mutation, D191N/H271A, had no enzyme activity and bound no zinc. From these results, it was clarified that residues D191, H271 and H287 participate in the catalytic activity of the enzyme by binding the zinc ion, and that D144 has an effect on substrate binding. The structure of the active site of Gro1PDH from A. pernix K1 seems to be similar to that of glycerol dehydrogenase, despite the differences in substrate specificity and biological role.  相似文献   

14.
Comparison of the initial (3)H/(14)C ratios in specifically labelled d-glucose 6-phosphates with the final ratios in myo-inositol produced by glucose 6-phosphate-d-myo-inositol 1-phosphate cyclase from rat testis showed that, during the conversion, the hydrogen atoms at C-1 and C-3 were fully retained, one hydrogen atom was lost from C-6, and that at C-5 was apparently retained to the extent of 80-90%. The loss of (3)H could not be stimulated by addition of unlabelled NADH, and when unlabelled substrate was used (3)H from [(3)H]NADH and [(3)H]water was not incorporated. Treatment of the enzyme with charcoal abolished the activity, and this was restored to 25-50% of the original activity by NAD(+). The charcoal-treated enzyme again apparently gave 85% retention of hydrogen with [5-(3)H]glucose 6-phosphate as substrate in the presence of NAD(+) alone, but the retention was decreased to 65% with excess of NADH. The results are interpreted as indicating that the cyclization proceeds by an aldol condensation in which C-5 is oxidized by NAD(+) in a tightly-bound ternary complex, and that the apparent loss of (3)H when untreated enzyme is used is due to an isotope effect. It is suggested that after treatment with charcoal some exchange of NADH with an external pool may take place.  相似文献   

15.
Glucose-6-phosphate dehydrogenase [D-glucose-6-phosphate: NADP oxidoreductase, EC. 1. 1. 1. 49] obtained from spores of Bacillus subtilis PCI 219 strain was partially purified by filtration on Sephadex G-200, ammonium sulfate fractionation and chromatography on DEAE-Sephadex A-25 (about 54-fold). The optimum pH for stability of this enzyme was about 6.3 and the optimum pH for the reaction about 8.3. The apparent Km values of the enzyme were 5.7 X 10(-4) M for glucose-6-phosphate and 2.4 X 10(-4) M for nicotinamide adenine dinucleotide phosphate (NADP). The isoelectric point was about pH 3.9. The enzyme activity was unaffected by the addition of Mg++ or Ca++. The inactive glucose-6-phosphate dehydrogenase obtained from the spores heated at 85 C for 30 min was not reactivated by the addition of ethylenediaminetetraacetic acid, dipicolinic acid or some salts unlike inactive glucose dehydrogenase.  相似文献   

16.
(21R)-[21-3H]cortisol and (21S)-[21-3H]cortisol were synthesized by reduction of 21-dehydrocortisol by NADH in the presence of 21-hydroxysteroid dehydrogenase. The stereochemistry at carbon 21 was established after cleaving the side chain and oxidizing the resulting two epimers of tritiated glycolate with glycolate oxidase of known (2-pro-S) stereospecificity. From the distribution of radioactivity in the water and glyoxylate produced in this reaction, it was concluded that the reaction of 21-dehydrocortisol with (4S)-[4-3H]NADH catalyzed by 21-hydroxysteroid dehydrogenase results in a transfer of tritium from the 4S position of the nucleotide to form (21S)-[21-3H]cortisol, and that (21R)-[21-3H]cortisol resulted from the enzyme-catalyzed reduction of 21-dehydro[21-3H]cortisol with NADH. Nuclear magnetic resonance studies on both epimers at position 21 of [21-2H]cortisol and of [21-2H]cortisone prepared enzymically identify the transferring 21-pro-S hydrogen as the relatively downfield of the two 21-hydrogen atoms.  相似文献   

17.
Spinach-leaf ribulose-5-phosphate kinase catalyzes the reaction of (Rp)-[beta, gamma-18O, gamma-18O]adenosine 5'-(3-thiotriphosphate) with ribulose 5-phosphate to form ribulose 1-[18O]phosphorothioate 5-phosphate. This product is incubated with CO2, Mg2+, and ribulose-bisphosphate carboxylase to form the [18O]phosphorothioate of D-glycerate. Reduction of this material using phosphoglycerate kinase/ATP, glyceraldehyde-3-phosphate dehydrogenase/NADH, triose-phosphate isomerase, and glycerol-phosphate dehydrogenase/NADH produces glycerol 3-[18O]phosphorothioate, which is subjected to ring closure using diethylphosphorochloridate. This in-line reaction produces a diastereoisomeric mixture of glycerol 2,3-cyclic phosphorothioates. 31P NMR spectroscopy was used to analyze the 18O content of the products. The anti-diastereoisomer, which is the major isomer formed and corresponds to the downfield 31P NMR signal (Pliura, D.H., Schomburg, D., Richard, J.P., Frey, P.A., and Knowles, J.R. (1980) Biochemistry 19, 325-329), retains the 18O label. This observation indicates that the ribulose-5-phosphate kinase reaction proceeds with inversion of configuration at phosphorus. The reaction is, therefore, unlikely to involve the participation of a covalent phosphoryl-enzyme intermediate.  相似文献   

18.
The stereochemistry of the hydrogen transfer to NAD catalyzed by D-galactose dehydrogenase (E.C. 1.1.1.48) from P. fluorescens was investigated. The label at C-1 of D-[1--3H] galactose was enzymatically transferred to NAD and the resulting [4--3H]NADH was isolated and its stereochemistry at C-4 investigated. It was found that the label was exclusively located at the 4(S) position in NADH which calls for classification as a B-enzyme. This result was confirmed by an alternate approach in which [4--3H]NAD was reduced by D-galactose as catalyzed by D-galactose dehydrogenase. The sterochemistry at C-4 of the nicotinamide ring would then have to opposite to that in the first experiment. As expected, the label was now exclusively located in the 4(R) position, again confirming the B-calssification of the enzyme.  相似文献   

19.
Staphylococcus aureus has membrane-associated sn-glycerol-3-phosphate dehydrogenase activity that is strongly activated by detergents. The enzyme can be measured spectrophotometrically in intact cells in assay systems containing lauryldimethylamine oxide (Ammonyx LO). The dehydrogenase activity was located exclusively in the membrane fraction of cells grown with glycerol under aerobic conditions or under anaerobic conditions with the addition of nitrate; there was no evidence of multiple forms. Development of sn-glycerol-3-phosphate dehydrogenase activity was studied with suspensions of cells grown previously under semianaerobic conditions with glucose and nitrate. The wild-type strain rapidly formed the enzyme when incubated with glycerol under aerobic conditions or under semianaerobic conditions in the presence of nitrate. Under similar conditions, suspensions of hem mutant H-14 required the addition of hemin. Induction of the enzyme was strongly repressed by glucose with both organisms. A procedure was established to obtain cells of mutant H-14 with sn-glycerol-3-phosphate dehydrogenase and nitrate reductase activities, but which could not link the systems unless supplemented with hemin. The coupled activity could also be reconstructed in vitro by the addition of hemin to the depleted membranes.  相似文献   

20.
Aldolase and triose phosphate isomerase both display strict specificity towards the enantiomers of [1-3H]glycerone 3-phosphate. The enantiomer generated from D-[1-3H]glyceraldehyde 3-phosphate produces 3HOH in the aldolase reaction, whilst the other enantiomer generated from D-[3-3H]fructose 1,6-bisphosphate is solely detritiated in the reaction catalyzed by triose phosphate isomerase. Advantage was taken of such a specificity to assess, in human erythrocytes exposed to either D-[3-3H]glucose or D-[3,4-3H]glucose, the extent of D-glyceraldehyde 3-phosphate sequential conversion to glycerone 3-phosphate and D-fructose 1,6-bisphosphate, relative to net glycolytic flux. At 37 degrees C and in the presence of 5.6 mM D-glucose, only 55% of the metabolites of D-[4-3H]glucose underwent detritiation in the reactions catalyzed by triose phosphate isomerase and aldolase. Such a percentage was further decreased at low temperature (8 degrees C) or lower concentrations of D-glucose (0.2 and 1.0 mM). However, when the erythrocytes were exposed to menadione, the increase in 3HOH production from either D-[3-3H]glucose or D-[3,4-3H]glucose indicated that the majority of the 3H atoms initially located on the C4 of D-glucose were recovered as 3HOH upon circulation through the pentose phosphate pathway. These findings suggest that, under physiological conditions, a large fraction of D-glyceraldehyde 3-phosphate generated from exogenous D-glucose may undergo enzyme-to-enzyme channelling in the glycolytic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号