首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Clomazone reduced the chlorophyll and carotenoid contents of spinach (Spinacia oleracea L.), barley (Hordeum vulgare L.), velvetleaf (Abutilon theophrasti Medik.), and soybean (Glycine max L. Merr.) seedlings. The order of species sensitivity was velvetleaf > spinach > barley > soybean. Clomazone (100 micromolar) did not affect the in vitro activities of spinach isopentenyl pyrophosphate isomerase or prenyl transferase. Clomazone also did not affect the synthesis of isopentenyl pyrophosphate from mevalonic acid. Thus, clomazone had no direct in vitro effect on the synthesis of geranylgeranyl pyrophosphate from mevalonic acid. Greening seedlings of both soybean and velvetleaf metabolized clomazone. No qualitative differences in the metabolites were detected between soybean and velvetleaf. Thus, differential metabolism of clomazone to a toxic chemical that inhibits terpenoid synthesis is unlikely. Clomazone has either a mode of action not yet identified or a metabolite that is selective in that it is much more active in sensitive than tolerant species.  相似文献   

4.
5.
The subcellular distribution of polyisoprenyl pyrophosphate phosphatase activity has been examined in rat brain by assaying the release of 32Pi from [beta-32P]dolichyl pyrophosphate (Dol-P-P) as described previously (Scher,M.G. and Waechter, C.J. (1984) J. Biol. Chem., 259, 14580-14585). The highest specific activities of Dol-P-P phosphatase in rat brain were found in the Golgi-enriched light microsomal, synaptic plasma membrane and heavy microsomal fractions. A comparative analysis of the distribution of galactosyltransferase and dolichol kinase reveals that Dol-P-P phosphatase activity co-fractionates with galactosyltransferase activity, and that the high level found in the Golgi-enriched fraction is not due to cross-contamination with heavy microsomes. When beta-labelled C95 Dol-P-P and the C95 allylic polyisoprenyl pyrophosphate (Poly-P-P) were compared as substrates for the Golgi-enriched light microsomal and heavy microsomal fractions, similar Km values were calculated for the two pyrophosphorylated substrates for each membrane fraction. Based on these kinetic analyses, the enzyme(s) catalysing this reaction do not distinguish between substrates containing saturated or allylic alpha-isoprene units. When Dol-P-P phosphatase activity was assessed in submicrosomal fractions obtained from rat liver by two separate procedures, the highest specific activity was also detected in the Golgi-enriched fraction. While the specific activities for Dol-P-P phosphatase and sialyltransferase were in the relative order of Golgi greater than smooth endoplasmic reticulum (ER) greater than rough ER, the relative order of dolichol kinase was rough ER greater than smooth ER greater than Golgi.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
The inhibition of partially purified phytoene synthetase activity from Capsicum annuum chromoplasts was investigated using aminophenethyl pyrophosphate and azidophenethyl pyrophosphate. These compounds were effective inhibitors of phytoene synthesis and kinetic analysis showed that they were competitive with respect to the substrate isopentenyl pyrophosphate. These data were strengthened by the ability of azidophenethyl pyrophosphate to photoinactivate irreversibly the activity of the enzyme complex. These results suggest that the primary targets of these analogs are at the level of isopentenyl pyrophosphate isomerase and geranylgeranyl pyrophosphate synthetase.  相似文献   

8.
9.
P1-Dolichyl P2-ALPHA-D-mannopyranosyl pyrophosphate (9) has been chemically synthesized by a method developed for the corresponding citronellyl derivative, which also contains a saturated alpha isoprene residue. In each case, the P1-polyisoprenyl P2-diphenyl pyrophosphate was treated with 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl phosphate to give a fully acetylated pyrophosphate diester, which was purified chromatographically and subsequently deacetylated. The citronellyl and dolichyl pyrophosphate diesters were compared with the previously synthesized citronellyl and dolichyl alpha-D-mannopyranosyl phosphate, respectively, by chromatography and by hydrolysis experiments. Good separations of the monophosphate from the corresponding pyrophosphate were achieved by silica gel tlc in a variety of solvent systems. Brief dilute acid hydrolysis of both the mono- and pyrophosphate diesters gave D-mannose and no alpha-D-mannosyl phosphate, the other products being polyprenyl phosphate and pyrophosphate, respectively. When the polyprenyl alpha-D-mannopyranosyl mono- and pyrophosphate diesters were treated with hot dilute alkali, the major products were polyprenyl phosphate and substances arising from the breakdown of D-mannose, indicating that the alpha-D-mannosyl phosphate bond was the most labile linkage in both compounds. However, the formation of a small proportion of free dolichol indicated that alpha-D-mannosyl phosphate was also formed to a minor extent. The interpretation of the results of the alkaline hydrolysis was complicated by the instability of D-mannose under basic conditions, it being almost completely degraded by even a brief treatment.  相似文献   

10.
Feedback inhibition of hepatic DNA synthesis   总被引:1,自引:0,他引:1  
alpha-Hexachlorocyclohexane (alpha-HCH) and some other xenobiotic inducers were used to elicit adaptive increases in mono-oxygenase activity, size and DNA content of rat liver. After elimination of the inducers, organ size and mono-oxygenase activity returned to normal whereas the DNA content of the liver remained increased. Upon renewed treatment with an inducer the adaptive responses uncoupled. While mono-oxygenase induction and liver enlargement did occur, DNA replication was largely suppressed. These findings show that in the hyperplastic state the liver is resistant to stimulation of DNA synthesis by the inducers. It is concluded that the DNA content of the liver (or the number of liver cells) is controlled by a feedback system which monitors an excess of DNA (cells) and suppresses cell replication if the content of DNA exceeds the normal level. Organ mass has little, if any, effect on the operation of this feedback system.  相似文献   

11.
1. Mevalonate pyrophosphate decarboxylase of rat liver is inhibited by various phenyl and phenolic acids. 2. Some of the phenyl and phenolic acids also inhibited mevalonate phosphate kinase. 3. Compounds with the phenyl-vinyl structure were more effective. 4. Kinetic studies showed that some of the phenolic acids compete with the substrates, mevalonate 5-phosphate and mevalonate 5-pyrophosphate, whereas others inhibit umcompetitively. 5. Dihydroxyphenyl and trihydroxyphenyl compounds and p-chlorophenoxyisobutyrate, a hypocholesterolaemic drug, had no effect on these enzymes. 6. Of the three mevalonate-metabolizing enzymes, mevalonate pyrophosphate decarboxylase has the lowest specific activity and is probably the rate-determining step in this part of the pathway.  相似文献   

12.
2,3,4,6-Tetra-O-acetyl-beta-D-mannopyranosyl phosphate, free of the alpha anomer, was coupled with citronellol and dolichol in the presence of triisopropylbenzenesulfonyl chloride to give, after chromatographic purification and deacetylation, the respective polyisoprenyl beta-D-mannopyranosyl phosphates. These compounds were compared with the previously synthesized alpha anomers by means of their chromatographic properties, spectra, optical rotations, and hydrolysis reactions when treated with acid and alkali. To characterize the compounds resulting from these treatments, and to determine the mechanism of the alkaline hydrolysis, beta-D-mannopyranosyl phosphate was converted into beta-D-mannonpyranose 1,2-phosphate, and hence into D-mannose 2-phosphate, obtained as a mixture of alpha and beta anomers, characterized by infrared and nuclear magnetic resonance spectra and elemental analysis. Beta-D-Mannopyranosyl phosphate was readily separated by thin layer chromatography from the corresponding alpha anomer.  相似文献   

13.
14.
The effect of compactin on hormonally induced lipogenesis and protein synthesis was studied in vitro in explants of mammary gland from mid-pregnant rabbits. Compactin blocks mevalonate synthesis by the specific inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase, and in this system, culture with 10 microM compactin for 24, 48, and 72 h inhibited incorporation of [1-14C]acetate (but not [2-14C]mevalonate) into sterol by 98, 95, and 86%, respectively. Removal of compactin prior to assay rapidly reversed this effect and was associated with increased tissue 3-hydroxy-3-methylglutaryl-CoA reductase activity. Fatty acid synthesis (measured by incorporation of [1-14C]acetate or [4,5-3H]leucine) and protein synthesis (measured by incorporation of [4,5-3H]leucine) were both inhibited by around 50% after culture with compactin. This inhibition was not rapidly reversed by removal of compactin prior to assay, but it was prevented by inclusion of 1 mM mevalonolactone in the culture medium. After removal of compactin and continued culture in its absence for 24 h with hormones, the normal tissue capacity for fatty acid and protein synthesis was restored, indicating no permanent cell damage. The results suggest a specific requirement for mevalonate (or derived products) for the hormonal maintenance of the increased fatty acid and protein synthesis characteristic of the development of the mammary gland.  相似文献   

15.
Thermodynamics limits the number average degree of polymerization of RNA transcribed in vitro from DNA without hydrolysis of the pyrophosphate product to substantially less than 100 nucleotide units in size. The existence of considerably longer chains is initially compensated by unreacted nucleoside triphosphates and later by the presence of short chains of dubious biological utility. Pyrophosphate hydrolysis raises the upper limit of this average size by a factor of the order of 103 and effectively defers the approach to equilibrium.  相似文献   

16.
We have recently reported that skeletal muscle of the ob/ob mouse, an animal model of genetic obesity with extreme insulin resistance, exhibits alterations in the expression of multiple genes. Analysis and cloning of a full-length cDNA of one of the overexpressed mRNAs revealed a 300-amino-acid protein that could be identified as the mouse geranylgeranyl diphosphate synthase (GGPP synthase) based on its homology to proteins cloned from yeast and fungus. GGPP synthase catalyzes the synthesis of all-trans-geranylgeranyl diphosphate (GGPP), an isoprenoid used for protein isoprenylation in animal cells, and is a branch point enzyme in the mevalonic acid pathway. Three mRNAs for GGPP synthase of 4.3, 3.2, and 1.7 kb were detected in Northern blot analysis. Western blot analysis of tissue homogenates using specific antipeptide antibodies revealed a single band of 34.8 kDa. Expression level of this protein in different tissues correlated with expression of the 4.3- and 3.2-kb mRNAs. GGPP synthase mRNA expression was increased 5- to 20-fold in skeletal muscle, liver, and fat of ob/ob mice by Northern blot analysis. Western blot analysis also showed a twofold overexpression of the protein in muscle and fat but not in liver, where the dominant isoform is encoded by the 1.7-kb mRNA. Differentiation of 3T3-L1 fibroblasts into adipocytes induced GGPP synthase expression more than 20-fold. Using the immunoprecipitated protein, we found that mammalian GGPP synthase synthesizes not only GGPP but also its metabolic precursor farnesyl diphosphate. Thus, the expression of GGPP synthase is regulated in multiple tissues in obesity and is induced during adipocyte differentiation. Altered regulation in the synthesis of isoprenoids for protein prenylation in obesity might be a factor determining the ability of the cells to respond to hormonal stimulation requiring both Ras-related small GTPases and trimeric G protein-coupled receptors.  相似文献   

17.
Latent infection of human immunodeficiency virus type 1 (HIV-1) represents a major hurdle in the treatment of acquired immunodeficiency syndrome (AIDS) patients. Statins were recently reported to suppress acute HIV-1 infection and reduce infectious virion production, but the precise mechanism of inhibition has remained elusive. Here we demonstrate that lypophilic statins suppress HIV-1 virion release from tumor necrosis factor alpha-stimulated latently infected U1 cells through inhibition of protein geranylgeranylation, but not by cholesterol depletion. Indeed, this suppression was reversed by the addition of geranylgeranylpyrophosphate, and a geranylgeranyltransferase-1 inhibitor reduced HIV-1 production. Notably, silencing of the endogenous Rab11a GTPase expression in U1 cells by RNA interference destabilized Gag and reduced virion production both in vitro and in NOD/SCID/gammac null mice. Our findings thus suggest that small GTPase proteins play an important role in HIV-1 replication, and therefore could be attractive molecular targets for anti-HIV-1 therapy.  相似文献   

18.
ObjectiveRas proteins are known to affect cellular growth and function. The influence of the prenylation status of Ras on the observed changes in endothelial cell growth under high glucose conditions has not previously been examined.MethodsHuman umbilical vein endothelial cells were exposed to normal or high glucose conditions for 72 h. They were then examined for proliferative and hypertrophic effects, transforming growth factor β1 (TGFβ1) release, and phosphorylated p38 expression. The importance of prenylation was explored by the addition of mevalonate, isoprenoids or farnesyltransferase inhibitors to control the high glucose media and by measuring changes induced by high glucose and exogenous TGFβ1 in Ras prenylation and farnesyltransferase activity. Kidneys from diabetic rats treated with atorvastatin were also compared to specimens from untreated animals and the expression of the Ras effector p-Akt examined.ResultsHigh glucose conditions caused a reduction in cell number. This was reversed in the presence of mevalonate or farnesylpyrophosphate (FPP), suggesting that the cell growth abnormalities observed are due to high glucose induced inhibition of the mevalonate pathway and subsequent prenylation of proteins. Endothelial cells exposed to high glucose increased their secretion of TGFβ1 and the phosphorylation of p38 both of which were reversed by concurrent exposure to FPP. A reduction in farnesyltransferase activity was observed after exposure to both high glucose and TGFβ1. Exposure to a farnesyltransferase inhibitor in control conditions mimicked the growth response observed with high glucose exposure and prenylated Ras was reduced by exposure to both high glucose and TGFβ1. Finally, interruption of the mevalonate pathway with a statin reduced the expression of p-Akt in diabetic rat kidneys.ConclusionThis study demonstrates that high glucose induced significant alterations in endothelial cell growth by inhibition of the mevalonate pathway, which subsequently mediates the increase in TGFβ1 and inhibition of Ras prenylation.  相似文献   

19.
The protein covalent modification state of eucaryotic initiation factors eIF-2 and eIF-4B in HeLa cells was examined after they were exposed to a variety of conditions or treatments that regulate protein synthesis. A few factors (e.g., variant pH and sodium fluoride) altered the phosphorylation state of the initiation factor proteins, but the majority (hypertonic medium, ethanol, dimethyl sulfoxide sodium selenite, sodium azide, and colchicine) had no effect on either protein. While initiation factor phosphorylation may regulate protein synthesis in response to many physiological situations, other pathways can regulate protein synthesis under nonphysiological circumstances.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号