首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
alpha-Synuclein is a major component of the fibrillary lesion known as Lewy bodies and Lewy neurites that are the pathologic hallmarks of Parkinson's disease (PD). In addition, point mutations in the alpha-synuclein gene imply alpha-synuclein dysfunction in the pathology of inherited forms of PD. alpha-Synuclein is a member of a family of proteins found primarily in the brain and is concentrated within presynaptic terminals. Here, we address the localization and membrane binding characteristics of wild type and PD mutants of alpha-synuclein in cultured cells. In cells treated with high concentrations of fatty acids, wild type alpha-synuclein accumulated on phospholipid monolayers surrounding triglyceride-rich lipid droplets and was able to protect stored triglycerides from hydrolysis. PD mutant synucleins showed variable distributions on lipid droplets and were less effective in regulating triglyceride turnover. Chemical cross-linking demonstrated that synuclein formed small oligomers within cells, primarily dimers and trimers, that preferentially associated with lipid droplets and cell membranes. Our results suggest that the initial phases of synuclein aggregation may occur on the surfaces of membranes and that pathological conditions that induce cross-linking of synuclein may enhance the propensity for subsequent synuclein aggregation.  相似文献   

2.
Engelender S 《Autophagy》2008,4(3):372-374
alpha-Synuclein is mutated in Parkinson's disease (PD) and is found in cytosolic inclusions, called Lewy bodies, in sporadic forms of the disease. A fraction of alpha-synuclein purified from Lewy bodies is monoubiquitinated, but the role of this monoubiquitination has been obscure. We now review recent data indicating a role of alpha-synuclein monoubiquitination in Lewy body formation and implicating the autophagic pathway in regulating these processes. The E3 ubiquitin-ligase SIAH is present in Lewy bodies and monoubiquitinates alpha-synuclein at the same lysines that are monoubiquitinated in Lewy bodies. Monoubiquitination by SIAH promotes the aggregation of alpha-synuclein into amorphous aggregates and increases the formation of inclusions within dopaminergic cells. Such effect is observed even at low monoubiquitination levels, suggesting that monoubiquitinated alpha-synuclein may work as a seed for aggregation. Accumulation of monoubiquitinated alpha-synuclein and formation of cytosolic inclusions is promoted by autophagy inhibition and to a lesser extent by proteasomal and lysosomal inhibition. Monoubiquitinated alpha-synuclein inclusions are toxic to cells and recruit PD-related proteins, such as synphilin-1 and UCH-L1. Altogether, the new data indicate that monoubiquitination might play an important role in Lewy body formation. Decreasing alpha- synuclein monoubiquitination, by preventing SIAH function or by stimulating autophagy, constitutes a new therapeutic strategy for Parkinson's disease.  相似文献   

3.
Narayanan V  Scarlata S 《Biochemistry》2001,40(33):9927-9934
Although its function is unknown, alpha-synuclein is widely distributed in neural tissue and is the major component in the pathological aggregates found in patients with Parkinson's disease, Alzheimer's disease, Down's syndrome, and multiple system atrophy. In this report, we have quantified the binding alpha-synucleins to lipid membranes. In contrast to previous studies, we find, using real time equilibrium fluorescence methods, that alpha-synuclein binds strongly to large, unilamellar vesicles with either anionic or zwitterionic headgroups. Membrane binding is also strong for beta-synuclein, phosphorylated alpha-synuclein, and a synuclein mutant that is associated with familial Parkinson's disease. In solution at less than 400 nM, synuclein has a tendency to undergo concentration-dependent oligomerization as determined by changes in intrinsic fluorescence and fluorescence resonance energy transfer. Above this concentration, the protein begins to aggregate into structures visible by light scattering. Although membrane binding does not affect the secondary structure of alpha-synuclein, it greatly inhibits the ability of this protein to self-associate. Taken together, our results indicate that pathological conditions may be associated with a disruption in synuclein-membrane interactions.  相似文献   

4.
alpha-synuclein gene mutations are major underlying genetic defects known in familial juvenile onset Parkinson's disease (PD), and alpha-synuclein is a major constituent of Lewy Bodies, the pathological hallmark of PD. The normal cellular function of alpha-synuclein has been elusive, and its exact etiological mechanism in causing dopaminergic neuronal death in PD is also not clearly understood. Very recent reports now indicate that mutant or simply over-expressed alpha- synuclein could cause damage by interfering with particular steps of neuronal membrane traffic. alpha-synuclein selectively blocks endoplamic reticulum-to-Golgi transport, thus causing ER stress. A screen in a yeast revealed that alpha- synuclein toxicity could be suppressed by over-expression of the small GTPase Ypt1/Rab1, and that over-expression of the latter rescues neuron loss in invertebrate and mammalian models of alpha-synuclein-induced neurodegeneration. alpha-synuclein may also serve a chaperone function for the proper folding of synaptic SNAREs that are important for neurotransmitter release. We discuss these recent results and the emerging pathophysiological interaction of alpha-synuclein with components of neuronal membrane traffic.  相似文献   

5.
Brown DR 《The FEBS journal》2007,274(15):3766-3774
alpha-synuclein is one of a family of proteins whose function remains unknown. This protein has become linked to a number of neurodegenerative disease although its potential causative role in these diseases remains mysterious. In diseases such as Parkinson's disease and Lewy body dementias, alpha-synuclein becomes deposited in aggregates termed Lewy bodies. Also, some inherited forms of Parkinson's diseases are linked to mutations in the gene for alpha-synuclein. Studies have mostly focussed on what causes the aggregation of the protein but, like many amyloidogenic proteins associated with a neurodegenerative disorder, this protein has now been suggested to bind copper. This finding is currently controversial. This review examines the evidence that alpha-synuclein is a copper binding protein and discusses whether this has any significance in determining the function of the protein or whether copper binding is at all necessary for aggregation.  相似文献   

6.
Alpha-synuclein is the major component of Lewy bodies in patients with Parkinson's disease, and mutations in the alpha-synuclein gene are responsible for some familial forms of the disease. alpha-Synuclein is enriched in the presynapse, but its synaptic targets are unknown. Synphilin-1 associates in vivo with alpha-synuclein promoting the formation of intracellular inclusions. Additionally synphilin-1 has been found to be an intrinsic component of Lewy bodies in patients with Parkinson's disease. To understand the role of synphilin-1 in Parkinson's disease, we sought to define its localization and function in the brain. We now report that, like alpha-synuclein, synphilin-1 was enriched in neurons. In young rats, synphilin-1 was prominent in neuronal cell bodies but gradually migrated to neuropil during development. Immunoelectron microscopy of adult rat cerebral cortex demonstrated that synphilin-1 was highly enriched in presynaptic nerve terminals. Synphilin-1 co-immunoprecipitated with synaptic vesicles, indicating a strong association with these structures. In vitro binding experiments demonstrated that the N terminus of synphilin-1 robustly associated with synaptic vesicles and that this association was resistant to high salt washing but was abolished by inclusion of alpha-synuclein in the incubation medium. Our data indicated that synphilin-1 is a synaptic partner of alpha-synuclein, and it may mediate synaptic roles attributed to alpha-synuclein.  相似文献   

7.
Parkinson's disease (PD) is a neurodegenerative disorder that is pathologically characterized by the presence of intracytoplasmic Lewy bodies. Recently, two point mutations in alpha-synuclein were found to be associated with familial PD, but as of yet no mutations have been described in the homologous genes beta- and gamma-synuclein. alpha-Synuclein forms the major fibrillar component of Lewy bodies, but these do not stain for beta- or gamma-synuclein. This result is very surprising, given the extent of sequence conservation and the high similarity in expression and subcellular localization, in particular between alpha- and beta-synuclein. Here we compare in vitro fibrillogenesis of all three purified synucleins. We show that fresh solutions of alpha-, beta-, and gamma- synuclein show the same natively unfolded structure. While over time alpha-synuclein forms the previously described fibrils, no fibrils could be detected for beta- and gamma-synuclein under the same conditions. Most importantly, beta- and gamma-synuclein could not be cross-seeded with alpha-synuclein fibrils. However, under conditions that drastically accelerate aggregation, gamma-synuclein can form fibrils with a lag phase roughly three times longer than alpha-synuclein. These results indicate that beta- and gamma-synuclein are intrinsically less fibrillogenic than alpha-synuclein and cannot form mixed fibrils with alpha-synuclein, which may explain why they do not appear in the pathological hallmarks of PD, although they are closely related to alpha-synuclein and are also abundant in brain.  相似文献   

8.
alpha-Synuclein is a major component of aggregates forming amyloid-like fibrils in diseases with Lewy bodies and other neurodegenerative disorders, yet the mechanism by which alpha-synuclein is intracellularly aggregated during neurodegeneration is poorly understood. Recent studies suggest that oxidative stress reactions might contribute to abnormal aggregation of this molecule. In this context, the main objective of the present study was to determine the potential role of the heme protein cytochrome c in alpha-synuclein aggregation. When recombinant alpha-synuclein was coincubated with cytochrome c/hydrogen peroxide, alpha-synuclein was concomitantly induced to be aggregated. This process was blocked by antioxidant agents such as N-acetyl-L-cysteine. Hemin/hydrogen peroxide similarly induced aggregation of alpha-synuclein, and both cytochrome c/hydrogen peroxide- and hemin/hydrogen peroxide-induced aggregation of alpha-synuclein was partially inhibited by treatment with iron chelator deferoxisamine. This indicates that iron-catalyzed oxidative reaction mediated by cytochrome c/hydrogen peroxide might be critically involved in promoting alpha-synuclein aggregation. Furthermore, double labeling studies for cytochrome c/alpha-synuclein showed that they were colocalized in Lewy bodies of patients with Parkinson's disease. Taken together, these results suggest that cytochrome c, a well known electron transfer, and mediator of apoptotic cell death may be involved in the oxidative stress-induced aggregation of alpha-synuclein in Parkinson's disease and related disorders.  相似文献   

9.
Alpha-synuclein is a major component of Lewy bodies in Parkinson's disease and is found associated with several other forms of dementia. As with other neurodegenerative diseases, the ability of alpha-synuclein to aggregate and form fibrillar deposits seems central to its pathology. We have defined a sequence within the NAC region of alpha-synuclein that is necessary for aggregation. Exploitation of chemically modified analogues of this peptide may produce inhibitors of aggregation.  相似文献   

10.
Tubulin seeds alpha-synuclein fibril formation.   总被引:5,自引:0,他引:5  
Increasing evidence suggests that alpha-synuclein is a common pathogenic molecule in several neurodegenerative diseases, particularly in Parkinson's disease. To understand alpha-synuclein pathology, we investigated molecules that interact with alpha-synuclein in human and rat brains and identified tubulin as an alpha-synuclein binding/associated protein. Tubulin co-localized with alpha-synuclein in Lewy bodies and other alpha-synuclein-positive pathological structures. Tubulin initiated and promoted alpha-synuclein fibril formation under physiological conditions in vitro. These findings suggest that an interaction between tubulin and alpha-synuclein might accelerate alpha-synuclein aggregation in diseased brains, leading to the formation of Lewy bodies.  相似文献   

11.
Two missense mutations (Ala-30 --> Pro and Ala-53 --> Thr) in the gene encoding alpha-synuclein are associated with rare autosomal dominant forms of familial Parkinson's disease. In addition, alpha-synuclein is an abundant component of Lewy bodies in sporadic Parkinson's disease and diffuse Lewy body disease. However, the normal conformation of alpha-synuclein, its cellular localization in neurons, and the effects of the mutations remain to be determined. In the present study, we examine these questions using sensitive fluorescence resonance energy transfer techniques. Transient transfection of alpha-synuclein expression constructs into primary cortical neurons and counterstaining with the lipophilic fluorescent marker, DiI, demonstrates a close association between alpha-synuclein and cellular membranes. Both the N- and C-terminal regions of alpha-synuclein are tightly associated with membranes. A weak interaction also occurs between the N and C termini themselves. The Parkinson's disease-associated mutations have no effect on membrane interaction; however, the Ala-30 --> Pro mutation alters the three-dimensional conformation of alpha-synuclein, as measured by significantly increased fluorescence resonance energy transfer between the N and C termini.  相似文献   

12.
Alpha-synuclein is a neuronal protein thought to be central in the pathogenesis of Parkinson's disease (PD) because it comprises the fibrillar core of Lewy bodies, one of the histologically defining lesions of PD, and because mutations in alpha-synuclein cause autosomal dominant PD. Although its physiologic role is uncertain, alpha-synuclein is a synaptic protein that may contribute to plasticity. We produced synuclein with incorporated photoprobes to identify and purify novel synuclein-interacting proteins both to begin to clarify the physiology of synuclein and to identify factors that may regulate synuclein conformation. We detected several cross-links and purified and identified one as calmodulin (CaM). CaM binds to both wild type and PD-associated mutant alpha-synucleins in a calcium-dependent manner. We further demonstrate that CaM and alpha-synuclein interact in intact cells in a calcium-dependent manner and that activated CaM accelerates the formation of synuclein fibrils in vitro. We hypothesize that the known calcium control of synuclein function is mediated through CaM interaction and that CaM potentially alters synuclein conformation.  相似文献   

13.
Aggregation of the nerve cell protein alpha-synuclein is a characteristic of the common neurodegenerative alpha-synucleinopathies like Parkinson's disease and Lewy body dementia, and it plays a direct pathogenic role as demonstrated by early onset diseases caused by mis-sense mutations and multiplication of the alpha-synuclein gene. We investigated the existence of alpha-synuclein pro-aggregatory brain proteins whose dysregulation may contribute to disease progression, and we identified the brain-specific p25alpha as a candidate that preferentially binds to alpha-synuclein in its aggregated state. Functionally, purified recombinant human p25alpha strongly stimulates the aggregation of alpha-synuclein in vitro as demonstrated by thioflavin-T fluorescence and quantitative electron microscopy. p25alpha is normally only expressed in oligodendrocytes in contrast to alpha-synuclein, which is normally only expressed in neurons. This expression pattern is changed in alpha-synucleinopathies. In multiple systems atrophy, degenerating oligodendrocytes displayed accumulation of p25alpha and dystopically expressed alpha-synuclein in the glial cytoplasmic inclusions. In Parkinson's disease and Lewy body dementia, p25alpha was detectable in the neuronal Lewy body inclusions along with alpha-synuclein. The localization in alpha-synuclein-containing inclusions was verified biochemically by immunological detection in Lewy body inclusions purified from Lewy body dementia tissue and glial cytoplasmic inclusions purified from tissue from multiple systems atrophy. We suggest that p25alpha plays a pro-aggregatory role in the common neurodegenerative disorders hall-marked by alpha-synuclein aggregates.  相似文献   

14.
Could a loss of α‐synuclein function put dopaminergic neurons at risk?   总被引:2,自引:0,他引:2  
The alpha-synuclein gene is implicated in Parkinson's disease, the symptoms of which occur after a marked loss of substantia nigra dopamine neurons. While the function of alpha-synuclein is not entirely elucidated, one function appears to be as a normal regulatory protein that can bind to and inhibit tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis. Soluble alpha-synuclein levels may be diminished in Parkinson's disease substantia nigra dopamine neurons both by reduced expression and by alpha-synuclein aggregation as Lewy bodies and Lewy neurites form. The loss of functional alpha-synuclein may then result in dysregulation of tyrosine hydroxylase, dopamine transport and dopamine storage, resulting in excess cytosolic dopamine. Because dopamine and its metabolites are reactive molecules capable of generating highly reactive quinones and reactive oxygen species, a failure to package dopamine into vesicles could cause irreversible damage to cellular macromolecules and contribute to resultant neurotoxicity. This review focuses on how a loss of normal alpha-synuclein function may contribute to the dopamine-related loss of substantia nigra neurons during Parkinson's disease pathogenesis.  相似文献   

15.
Parkinson's disease (PD) is a neurodegenerative disorder that is pathologically characterized by the presence of intracytoplasmic Lewy bodies, the major components of which are filaments consisting of alpha-synuclein. Two recently identified point mutations in alpha-synuclein are the only known genetic causes of PD. alpha-Synuclein fibrils similar to the Lewy body filaments can be formed in vitro, and we have shown recently that both PD-linked mutations accelerate their formation. This study addresses the mechanism of alpha-synuclein aggregation: we show that (i) it is a nucleation-dependent process that can be seeded by aggregated alpha-synuclein functioning as nuclei, (ii) this fibril growth follows first-order kinetics with respect to alpha-synuclein concentration, and (iii) mutant alpha-synuclein can seed the aggregation of wild type alpha-synuclein, which leads us to predict that the Lewy bodies of familial PD patients with alpha-synuclein mutations will contain both, the mutant and the wild type protein. Finally (iv), we show that wild type and mutant forms of alpha-synuclein do not differ in their critical concentrations. These results suggest that differences in aggregation kinetics of alpha-synucleins cannot be explained by differences in solubility but are due to different nucleation rates. Consequently, alpha-synuclein nucleation may be the rate-limiting step for the formation of Lewy body alpha-synuclein fibrils in Parkinson's disease.  相似文献   

16.
The protein alpha-synuclein is considered to play a major role in the etiology of Parkinson's disease. Because it is found in a classic amyloid fibril form within the characteristic intra-neuronal Lewy body deposits of the disease, aggregation of the protein is thought to be of critical importance, but the context in which the protein undergoes aggregation within cells remains unknown. The normal function of synucleins is poorly understood, but appears to involve membrane interactions, and in particular reversible binding to synaptic vesicle membranes. Structural studies of different states of alpha-synuclein, in the absence and presence of membranes or membrane mimetics, have led to models of how membrane-bound forms of the protein may contribute both to functional properties of the protein, as well as to membrane-induced self-assembly and aggregation. This article reviews this area, with a focus on a particular model that has emerged in the past few years. This article is part of a Special Issue entitled: Protein Folding in Membranes.  相似文献   

17.
The alpha-synuclein gene, which encodes a brain presynaptic nerve terminal protein of unknown function, is linked to familial early-onset Parkinson's disease (PD). The finding that alpha-synuclein forms the major fibrillary component of Lewy bodies in brains of PD patients suggests that the two point mutations in alpha-synuclein (Ala(53)Thr, Ala(30)Pro) may promote the aggregation of alpha-synuclein into filaments. To address the role of alpha-synuclein in neurodegenerative diseases, we performed a yeast two-hybrid screen of a rat adult brain cDNA library using rat alpha-synuclein 2 (alphaSYN2). Here we report that alphaSYN2 interacts specifically with Tat binding protein 1, a subunit of the 700-kDa proteasome activator (PA700), the regulatory complex of the 26S proteasome and of the modulator complex, which enhances PA700 activation of the proteasome.  相似文献   

18.
The human synuclein protein family includes alpha-synuclein, which has been linked to both familial and sporadic Parkinson's disease, and the highly homologous beta and gamma-synuclein. Mutations in alpha-synuclein cause autosomal dominant early onset Parkinson's, and the protein is found deposited in a fibrillar form in hereditary and idiopathic forms of the disease. No genetic link between beta and gamma-synuclein, and any neurodegenerative disease has been established, and it is generally considered that these proteins are not highly pathogenic. In addition, beta and gamma-synuclein are reported to aggregate less readily than alpha-synuclein in vitro. Indeed, beta-synuclein has been reported to protect against alpha-synuclein aggregation in vitro, as well as alpha-synuclein-mediated toxicity in vivo. Earlier, we compared the structural properties of the highly helical states adopted by all three synucleins in association with detergent micelles in an attempt to delineate the basis for functional differences between the three proteins. Here, we report a comparison of the structural and dynamic properties of the free states of all three proteins in order to shed light on differences that may help to explain their different propensities to aggregate, which in turn may underlie their differing contributions to the etiology of Parkinson's disease. We find that gamma-synuclein closely resembles alpha-synuclein in its free-state residual secondary structure, consistent with the more similar propensities of the two proteins to aggregate in vitro. beta-Synuclein, however, differs significantly from alpha-synuclein, exhibiting a lower predisposition towards helical structure in the second half of its lipid-binding domain, and a higher preference for extended structures in its C-terminal tail. Both beta and gamma-synuclein show less extensive transient long-range structure than that observed in alpha-synuclein. These results raise questions regarding the role of secondary structure propensities and transient long-range contacts in directing synuclein aggregation reactions.  相似文献   

19.
Intracellular proteinaceous aggregates (Lewy bodies and Lewy neurites) of alpha-synuclein are hallmarks of neurodegenerative diseases such as Parkinson's disease, dementia with Lewy bodies, and multiple systemic atrophy. However, the molecular mechanisms underlying alpha-synuclein aggregation into such filamentous inclusions remain unknown. An intriguing aspect of this problem is that alpha-synuclein is a natively unfolded protein, with little or no ordered structure under physiological conditions. This raises the question of how an essentially disordered protein is transformed into highly organized fibrils. In the search for an answer to this question, we have investigated the effects of pH and temperature on the structural properties and fibrillation kinetics of human recombinant alpha-synuclein. Either a decrease in pH or an increase in temperature transformed alpha-synuclein into a partially folded conformation. The presence of this intermediate is strongly correlated with the enhanced formation of alpha-synuclein fibrils. We propose a model for the fibrillation of alpha-synuclein in which the first step is the conformational transformation of the natively unfolded protein into the aggregation-competent partially folded intermediate.  相似文献   

20.
Li HT  Du HN  Tang L  Hu J  Hu HY 《Biopolymers》2002,64(4):221-226
Amyloid-like aggregation of alpha-synuclein and deposit in Lewy bodies are thought to be the major cause of Parkinson's disease. Here we describe the secondary structural transformation and aggregation of human alpha-synuclein and its C-terminus truncated fragments in trifluoroethanol. Proteins containing the NAC (non-amyloid component) segment undergo a three-state transition: from native random coil to beta-sheet and to alpha-helical structure, while the NAC deficient fragment and gamma-synuclein undergo a typical two-state coil-to-alpha transition. The beta-sheet form is highly hydrophobic that strongly binds to 1-anilinonaphthalene-8-sulfonic acid (ANS) and is prone to self-aggregation. The results suggest that the NAC sequence is essential to beta-sheet formation and the aggregation originates from the beta-sheet intermediate, which may be implicated in the pathogenesis of Parkinson's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号