首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Haemoglobin adducts are highly valuable biomarkers of cumulative exposure to carcinogenic substances. We have developed and applied an analytical method for the simultaneous quantification of five haemoglobin adducts of important occupational and environmental carcinogens. The N-terminal adducts were determined with gas chromatography as pentafluorophenylthiohydantoine derivatives according to the modified Edman-procedure and subsequent acetonization of the glycidamide adduct N-(R,S)-2-hydroxy-2-carbamoylethylvaline (GAVal). The use of self-synthesized labelled internal standards in combination with tandem mass spectrometry using negative chemical ionisation guarantees both high accuracy and sensitivity of our determination. The limit of detection for N-2-hydroxyethylvaline (HEVal), N-(R,S)-2-hydroxypropylvaline (HPVal), N-2-carbamoylethylvaline (AAVal) and N-(R,S)-2-hydroxy-2-carbamoylethylvaline (GAVal) was 2 pmol/g globin, for N-2-cyanoethylvaline (CEVal) it was determined as 0.5 pmol/g globin, which was sufficient to determine the background levels of these adducts in the non-smoking general population. The between-day-precision for all analytes using a human blood sample as quality control material ranged from 4.7 to 12.3%. We investigated blood samples of a small group (n = 104) of non-smoking persons of the general population for the background levels of these haemoglobin adducts. The median values for HEVal, HPVal, CEVal, AAVal and GAVal in a group of 92 non-smoking persons were 18.1, 4.1, <0.5, 29.9 and 35.2 pmol/g globin, respectively. The adduct levels in 12 persons reporting exposure to passive smoke at home were similar for most adducts with median values of 17.2, 4.1, 1.0, 24.9 and 29.7 pmol/g globin for HEVal, HPVal, CEVal, AAVal and GAVal, respectively. Our results point to an elevated uptake of acrylonitrile caused by passive smoking as indicated by higher levels of the corresponding haemoglobin adduct CEVal.  相似文献   

2.
When a single dose of [14C]trinitrotoluene was administered intraperitoneally (i.p.) to rats at 1, 10 or 50 mg/kg of body weight, covalently bound radioactivity was detected in globin, plasma proteins and proteins in the liver and kidney. The extent of covalent binding was dose dependent and was highest in plasma and renal proteins at all times up to 4 h after dosing. Covalent adduct levels in globin, however, decline slower than others. At a dose of 50 mg/kg of body weight, globin covalent adduct levels peaked at 1 h after dosing at 182 pmol/mg protein and subsequently decreased to approximately 50 pmol/mg protein between days 1 and 8. Of the covalent adduct levels in liver and kidney, those in the 10,000 x g and microsomal fractions were found to be higher than that in the cytosolic fraction. Radioactivity covalently bound to globin and the hepatic proteins was susceptible to dilute acid hydrolysis from which 2-amino-4,6-dinitrotoluene (2A) and 4-amino 2,6-dinitrotoluene (4A) were the major products recovered by solvent extraction. Upon acetylation, the hydrolysate gave rise to derivatives identified as the acetates of 2A and 4A on the basis of mass spectrometry and HPLC cochromatography with authentic samples. Four hours after an i.p. dose of [14C]TNT at 50 mg/kg of body weight about 0.4% of the dose was found as bound adducts to hemoglobin, of which approximately 48% was recovered as solvent extractable radioactivity after acid hydrolysis. About 2% of the radioactive dose was in the liver, of which approximately 30% was covalently bound to hepatic proteins, and approximately 49% of that was convertible to solvent extractable radioactivity upon acid hydrolysis. In vitro incubation of [14C]TNT with blood showed that there was a linear increase of covalent adducts in globin during the first 2 h of incubation; the concentration of covalent adducts was slightly higher than that with plasma proteins. The major compounds recovered from the hydrolysate of the globin adducts were also 2A and 4A as obtained from globin in the in vivo studies. On the basis of the in vitro and in vivo study results, we have confirmed the formation of protein adducts following a single i.p. administration of [14C]TNT at 1, 10 or 50 mg/kg of body weight to the rat or by in vitro incubation with blood.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
An assay has been developed to determine S-phenylcysteine (SPC) in globin as a potential biomarker for exposure to benzene. The sensitivity of the assay is less than 20 pmol SPC g-1 globin. Following acidic hydrolysis of the protein, the modified amino acid is purified by reverse phase cartridge chromatography and HPLC, prior to conversion to the tert-butyldimethylsilyl derivative and GC-MS selected ion recording. Quantitation is achieved using the internal standard [2H5]-SPC, and calibration lines were established using a synthetic peptide Leu-His-SPC-Asp-Lys. Control human globin was found to contain ca 30 pmol SPC g-1 globin in two populations. The source of the apparent background level of SPC is unknown.  相似文献   

4.
Adducts to N-terminal valines in Hb have been shown useful as biomarkers of exposure to electrophilic compounds. Adducts from many compounds have earlier been measured with a modified Edman degradation method using a GC–MS/MS method. A recently developed method, the adduct FIRE procedure™, adopted for analysis by LC–MS/MS, has been applied in this study. With this method a fluorescein isothiocyanate (FITC) reagent is used to measure adducts (R) from electrophiles with a modified Edman procedure. By using LC–MS/MS in product ion scan mode, a new peak was identified and the obtained MS data indicated that this adduct could originate from methyl vinyl ketone (MVK). Incubation of human-, sheep- and bovine blood with MVK increased the signal of the identified peak. By comparing the LC–MS/MS data from the unknown background peak with data obtained from synthesized fluorescein thiohydantoin (FTH) standards of the MVK adduct to valine and d8-valine, the identity of this adduct was confirmed. The MVK adduct was shown present in human blood (∼35 pmol/g globin, n = 3) and only just above LOD in bovine blood, n = 1 (LOD = 2 pmol/g globin). MVK reacts, in similarity with acrylamide, via Michael addition. MVK is known to occur in the environment and has earlier been observed in biological samples, which means that there are possible natural and anthropogenic exposure sources. Analysis of an Hb adduct from MVK in humans has to our knowledge not been described before.  相似文献   

5.
This study examined the potential use of hemoglobin (Hb)- and serum-protein adducts of alachlor as potential biomarkers of alachlor exposure, a genotoxic and carcinogenic herbicide. The method developed was based on the observation that cleavage of S-cysteinyl alachlor-protein adducts by methanesulfonic acid gave the rearrangement product 3-(2',6'-diethylphenyl)-1, 3-thiazolidine-4-one (TZO). The structure of TZO was confirmed by mass spectroscopy, NMR spectroscopy, and independent synthesis. In the assay, treatment of alachlor-cysteinyl protein adducts by methanesulfonic acid was followed by extraction and analysis. TZO was detected and quantitated by electron-impact GC/MS in the single ion-monitoring mode. [ring-13C6]Alachlor-N-acetylcysteine was added as an internal standard prior to treatment and was converted to [ring-13C6]TZO, allowing response factors to be used to quantitate TZO concentrations. Incubations of alachlor (0-1000 microM) with human albumin and bovine serum albumin (BSA) resulted in linear adduct formation with both proteins. Maximal adduction levels of 613-1130 pmol alachlor-albumin adducts/mg protein were observed, with BSA binding close to twice that of human albumin. A linear concentration response of alachlor-Hb adducts was observed when whole blood from female CD rats was incubated with alachlor in vitro at concentrations up to 300 microM. Maximal binding was 1860 pmol alachlor-Hb adducts/mg globin. Male CD rats treated with alachlor at 150 mg/kg body wt/day ip for 0, 1, 2, and 3 days were sacrificed 4 days after final dosing. A maximal binding of 2250 pmol alachlor-Hb adducts/mg globin was observed. This assay provides a new approach for biomonitoring alachlor levels in experimental animals and has the potential for use in humans.  相似文献   

6.
Allyl glycidyl ether (AGE) is used industrially in the production of various epoxy resins. The compound is mutagenic and evidence for carcinogenicity in mice and rats has been reported. A previous study in mice showed that AGE reacts directly, without metabolic activation, with N-terminal valine in hemoglobin to form adducts (AGEVal). Metabolism of AGE may lead to formation of diglycidyl ether (I) through epoxidation of the double bond or 1-allyloxy-2,3-dihydroxypropane (II) through hydrolysis of the epoxide ring. 2,3-Dihydroxypropyl glycidyl ether (III) may be formed either by hydrolysis of I or epoxidation of II. The main aim of the present study was to investigate if AGE is metabolized to the reactive epoxides I or III by analysis of adducts with hemoglobin. Nine male mice (C3H/Hej) were administered AGE dissolved in tricaprylin, 4 mg/mouse, by intraperitoneal (i.p.) injection. Eleven male mice were administered 4 mg/mouse of AGE dissolved in acetone, by skin application. Adducts of I or III with N-terminal valine, N-(2-hydroxy-3-(2,3-dihydroxy)propyloxy)propylvaline (diOHPrGEVal), were demonstrated in mice administered AGE by i.p. injection. The levels were in the range 1600-5600 pmol/g globin. The level of diOHPrGEVal in mice administered AGE by skin application (n = 5) was below the detection limit of the analytical method, 20 pmol/g globin. The level of AGEVal, analyzed in mice administered AGE by skin application (n = 6), was about 20 pmol/g globin (median value), as compared with 1600 pmol/g globin previously found in mice administered AGE by i.p. injection. Neither AGEVal nor diOHPrGEVal were detected in control animals. Both adducts were analyzed using a modified Edman method for derivatization and using gas chromatography/tandem mass spectrometry for detection. The hydroxyl groups of the Edman derivative of diOHPrGEVal were protected by acetylation.  相似文献   

7.
Epichlorohydrin (1-chloro-2,3-epoxypropane; ECH) is an important industrial chemical and a carcinogen in experimental animals. The main aims of the present study were to characterize the adduct formation in female Wistar rats and to identify adducts that could potentially be used in human biomonitoring studies. The total binding of radioactivity to haemoglobin in rats administered 0, 0. 11, 0.22, 0.43, or 0.97 mmol [3H]ECH/kg body weight by i.p. injection, and sacrificed 24 h after treatment, was linearly related to a dose up to 0.43 mmol/kg body weight. The binding at the highest dose was higher than predicted by extrapolation from lower doses, indicating saturation of a metabolic process for elimination of ECH. Ion-exchange chromatography of a globin hydrolysate showed one major radioactivity peak corresponding to S-(3-chloro-2-hydroxypropyl)cysteine. The half-life of this adduct was estimated as about 4 days by analysis of globin from rats administered 0.43 mmol/kg body weight and sacrificed after 1, 2 and 9 days. Crosslinking of the adduct, presumably with glutathione, appeared to be the predominant secondary reaction. Hydrolysis of N-(3-chloro-2-hydroxypropyl)valine, the primary reaction product of ECH with N-terminal valine, would give N-(2,3-dihydroxypropyl)valine. A sensitive gas chromatography/mass spectrometry method for the dihydroxypropyl adduct was used to follow its formation and removal after administration of nonlabelled ECH (0.11 mmol/kg body weight). The level of this adduct reached a maximum of about 20 pmol/g globin after a few weeks, corresponding to about 0.1% of the initial binding of ECH to globin. N-7-(3-Chloro-2-hydroxypropyl)guanine was detected in rats administered 0.97 mmol [3H]ECH/kg body weight and sacrificed 6 h after treatment. The adduct levels in haemoglobin and DNA were compared with previously reported adduct levels in male Fischer 344 rats exposed to propylene oxide. Despite its higher chemical reactivity, the capacity of ECH to alkylate macromolecules in vivo was found to be somewhat lower than that of propylene oxide.  相似文献   

8.
A study employing several biomarkers of styrene exposure and genotoxicity was carried out in a group of lamination (reinforced plastic) workers and controls, who had been repeatedly sampled during a 3-year period. Special attention will be paid to the last sampling (S.VI), reported here for the first time. Styrene concentration in the breathing zone, monitored by personal dosimeters, and urinary mandelic acid (MA) were measured as indicators of external exposure. Blood samples were assayed for styrene-specific O6-guanine adducts in DNA, N-terminal valine adducts of styrene in haemoglobin, DNA single-strand breaks (SSB), determined by use of the single cell gel electrophoresis (Comet) assay), and hypoxanthine guanine phosphoribosyl transferase (HPRT) mutant frequencies (MF) in T-lymphocytes. O6-styrene guanine adduct levels were significantly higher in the exposed group (5.9 +/- 4.9 adducts/10(8) dNp) as compared to laboratory controls (0.7 +/- 0.8 adducts/10(8) dNp; P = 0.001). DNA adduct levels significantly correlated with haemoglobin adducts, SSB parameters and years of employment. Styrene-induced N-terminal valine adducts were detected in the lamination workers (1.7 +/- 1.1 pmol/g globin), but not in the control group (detection limit 0.1 pmol/g globin). N-terminal valine adducts correlated strongly with external exposure indicators, DNA adducts and HPRT MF. No significant correlation was found with SSB parameters. A statistically significant difference in HPRT MF was observed between the laminators (22.3 +/- 10.6/10(6)) and laboratory controls (14.2 +/- 6.5/10(6), P = 0.039). HPRT MF in the laminators significantly correlated with styrene concentration in air, MA and haemoglobin adducts, as well as with years of employment and age of the employees. No significant difference (P = 0.450) in MF between the laminators and the factory controls was observed. Surprisingly, we detected differences in MF between sexes. When data from all measurements were combined, women showed higher MF (geometric mean 15.4 vs. 11.2 in men, P = 0.020). The styrene-exposed group exhibited significantly higher SSB parameters (tail moment (TM), tail length (TL) and the percentage of DNA in the tail (TP)) than the control group (P < 0.001). SSB parameters correlated with indicators of external exposure and with O6-styrene guanine adducts. No significant correlation was found between SSB parameters and haemoglobin adducts or HPRT MF. The data encompassing biomarkers from repeated measurements of the same population over a 3-year period are discussed with respect to the mechanisms of genotoxic effects of styrene and the interrelationship of individual biomarkers.  相似文献   

9.
A sensitive method for determination of the N-methylcarbamoyl adduct at the N-terminal valine of globin, a new metabolic product of the industrial solvent N,N-dimethylformamide (DMF), has been developed and validated. The method includes conversion of the adduct by the Edman degradation to 3-methyl-5-isopropylhydantoin (MVH), which is followed by optimized gas chromatographic analysis with mass spectrometric detection at m/z 114. The recovery of MVH from terminal N-methylcarbamoylvaline was determined using a model dipeptide to be 90%. Calibration of the method is done with MVH, employing 3-methyl-5-isobutylhydantoin as the internal standard. The limit of detection is 0.2 nmol MVH/g globin when a 100-mg sample is used. Within- and between-day precision is 4-10%. The method has been used to determine the background levels of MVH in unexposed subjects. Further, toxicokinetic studies in volunteers laid the grounds for setting the reference value for biological monitoring of occupational exposure to DMF.  相似文献   

10.
Previous studies examined the bioavailability and first-pass biotransformation of 3-hydroxy[(3)H]benzo[a]pyrene ([(3)H]-3-OHBaP) in an isolated perfused catfish intestinal model. This work showed that 3-OHBaP, or a metabolite formed in intestine, bound covalently to blood protein. In this study, the blood adducts were characterized in vitro by incubating bovine ferric hemoglobin or albumin with [(3)H]-3OHBaP under various conditions. Incubation of 2 microM [(3)H]-3-OHBaP with hemoglobin for 1 h resulted in 7.49 pmol bound/mg protein, while albumin binding was 1.37 pmol/mg protein. Mild acid hydrolysis released only 5% of the radioactivity from 3-OHBaP-hemoglobin adducts. After gel filtration, the 3-OHBaP-hemoglobin adducts were examined by HPLC analysis. A single peak of radioactivity was detected at the same retention time as the heme component of hemoglobin. Unbound 3-OHBaP was oxidized to BaP-3,6-dione during incubation with ferric hemoglobin. Treatment of hemoglobin with ascorbic acid decreased the formation of hemoglobin adducts by 33%, while hydrogen peroxide treatment increased adduct formation by 44%. Incubation of [(3)H]-BaP-3-beta-D-glucuronide (BaP-3G) with hemoglobin and beta-glucuronidase resulted in greater binding to hemoglobin than incubation with [(3)H]-3-OHBaP alone. The hemoglobin adduct obtained from [(3)H]-BaP-3G also co-migrated with heme. These results indicate that an oxidative process is involved in formation of the heme adduct and that 3-OHBaP or BaP-3G might be a precursor of the bound metabolite.  相似文献   

11.
Glutathione reacts with orthophthalaldehyde to form a stable, highly fluorescent tricyclic derivative which is easily separated and quantitated by high-performance liquid chromatography. Separation of the glutathione adduct is achieved by isocratic elution over a reverse-phase column with 7.5% methanol/92.5% 0.15 M sodium acetate, pH 7.00. The adduct is detected fluorometrically and quantitated by integration of peak area. Detection of 0.1 to 200 pmol glutathione produces a linear response and the recovery of reduced and oxidized glutathione from rat liver homogenate, bile, and plasma is quantitative. The chemical identity of the adduct was confirmed by mass spectrometry.  相似文献   

12.
This assay measures reduced (GSH), oxidized (GSSG, GSSR), and protein-bound (glutathione-protein mixed disulfides, ProSSG) glutathione in human plasma. Oxidized glutathione and ProSSG are converted to GSH in the presence of NaBH4, and, after precolumn derivatization with monobromobimane, GSH is quantitated by reversed-phase liquid chromatography and fluorescence detection. The NaBH4 concentration is optimized so that total recovery of oxidized glutathione is obtained and no interference with the formation/stability of the GSH-bimane adduct occurs. The presence of 50 microM dithioerythritol prevents reduced recovery at low concentrations of GSH, and the standard curve for GSH is linear over a wide concentration range and is super-imposed upon that obtained with GSSG. Selective determination of oxidized glutathione exploits the fact that N-ethylmaleimide (NEM) blocks free sulfhydryl groups and excess NEM is inactivated by the subsequent addition of NaBH4. To measure total glutathione including the protein-bound forms, the protein is solubilized with dimethyl sulfoxide, which is compatible with the other reagents and slightly increases the yield of the fluorescent GSH derivative. The assay is characterized by a sensitivity (less than 2 pmol) sufficiently high to detect the various forms of glutathione in plasma, by an analytical recovery of GSH and GSSG close to 100%, and by a within-day precision corresponding to a coefficient of variation of 7%. The assay was used to determine the dynamic relationships among various glutathione species in human plasma.  相似文献   

13.
Studies on the methyl isocyanate adducts with globin   总被引:6,自引:0,他引:6  
Isocyanates such as methylisocyanate (MIC), an intermediate in the synthesis of carbamate pesticides, or diisocyanates, used in the production of plastics, are highly reactive toxic compounds that spontaneously bind to biological macromolecules. In vivo formation of stable adducts with blood protein globin offers possibilities for biomonitoring of internal exposure to various reactive species. Thus, biomonitoring of the isocyanates through determination of their specific adducts with globin is a challenge. In this study, we characterized the adducts formed in human globin upon treatment with 100-fold molar excess of MIC. The globin was subject to enzymatic hydrolysis with pronase, and the hydrolysate was analysed by high performance liquid chromatography with positive atmospheric pressure chemical ionization mass spectrometric detection (HPLC/APCI-MS). The two major MIC adducts were those with N-terminal Val and side-chain of Lys, as confirmed by comparison with the synthetic standards. About 20 other adducts were observed, and several of them were tentatively identified using their MS and MS/MS spectra. Whereas detection of the adducts with Tyr and His was expected, the adducts with Trp and Phe, and a Lys adduct containing two MIC moieties, were probably analytical artifacts resulting from the transcarbamoylation during globin hydrolysis rather than products of direct carbamoylation. The other detected products were MIC-Val-His, derived from the N-terminal dipeptide of globin beta-chain, and dipeptides consisting of MIC-Lys attached to Gly, Val, Leu, Thr, and Glu. Failure to detect the corresponding non-modified dipeptides suggests that the pronase action may be hampered by the amino acid modification. MIC is known as a metabolic intermediate of the industrial solvents N,N-dimethylformamide (DMF) and N-methylformamide (MF) in humans and rats. The HPLC/APCI-MS analysis of globin from rats injected with DMF or MF, 1000 mg/kg, revealed the presence of the MIC adducts with both Val and Lys. The level of the Val adduct in globin from the DMF-dosed rats, determined using Edman degradation and GC/MS, was ca. 40 nmol/g, which is a level common in workers occupationally exposed to DMF. This suggests that also the Lys adduct in such human globin samples can be feasible to analysis and is therefore considered for further studies as a potential biomarker of exposure to DMF.  相似文献   

14.
A sensitive precolumn derivatization method has been developed to measure the 5'-triphosphate of 2'-beta-fluoro-2',3'-dideoxyadenosine (F-ddA, lodenosine), a new anti-HIV drug, in human lymphocytes by HPLC using fluorescence detection. Reaction of chloroacetaldehyde with F-ddA triphosphate in extracts from human lymphocytes produces a highly fluorescent etheno adduct. This derivative is then separated and quantitated by reverse-phase paired-ion chromatography. Degradation of natural nucleic acid ribosides, such as ATP, using periodate oxidation simplifies the chromatogram and minimizes interference with detection of the target analyte. This method, modeled using cultured MOLT-4 T-lymphocytes, achieves a linear detector response for peak area measurements over the range 2.5 to 22.5 pmol (50-450 nM using 50 microl sample). Analyte recovery is greater than 90%, and the method achieves a limit of detection and limit of quantitation of 1.4 and 2.5 pmol per HPLC injection (50 microl sample containing cellular extract from 2.5 x 10(6) cells), respectively. Application of this method to measure F-ddATP in peripheral blood mononuclear cells from HIV-infected patients treated with F-ddA at 3.2 mg/kg twice daily for 22 days shows F-ddATP levels which range from 1.5 to 3.5 pmol/10(6) cells.  相似文献   

15.
The formation of N-(2-hydroxyethyl)valine (HEV) in hemoglobin has been considered as a biomarker to assess exogenous and endogenous exposures to ethylene oxide (EO) and/or ethylene (ET). Factors associated with daily exposures to such compounds might significantly affect the formation of HEV. Tobacco smoke containing EO elicited a significant increase in the levels of HEV amongst smokers, although other factors related to lifestyles may warrant further studies. The objective of this study was to specifically analyze HEV using a modified Edman degradation technique in order to study the association between lifestyle related factors (smoking, second-hand smoke exposure, tea and alcohol consumption) and HEV formation in vivo. Total of 148 Taiwanese volunteers with no history of occupational exposure to either EO or ET were recruited in this study. The HEV levels for smokers (204 +/- 151 pmol HEV/g globin, n = 70 ) were greater than those for non-smokers (57 +/- 46 pmol HEV/g globin, n = 78), HEV level increasing with the number of cigarettes smoked by subjects per day with a rate of 8.8 pmol HEV/g globin per cigarettes per day. Further analysis revealed that the rate of HEV formation in our study subjects was significantly associated with the number of daily cigarettes smoked (P < 0.001), but was not associated with tea or alcohol consumption, second-hand smoke exposure, subject age, or subject gender. These results suggest that the significantly higher levels of HEV for smokers than for non-smokers were mainly due to subject exposure to EO contained in cigarette smoke.  相似文献   

16.
Blood and urine were obtained from male Sprague-Dawley rats and B6C3F1 mice exposed to either a single 6 h or multiple daily (5 x 6 h) nose-only doses of 1,3-[2,3- (14)C]-butadiene at atmospheric concentrations of 1, 5 or 20 ppM. Globin was isolated from erythrocytes of exposed animals and analyzed for total radioactivity and also for N-(1,2,3-trihydroxybut-4-yl)-valine adducts. The modified Edman degradation procedure coupled with GC-MS was used for the adduct analysis. Linear relationships were observed between the exposures to 1,3-[2,3-(14)C]-butadiene and the total radioactivity measured in globin and the level of trihydroxybutyl valine adducts in globin. A greater level of radioactivity (ca. 1.3-fold) was found in rat globin compared with mouse globin. When analyzed for specific amino acid adducts, higher levels of trihydroxybutyl valine adducts were found in mouse globin compared with rat globin. Average levels of trihydroxybutyl valine adduct measured in globin from rats and mice exposed for 5 x 6 h at 1, 5 and 20 ppM 1,3-[2,3-(14)C]-butadiene were, respectively, for rats: 80, 179, 512 pM/g globin and for mice: 143, 351, 1100 pM/g globin. The profiles of urinary metabolites for rats and mice exposed at the different concentrations of butadiene were obtained by reverse phase HPLC analysis on urine collected 24 h after the start of exposure and were compared with results of a previous similar study carried out for 6 h at 200 ppM butadiene. Whilst there were qualitative and quantitative differences between the profiles for rats and mice, the major metabolites detected in both cases were those representing products of epoxide hydrolase mediated hydrolysis and glutathione (GSH) conjugation of the metabolically formed 1,2-epoxy-3-butene. These were 4-(N-acetyl-l-cysteine-S-yl)-1,2-dihydroxy butane and (R)-2-(N-acetyl-l-cystein-S-yl)-1-hydroxybut-3-ene, 1-(N-acetyl-l-cystein-S-yl)-2-(S)-hydroxybut-3-ene, 1-(N-acetyl-l-cystein-S-yl)-2-(R)-hydroxybut-3-ene, (S)-2-(N-acetyl-l-cystein-S-yl)-1-hydroxybut-3-ene, respectively. The former pathway showed a greater predominance in the rat. The profiles of metabolites were similar at exposure concentration in the range 1-20 ppM. There were however some subtle differences compared with results of exposure to the higher 200 ppM concentrations. Overall the results provide the basis for cross species comparison of low exposures in the range of occupational exposures, with the wealth of data available from high exposure studies.  相似文献   

17.
Butadiene (BD) metabolism shows gender, species and concentration dependency, making the extrapolation of animal results to humans complex. BD is metabolized mainly by cytochrome P450 2E1 to three epoxides, 1,2-epoxy-3-butene (EB), 1,2;3,4-diepoxybutane (DEB) and 1,2-epoxy-butanediol (EB-diol). For accurate risk assessment it is important to elucidate species differences in the internal formation of the individual epoxides in order to assign the relative risks associated with their different mutagenic potencies. Analysis of N-terminal globin adducts is a common approach for monitoring the internal formation of BD derived epoxides. Our long term strategy is to develop an LC-MS/MS method for simultaneous detection of all three BD hemoglobin adducts. This approach is modeled after the recently reported immunoaffinity LC-MS/MS method for the cyclic N,N-(2,3-dihydroxy-1,4-butadyil)-valine (pyr-Val, derived from DEB). We report herein the analysis of the EB-derived 2-hydroxyl-3-butenyl-valine peptide (HB-Val). The procedure utilizes trypsin hydrolysis of globin and immunoaffinity (IA) purification of alkylated heptapeptides. Quantitation is based on LC-MS/MS monitoring of the transition from the singly charged molecular ion of HB-Val (1-7) to the a(1) fragment. Human HB-Val (1-11) was synthesized and used for antibody production. As internal standard, the labeled rat-[(13)C(5)(15)N]-Val (1-11) was prepared through direct alkylation of the corresponding peptide with EB. Standards were characterized and quantified by LC-MS/MS and LC-UV. The method was validated with different amounts of human HB-Val standard. The recovery was >75% and coefficient of variation <25%. The LOQ was set to 100 fmol/injection. For a proof of principal experiment, globin samples from male and female rats exposed to 1000 ppm BD for 90 days were analyzed. The amounts of HB-Val present were 268.2+/-56 and 350+/-70 pmol/g (mean+/-S.D.) for males and females, respectively. No HB-Val was detected in controls. These data are much lower compared to previously reported values measured by GC-MS/MS. The difference may be due higher specificity of the LC-MS/MS method to the N-terminal peptide from the alpha-chain versus derivatization of both alpha- and beta-chain by Edman degradation, and possible instability of HB-Val adducts during long term storage (about 10 years) between the analyses. These differences will be resolved by examining recently collected samples, using the same internal standard for parallel analysis by GC-MS/MS and LC-MS/MS. Based on our experience with pyr-Val adduct assay we anticipate that this assay will be suitable for evaluation of HB-Val in multiple species.  相似文献   

18.
Ethylene oxide (EO) is an important industrial compound and a directly acting mutagen. Human exposure to it can be monitored by the determination of haemoglobin (Hb) adducts. An immunoassay that quantifies the N-terminal adduct N-(2-hydroxyethyl)valine in whole blood was developed and its potential usefulness as a tool for biologically monitoring occupational exposure demonstrated. Analytical reliability was confirmed in a comparative study with gas chromatography-mass spectrometry (range 0.040-589 nmol g-1 Hb, correlation coefficient 0.98, n=10). The assay was configured as a competitive enzyme-linked immunosorbent assay to facilitate the rapid throughput of samples. The assay uses a whole blood matrix and has a working range of 10-10 000 pmol N-(2-hydroxethyl)valine g-1 Hb. The assay does not appear to be affected by structurally similar metabolites and has been used to determine adducts in human blood samples. The first results from potentially exposed workers indicate the assay might be a powerful tool for the routine occupational biomonitoring of EO exposure.  相似文献   

19.
研究HeLa细胞膜上甲胎蛋白 (alpha fetoprotein ,AFP)受体的存在情况及其介导的信号转导 .先用Na[12 5I]标记AFP ;标记的AFP和培养的HeLa细胞结合 ,Scatchard法和受体 配体结合法分析受体数目 ;再用放射免疫结合法分析在百日咳毒素 (pertussistoxin ,PTX)预处理前后AFP对细胞内环腺苷酸 (cAMP)浓度及细胞内蛋白激酶A(proteinkinaseA ,PKA)活性变化的影响 .在HeLa细胞膜表面存在 2种不同解离平衡常数 (Kd)的AFP受体 ,Kd1=5 2pmol L(2 10 0位点 细胞 ) ;Kd2 =2 3nmol L (114 0 0位点 细胞 ) .在AFP(2 0mg L)作用下 ,HeLa细胞内cAMP浓度变化及PKA活性的改变为与对照组比较 ,用PTX预处理前cAMP浓度升高 2 6 7% ,PKA活性增高 10 3 2 % ;用PTX预处理后升高 86 % ,PKA活性增高 2 5 3% .抗甲胎蛋白单克隆抗体可阻断AFP对细胞cAMP浓度和PKA活性的影响 .结果证明 ,在HeLa细胞膜上有 2种不同解离平衡常数的甲胎蛋白受体存在 ,受体有可能通过cAMP PKA途径介导信号转导 .  相似文献   

20.
A rapid and sensitive enzymatic assay for measuring picomole quantities of acetyl-CoA, acetylcholine (ACh), and choline from the same tissue extract has been developed. After ACh and choline were extracted into 15% 1 N formic acid/85% acetone, the pellet was further extracted with 5% trichloroacetic acid (TCA) to remove the remaining acetyl-CoA. The two extraction solvents were pooled and lipids, organic solvents, and TCA were removed first by a heptane-chloroform wash followed by an ether extraction. In the acetyl-CoA assay, endogenous ACh and choline were removed by extractions with sodium tetraphenylboron in butenenitrile prior to the enzymatic reactions. The acetyl-CoA remaining in the aqueous phase was then converted enzymatically to labelled ACh in the presence of [Me-14C]choline using choline acetyltransferase. The unreacted labelled precursor was converted to choline phosphate by the enzyme choline kinase. The [14C]ACh formed from acetyl-CoA was extracted into sodium tetraphenylboron in butenenitrile and a portion of the organic phase containing the [14C]ACh was counted in a scintillation counter. Acetylcholine and choline were assayed from the same tissue extracts by a modification of the procedure by SHEA & APRISON (1973). Acetyl-CoA levels in rat whole brain when killed by the near-freezing procedure were found to be 5.50 ± 0.2 nmol/g. The content of acetyl-CoA was the same whether the rats were killed by the near-freezing method or by total freezing in liquid nitrogen. The levels of acetyl-CoA did not change with time after death when the tissue was maintained at a temperature of ?10°C. In the same tissue extracts from rat whole brain killed by the near-freezing method, the content of ACh was 20.6 ± 0.7 nmol/g and choline 58.2 ± 1.2 nmol/g. Although reproducible, the level reported for choline is high when assayed under this condition. The content of choline however after total freezing was found to be 25.2 ± 2.0 nmol/g. The sensitivity (d. p. m. of sample twice blank) is 10 pmol for the acetyl-CoA assay and 25 pmol for the ACh and choline assays. The regional distribution of these three compounds in the brain of rats as well as the content of acetyl-CoA in heart, liver and kidney are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号