首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Heparan sulfate proteoglycans (HSPGs), a class of glycosaminoglycan-modified proteins, control diverse patterning events via their regulation of growth-factor signaling and morphogen distribution. In C. elegans, zebrafish, and the mouse, heparan sulfate (HS) biosynthesis is required for normal axon guidance, and mutations affecting Syndecan (Sdc), a transmembrane HSPG, disrupt axon guidance in Drosophila embryos. Glypicans, a family of glycosylphosphatidylinositol (GPI)-linked HSPGs, are expressed on axons and growth cones in vertebrates, but their role in axon guidance has not been determined. We demonstrate here that the Drosophila glypican Dally-like protein (Dlp) is required for proper axon guidance and visual-system function. Mosaic studies revealed that Dlp is necessary in both the retina and the brain for different aspects of visual-system assembly. Sdc mutants also showed axon guidance and visual-system defects, some that overlap with dlp and others that are unique. dlp+ transgenes were able to rescue some sdc visual-system phenotypes, but sdc+ transgenes were ineffective in rescuing dlp abnormalities. Together, these findings suggest that in some contexts HS chains provide the biologically critical component, whereas in others the structure of the protein core is also essential.  相似文献   

2.
Axon guidance is influenced by the presence of heparan sulfate (HS) proteoglycans (HSPGs) on the surface of axons and growth cones (Hu, [2001]: Nat Neurosci 4:695-701; Irie et al. [2002]: Development 129:61-70; Inatani et al. [2003]: Science 302:1044-1046; Johnson et al. [2004]: Curr Biol 14:499-504; Steigemann et al. [2004]: Curr Biol 14:225-230). Multiple HSPGs, including Syndecans, Glypicans and Perlecans, carry the same carbohydrate polymer backbones, raising the question of how these molecules display functional specificity during nervous system development. Here we use the Drosophila central nervous system (CNS) as a model to compare the impact of eliminating Syndecan (Sdc) and/or the Glypican Dally-like (Dlp). We show that Dlp and Sdc share a role in promoting accurate patterns of axon fasciculation in the lateral longitudinal neuropil; however, unlike mutations in sdc, which disrupt the ability of the secreted repellent Slit to prevent inappropriate passage of axons across the midline, mutations in dlp show neither midline defects nor genetic interactions with Slit and its Roundabout (Robo) receptors at the midline. Dlp mutants do show genetic interactions with Slit and Robo in lateral fascicle formation. In addition, simultaneous loss of Dlp and Sdc demonstrates an important role for Dlp in midline repulsion, reminiscent of the functional overlap between Robo receptors. A comparison of HSPG distribution reveals a pattern that leaves midline proximal axons with relatively little Dlp. Finally, the loss of Dlp alters Slit distribution distal but not proximal to the midline, suggesting that distinct yet overlapping pattern of HSPG expression provides a spatial system that regulates axon guidance decisions.  相似文献   

3.
The dimensions of neuronal dendrites, axons, and synaptic terminals are reproducibly specified for each neuron type, yet it remains unknown how these structures acquire their precise dimensions of length and diameter. Similarly, it remains unknown how active zone number and synaptic strength are specified relative the precise dimensions of presynaptic boutons. In this paper, we demonstrate that S6 kinase (S6K) localizes to the presynaptic active zone. Specifically, S6K colocalizes with the presynaptic protein Bruchpilot (Brp) and requires Brp for active zone localization. We then provide evidence that S6K functions downstream of presynaptic PDK1 to control synaptic bouton size, active zone number, and synaptic function without influencing presynaptic bouton number. We further demonstrate that PDK1 is also a presynaptic protein, though it is distributed more broadly. We present a model in which synaptic S6K responds to local extracellular nutrient and growth factor signaling at the synapse to modulate developmental size specification, including cell size, bouton size, active zone number, and neurotransmitter release.  相似文献   

4.
The heparan sulfate proteoglycan (HSPG) Syndecan (Sdc) is a crucial regulator of synapse development and growth in both vertebrates and invertebrates. In Drosophila, Sdc binds via its extracellular heparan sulfate (HS) sidechains to the receptor protein tyrosine phosphatase LAR to promote the morphological growth of the neuromuscular junction (NMJ). To date, however, little else is known about the molecular mechanisms by which Sdc functions to promote synapse growth. Here we show that all detectable Sdc found at the NMJ is provided by the muscle, strongly suggesting a post-synaptic role for Sdc. We also show that both the cytoplasmic and extracellular domains of Sdc are required to promote synapse growth or to rescue Sdc loss of function. We report the results of a yeast two-hybrid screen using the cytoplasmic domains of Sdc as bait, and identify several novel candidate binding partners for the cytoplasmic domains of Sdc. Together, these studies provide new insight into the mechanism of Sdc function at the NMJ, and provide enticing future directions for further exploring how Sdc promotes synapse growth.  相似文献   

5.
Yan D  Lin X 《Developmental biology》2007,312(1):203-216
Previous studies in Drosophila have shown that heparan sulfate proteoglycans (HSPGs) are involved in both breathless (btl)- and heartless (htl)-mediated FGF signaling during embryogenesis. However, the mechanism(s) by which HSPGs control Btl and Htl signaling is unknown. Here we show that dally-like (dlp, a Drosophila glypican) mutant embryos exhibit severe defects in tracheal morphogenesis and show a reduction in btl-mediated FGF signaling activity. However, htl-dependent mesodermal cell migration is not affected in dlp mutant embryos. Furthermore, expression of Dlp, but not other Drosophila HSPGs, can restore effectively the tracheal morphogenesis in dlp embryos. Rescue experiments in dlp embryos demonstrate that Dlp functions only in Bnl/FGF receiving cells in a cell-autonomous manner, but is not essential for Bnl/FGF expression cells. To further dissect the mechanism(s) of Dlp in Btl signaling, we analyzed the role of Dlp in Btl-mediated air sac tracheoblast formation in wing discs. Mosaic analysis experiments show that removal of HSPG activity in FGF-producing or other surrounding cells does not affect tracheoblasts migration, while HSPG mutant tracheoblast cells fail to receive FGF signaling. Together, our results argue strongly that HSPGs regulate Btl signaling exclusively in FGF-receiving cells as co-receptors, but are not essential for the secretion and distribution of the FGF ligand. This mechanism is distinct from HSPG functions in morphogen distribution, and is likely a general paradigm for HSPG functions in FGF signaling in Drosophila.  相似文献   

6.
Fox AN  Zinn K 《Current biology : CB》2005,15(19):1701-1711
BACKGROUND: Receptor tyrosine phosphatases (RPTPs) are essential for axon guidance and synaptogenesis in Drosophila. Each guidance decision made by embryonic motor axons during outgrowth to their muscle targets requires a specific subset of the five neural RPTPs. The logic underlying these requirements, however, is still unclear, partially because the ligands recognized by RPTPs at growth cone choice points have not been identified. RPTPs in general are still "orphan receptors" because, while they have been found to interact in vitro with many different proteins, their in vivo ligands are unknown. RESULTS: Here we use a new type of deficiency screen to identify the transmembrane heparan sulfate proteoglycan Syndecan (Sdc) as a ligand for the neuronal RPTP LAR. LAR interacts with the glycosaminoglycan chains of Syndecan in vitro with nanomolar affinity. Genetic interaction studies using Sdc and Lar LOF mutations demonstrate that Sdc contributes to LAR's function in motor axon guidance. We also show that overexpression of Sdc on muscles generates the same phenotype as overexpression of LAR in neurons and that genetic removal of LAR suppresses the phenotype produced by ectopic muscle Sdc. Finally, we show that there is at least one additional, nonproteoglycan, ligand for LAR encoded in the genome. CONCLUSIONS: Taken together, our results demonstrate that Sdc on muscles can interact with neuronal LAR in vivo and that binding to Sdc increases LAR's signaling efficacy. Thus, Sdc is a ligand that can act in trans to positively regulate signal transduction through LAR within neuronal growth cones.  相似文献   

7.
The presentation of secreted axon guidance factors plays a major role in shaping central nervous system (CNS) connectivity. Recent work suggests that heparan sulfate (HS) regulates guidance factor activity; however, the in vivo axon guidance roles of its carrier proteins (heparan sulfate proteoglycans, or HSPGs) are largely unknown. Here we demonstrate through genetic analysis in vivo that the HSPG Syndecan (Sdc) is critical for the fidelity of Slit repellent signaling at the midline of the Drosophila CNS, consistent with the localization of Sdc to CNS axons. sdc mutants exhibit consistent defects in midline axon guidance, plus potent and specific genetic interactions supporting a model in which HSPGs improve the efficiency of Slit localization and/or signaling. To test this hypothesis, we show that Slit distribution is altered in sdc mutants and that Slit and its receptor bind to Sdc. However, when we compare the function of the transmembrane Sdc to a different class of HSPG that localizes to CNS axons (Dallylike), we find functional redundancy, suggesting that these proteoglycans act as spatially specific carriers of common HS structures that enable growth cones to interact with and perceive Slit as it diffuses away from its source at the CNS midline.  相似文献   

8.
Dendritic arborization is a critical neuronal differentiation process. Here, we demonstrate that syndecan-2 (Sdc2), a synaptic heparan sulfate proteoglycan that triggers dendritic filopodia and spine formation, regulates dendritic arborization in cultured hippocampal neurons. This process is controlled by sterile α and TIR motif-containing 1 protein (Sarm1), a negative regulator of Toll-like receptor 3 (TLR3) in innate immunity signaling. We show that Sarm1 interacts with and receives signal from Sdc2 and controls dendritic arborization through the MKK4-JNK pathway. In Sarm1 knockdown mice, dendritic arbors of neurons were less complex than those of wild-type littermates. In addition to acting downstream of Sdc2, Sarm1 is expressed earlier than Sdc2, which suggests that it has multiple roles in neuronal morphogenesis. Specifically, it is required for proper initiation and elongation of dendrites, axonal outgrowth, and neuronal polarization. These functions likely involve Sarm1-mediated regulation of microtubule stability, as Sarm1 influenced tubulin acetylation. This study thus reveals the molecular mechanism underlying the action of Sarm1 in neuronal morphogenesis.  相似文献   

9.
Molecular organization of the presynaptic active zone   总被引:1,自引:0,他引:1  
The exocytosis of neurotransmitter-filled synaptic vesicles is under tight temporal and spatial control in presynaptic nerve terminals. The fusion of synaptic vesicles is restricted to a specialized area of the presynaptic plasma membrane: the active zone. The protein network that constitutes the cytomatrix at the active zone (CAZ) is involved in the organization of docking and priming of synaptic vesicles and in mediating use-dependent changes in release during short-term and long-term synaptic plasticity. To date, five protein families whose members are highly enriched at active zones (Munc13s, RIMs, ELKS proteins, Piccolo and Bassoon, and the liprins-α), have been characterized. These multidomain proteins are instrumental for the diverse functions performed by the presynaptic active zone.In our laboratories, work on the molecular organization of the active zone is supported by the Deutsche Forschungsgemeinschaft (Emmy Noether Fellowship, SFB645/A4 to S.S., SFB426/A1 to E.D.G.), the European Commission (SynScaff Consortium), the Land Sachsen-Anhalt (LSA-N2), the Fonds der Chemischen Industrie, and a Max Planck Research Award by the Max Planck Society, the Alexander von Humboldt Society, and local funding (BONFOR to S.S.).  相似文献   

10.
Reliable delivery of presynaptic material, including active zone and synaptic vesicle proteins from neuronal somata to synaptic terminals, is prerequisite for successful synaptogenesis and neurotransmission. However, molecular mechanisms controlling the somatic assembly of presynaptic precursors remain insufficiently understood. We show here that in mutants of the small GTPase Rab2, both active zone and synaptic vesicle proteins accumulated in the neuronal cell body at the trans-Golgi and were, consequently, depleted at synaptic terminals, provoking neurotransmission deficits. Ectopic presynaptic material accumulations consisted of heterogeneous vesicles and short tubules of 40 × 60 nm, segregating in subfractions either positive for active zone or synaptic vesicle proteins and LAMP1, a lysosomal membrane protein. Genetically, Rab2 acts upstream of Arl8, a lysosomal adaptor controlling axonal export of precursors. Collectively, we identified a Golgi-associated assembly sequence of presynaptic precursor biogenesis dependent on a Rab2-regulated protein export and sorting step at the trans-Golgi.  相似文献   

11.
Deciphering the function of synaptic release sites is central to understanding neuronal communication. Here, we review studies of the lamprey giant reticulospinal synapse, a model that can be used to dissect synaptic vesicle trafficking at single release sites. The presynaptic axon is large and contains active zones that are spatially separated from each other. During activity, synaptic vesicle membrane is shuttled between the active zone and the periactive zone at which endocytosis occurs. Recent studies have shown that the periactive zone contains an actin-rich cytomatrix that expands during synaptic activity. This cytomatrix has been implicated in multiple functions that include (1) activity-dependent trafficking of proteins between the synaptic vesicle cluster and the periactive zone, (2) synaptic vesicle endocytosis, and (3) the movement of newly formed synaptic vesicles to the vesicle cluster. The actin cytomatrix thus provides a link between the active zone and the periactive zone; this link appears to be critical for sustained cycling of synaptic vesicles.This work was supported by Swedish Research Council grants (K2004-33X-11287-10A, LB; K2005-32X-13473-06A, OS).  相似文献   

12.
ABSTRACT

Maintaining the integrity and function of the presynaptic neurotransmitter release apparatus is a demanding process for a post-mitotic neuron; the mechanisms behind it are still unclear. BSN (bassoon), an active zone scaffolding protein, has been implicated in the control of presynaptic macroautophagy/autophagy, a process we recently showed depends on poly-ubiquitination of synaptic proteins. Moreover, loss of BSN was found to lead to smaller synaptic vesicle (SV) pools and younger pools of the SV protein SV2. Of note, the E3 ligase PRKN/parkin appears to be involved in BSN deficiency-related changes in autophagy levels, as shRNA-mediated knockdown of PRKN counteracts BSN-deficiency and rescues decreased SV protein levels as well as impaired SV recycling in primary cultured neurons. These data imply that BSN and PRKN act in concert to control presynaptic autophagy and maintain presynaptic proteostasis and SV turnover at the physiologically required levels.  相似文献   

13.
Active zones are specialized regions of the presynaptic plasma membrane designed for the efficient and repetitive release of neurotransmitter via synaptic vesicle (SV) exocytosis. Piccolo is a high molecular weight component of the active zone that is hypothesized to participate both in active zone formation and the scaffolding of key molecules involved in SV recycling. In this study, we use interference RNAs to eliminate Piccolo expression from cultured hippocampal neurons to assess its involvement in synapse formation and function. Our data show that Piccolo is not required for glutamatergic synapse formation but does influence presynaptic function by negatively regulating SV exocytosis. Mechanistically, this regulation appears to be calmodulin kinase II-dependent and mediated through the modulation of Synapsin1a dynamics. This function is not shared by the highly homologous protein Bassoon, which indicates that Piccolo has a unique role in coupling the mobilization of SVs in the reserve pool to events within the active zone.  相似文献   

14.
S Tsuji 《Histochemistry》1985,83(3):213-219
Using rapid ionic fixation with molybdic or tungstic heteropolyanions (strong precipitating agents of quaternary ammonium cations such as choline and acetylcholine), acetylcholine-like cations were localized as point-like precipitates in the synaptic vesicles of resting (electrically nonstimulated) motor nerve terminals. When performed at low temperature, the same procedure revealed spot-like precipitates (presumed to be exocytotically released acetylcholine-like cations) in the synaptic cleft in the vicinity of the active zone. These precipitates were often seen in paired forms. Unlike resting motor-nerve terminals, excited terminals (electrical stimulation with occasional 4-aminopyridine pretreatment) after ionic fixation exhibited, at first, laminar precipitates both in the vicinity of the active zone inside the nerve terminals and in the synaptic space. In the vicinity of the active zone, the laminar precipitates were directed towards the synaptic membrane, while those in the synaptic space showed no orientation. Ionic fixation also revealed diffused precipitates both around the synaptic vesicles and on the axoplasmic side of the presynaptic membrane. Finally, the same fixation procedure demonstrated the presence of empty synaptic vesicles (without point-like precipitates) in close contact with the presynaptic membrane. The laminar and diffused precipitates are presumed to be two different forms of the same salts of acetylcholine-like cations that are insolubilized by ionic fixation in both the nerve terminals and the synaptic space of excited motor end-plates.  相似文献   

15.
Synaptic adhesion molecules, which coordinately control structural and functional changes at both sides of synapses, are important for synaptogenesis and synaptic plasticity. Because they physically form homophilic or heterophilic adhesions across synaptic junctions, these molecules can initiate transsynaptic communication in both anterograde and retrograde directions. Using optical imaging approaches, we investigated whether an increase in postsynaptic N‐cadherin could correspondingly alter the function of connected presynaptic terminals. Postsynaptic expression of β‐catenin Y654F, a phosphorylation‐defective form with enhanced binding to N‐cadherin, is sufficient to increase postsynaptic surface levels of N‐cadherin and consequently promote presynaptic reorganizations. Such reorganizations include increases in the densities of the synaptic vesicle protein, Synaptotagmin 1 and the active zone scaffold protein, Bassoon, the number of active boutons and the size of the total recycling vesicle pool. In contrast, synaptic vesicle turnover is significantly impaired, preventing the exchange of synaptic vesicles with adjacent boutons. Together, N‐cadherin‐mediated retrograde signaling, governed by phosphoregulation of postsynaptic β‐catenin Y654, coordinately modulates presynaptic vesicle dynamics to enhance synaptic communication in mature neurons. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 61–74, 2017  相似文献   

16.
Wang PY  Chang WL  Pai LM 《Fly》2008,2(3):118-120
Morphogen gradients provide unique positional information within a tissue. Cells that are sensitive to the concentration of the morphogen integrate this signal and develop an appropriately distinct cell fate. A morphogen gradient is usually generated by a restricted source and shaped by the speed of diffusion and stability of the signaling molecule. In addition, the availability of receptor and Heparan Sulfate Proteoglycans (HSPGs) help to shape the gradient. We have shown that overexpression of Dally-like protein (Dlp) causes an expansion of Gurken distribution and a loss of cell fates which are specified by high levels of epidermal growth factor receptor (Egfr) signaling. In this article, we discuss how D-Cbl mediated Egfr endocytosis and the levels of Dlp affect the shape of the Gurken gradient.  相似文献   

17.
《Fly》2013,7(3):118-120
Morphogen gradients provide unique positional information within a tissue. Cells that are sensitive to the concentration of the morphogen integrate this signal and develop an appropriately distinct cell fate. A morphogen gradient is usually generated by a restricted source and shaped by the speed of diffusion and stability of the signaling molecule. In addition, the availability of receptor and Heparan Sulfate Proteoglycans (HSPGs) help to shape the gradient. We have shown that over-expression of Dally-like protein (Dlp) causes an expansion of Gurken distribution and a loss of cell fates which are specified by high levels of epidermal growth factor receptor (Egfr) signaling. In this article, we discuss how D-Cbl mediated Egfr endocytosis and the levels of Dlp affect the shape of the Gurken gradient.  相似文献   

18.
Here, we examine the synaptic function of the receptor protein tyrosine phosphatase (RPTP), Dlar, and an associated intracellular protein, Dliprin-alpha, at the Drosophila larval neuromuscular junction. We show that Dliprin-alpha and Dlar are required for normal synaptic morphology. We also find that synapse complexity is proportional to the amount of Dlar gene product, suggesting that Dlar activity determines synapse size. Ultrastructural analysis reveals that Dliprin-alpha and Dlar are required to define the size and shape of the presynaptic active zone. Accordingly, there is a concomitant decrease in synaptic transmission in both mutants. Finally, epistasis analysis indicates that Dliprin-alpha is required for Dlar's action at the synapse. These data suggest a model where Dliprin-alpha and Dlar cooperate to regulate the formation and/or maintenance of a network of presynaptic proteins.  相似文献   

19.
In an effort to elucidate the interactions between synaptic vesicles and the membrane of the active zone, we have investigated the structure of interneuronal asymmetric synapses in the neocortex of adult rats using thin-sectioning, freeze-fracture, and negative staining electron microscopy. We identified three subtypes of spherical synaptic vesicles. Type I were agranular vesicles of 47.5 ± 3.8 nm (mean SD,n = 24) in diameter usually seen aggregated in clusters in the presynaptic bouton. Type II synaptic vesicles were composed of a ∼45-nm-diameter lipid bilayer sphere encased in a cage 77 ± 4.6 nm (mean SD,n = 42) in diameter. The cage was composed of open-faced pentamers 20–22 nm/side arranged as a regular polyhedron. Type II caged vesicles were found in clusters at the boutons, adhered to the active zone, and were also present in axons. Type III synaptic vesicles appeared as electron-dense spheres 60–75 nm in diameter abutted to the membrane of the active zone. Clathrin-coated vesicles and pits of 116.6 ± 9 nm (mean SD,n = 14) in diameter were also present in both the pre- and postsynaptic sides. Freeze-fracture showed that some intrinsic membrane proteins in the active zone were arranged as pentamers exhibiting the same dimension of those forming cages (∼22 nm/side). From these data, we concluded that: (a) the presynaptic bouton contains a heterogeneous population of “caged” and “plain” synaptic vesicles and (b) type II synaptic vesicles bind to receptors in the active zone. Therefore, current models of transmitter release should take into account the substantial heterogeneity of the vesicle population and the binding of vesicular cages to the membrane of the active zone.  相似文献   

20.
Localization of presynaptic components to synaptic sites is critical for hippocampal synapse formation. Cell adhesion–regulated signaling is important for synaptic development and function, but little is known about differentiation of the presynaptic compartment. In this study, we describe a pathway that promotes presynaptic development involving p120catenin (p120ctn), the cytoplasmic tyrosine kinase Fer, the protein phosphatase SHP-2, and β-catenin. Presynaptic Fer depletion prevents localization of active zone constituents and synaptic vesicles and inhibits excitatory synapse formation and synaptic transmission. Depletion of p120ctn or SHP-2 similarly disrupts synaptic vesicle localization with active SHP-2, restoring synapse formation in the absence of Fer. Fer or SHP-2 depletion results in elevated tyrosine phosphorylation of β-catenin. β-Catenin overexpression restores normal synaptic vesicle localization in the absence of Fer or SHP-2. Our results indicate that a presynaptic signaling pathway through p120ctn, Fer, SHP-2, and β-catenin promotes excitatory synapse development and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号