首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been postulated that a coronary vasoconstriction during hypocapnia might be opposed by a compensating coronary vasodilatation due to impaired myocardial oxygen supply. The present study was performed first to examine whether a maximal decline in coronary sinus (CS) oxygen content was reached during hypocapnia. During hypercapnia a myocardial "over perfusion" has been demonstrated. The second purpose of the present study was to examine whether a myocardial "over perfusion" is essential to maintain a sufficient myocardial tissue oxygen supply during hypercapnia. Closed-chest dogs were anesthetized with pentobarbital and hypocapnia was induced by hyperventilation. Nitrogen gas and carbon dioxide could both be added to the inspiratory gas to create arterial hypoxemia (arterial SO2 65%) and hypercapnia, respectively. Arterial hypoxemia during hypocapnia increased myocardial blood flow (MBF) by 50%, while CS SO2 decreased significantly. The decrease in CS SO2 demonstrates a reserve capacity of myocardial oxygen extraction during hypocapnia, thereby ruling out any major coronary vasoconstriction during hypocapnia. Hypercapnia during normoxemia increased MBF, myocardial oxygen delivery, and CS SO2 substantially, but this was not observed when hypercapnia was created during arterial hypoxemia. From the present results we conclude that hypocapnia does not cause any major coronary vasoconstriction, while hypercapnia results in a myocardial "over perfusion," which is a luxury perfusion not essential to maintain sufficient myocardial oxygen supply during hypercapnia.  相似文献   

2.
低氧适应对家兔脑血流调节的影响   总被引:1,自引:0,他引:1  
本实验用电磁血流量法观察了低氧适应对家兔脑血流(CBF)调节的影响。结果表明,高CO_2和低O_2高CO_2时,适应组CBF改变不明显,对照组CBF明显增加(p<0.01)。两组脑脊液pH(pH_(CSF))均明显降低(p<0.05和p<0.01)。对照组低O_2高CO_2时的CBF比单独高CO_2增加更多。低CO_2、低O_2低CO_2及低O_2时,CBF和pH_(CSF)均接近于安静值。以低pH值脑脊液(CSF)脑内灌注,对照组CBF趋于增加,适应组不增加。将CO_2饱和的人工CSF用于局部脑表面,适应组脑膜微血管无明显扩张,对照组明显扩张(p<0.01)。该结果提示,低氧适应家兔脑血管和CBF对脑细胞外液H~ 和/或对低O_2的反应降低。  相似文献   

3.
Acute experiments on cats demonstrated a suppression of the cerebral vessels reaction to hypercapnia under condithacin, while the reaction to hypocapnia persisted. It is assumed that the effects of hypo- and hypercapnia on the cerebral vessels were realized by different mechanisms, i. e. reduction of prostaglandin concentration decreased the cerebral vessels sensitivity to hypercapnia and increased their sensitivity to hypocapnia.  相似文献   

4.
This study has assessed the regulation of arterial blood and cerebrospinal fluid acid-base status in seven healthy men, at 250 m altitude and after 5 and 10-11 days sojourn at 4,300 m altitude (PaO2 = 39 mmHg day 1 to 48 mmHg day 11). We assumed that observed changes in lumbar spinal fluid acid-base status paralleled those in cisternal CSF, under these relatively steady-state conditions. Ventilatory acclimatization during the sojourn (-14 mmHg PaCO2 at day 11) was accompanied by: 1) reductions in [HCO3-] (-5 to -7 meq/1) which were similar in arterial blood and CSF; 2) substantial, yet incomplete, compensation (70-75%) of both CSF and blood pH; and 3) a level of CSF pH which was maintained significantly alkaline (+0.05 +/- 0.01) to normoxic control values. These data at 4,300 m confirmed and extended our previous findings for more moderate conditions of chronic hypoxia. It was postulated that the magnitude and time course of pH compensation in the CSF during chronic hypoxia and/or hypocapnia are determined by corresponding changes in plasma [HCO2-].  相似文献   

5.
We have previously demonstrated a 40% increase in myocardial blood flow (MBF) during hypercapnia but no significant decrease of MBF during hypocapnia. The present study was undertaken to evaluate if epinephrine infusion, which increases both myocardial oxygen consumption (MVo2) and myocardial performance, might influence the effects of hypocapnia and hypercapnia on MBF. Induction of hypocapnia was performed by hyperventilation in closed-chest dogs anesthetized with pentobarbital. By adding carbon dioxide to the inspiratory gas, normocapnia and hypercapnia were created. Epinephrine infusion (0.8 microgram X kg-1 X min-1) increased MBF and cardiac output (CO) by 90 and 140%, respectively, while MVo2 was increased by 45%. Epinephrine had a direct coronary vasodilating effect in excess of myocardial needs evidenced by increased oxygen content of the coronary sinus blood. During epinephrine infusion, induction of hypocapnia effected no change of MBF, while myocardial oxygen extraction increased significantly. Although oxygen saturation (So2) and Po2 in the coronary sinus blood decreased, these values remained well above those with hypocapnia without epinephrine infusion, thereby excluding impaired oxygen supply to the heart. Hypercapnia induced an increase of MBF by nearly 40% despite the coronary vasodilatation already induced by epinephrine infusion.  相似文献   

6.
The effects of hypercapnia and hypocapnia on the activities of the cardiac and pulmonary vagal single fibers were examined in the decerebrated, unanesthetized, paralyzed, and vagotomized cats. The animals breathed 100% O2. Fractional end tidal CO2 concentration was raised to 9% by adding CO2 into the O2 inlet. Average discharge rate of efferent cardiac vagal units (n=10) increased from 1.0+/-0.3 to 2.2+/-0.3 Hz. Hypocapnia apnea was produced by hyperventilation. Activities of cardiac vagal units tested (n = 4) showed dramatic decrease (0.1+/-0.0 Hz). Mean arterial blood pressure did not change significantly under these conditions. In contrast, only instantaneous firing rate during inspiration was significantly increased for efferent pulmonary vagal units (n = 11) during hypercapnia. The activities of the 3 pulmonary vagal units tested with hypocapnia decreased significantly. We concluded that cardiac and pulmonary vagal neurons were excited by chemoreceptor input.  相似文献   

7.
The role of prostaglandins in producing cerebrovasodilation during hypercapnia was tested in goats. Cerebral blood flow (CBF) changes with increasing arterial PCO2 were measured before and after prostaglandin synthesis inhibition with indomethacin or ibuprofen. Both drugs produced significant decreases in CBF under control anesthetized conditions but had no significant effect on the cerebrovascular response to increased arterial PCO2. The effects of direct intracerebrovascular infusion of prostaglandin E2 (PGE2), prostaglandin F2α (PGF2α) and prostacyclin were also measured. In the dose range tested (0.1–1 ug/min) PGF2α had no significant effect on cerebral blood flow (CBF). Both PGE2 and PGI2 produced an increase in CBF and the increase produced by PGI2 was significantly greater than that produced by PGE2. The effectiveness of each compound in producing cerebrovascular changes is consistent with the endogenous distribution of prostaglandins within the brain. These results suggest that prostaglandins, particularly PGI1, may be important in modulating cerebrovascular tone but have no role in increasing CBF during hypercapnia.  相似文献   

8.
The influence of severe passive heat stress and hypohydration (Hypo) on cardiorespiratory and cerebrovascular function is not known. We hypothesized that 1) heating-induced hypocapnia and peripheral redistribution of cardiac output (Q) would compromise blood flow velocity in the middle cerebral artery (MCAv) and cerebral oxygenation; 2) Hypo would exacerbate the hyperthermic-induced hypocapnia, further decreasing MCAv; and 3) heating would reduce MCAv-CO2 reactivity, thereby altering ventilation. Ten men, resting supine in a water-perfused suit, underwent progressive hyperthermia [0.5 degrees C increments in core (esophageal) temperature (TC) to +2 degrees C] while euhydrated (Euh) or Hypo by 1.5% body mass (attained previous evening). Time-control (i.e., non-heat stressed) data were obtained on six of these subjects. Cerebral oxygenation (near-infrared spectroscopy), MCAv, end-tidal carbon dioxide (PetCO2) and arterial blood pressure, Q (flow model), and brachial and carotid blood flows (CCA) were measured continuously each 0.5 degrees C change in TC. At each level, hypercapnia was achieved through 3-min administrations of 5% CO2, and hypocapnia was achieved with controlled hyperventilation. At baseline in Hypo, heart rate, MCAv and CCA were elevated (P<0.05 vs. Euh). MCAv-CO2 reactivity was unchanged in both groups at all TC levels. Independent of hydration, hyperthermic-induced hyperventilation caused a severe drop in PetCO2 (-8+/-1 mmHg/ degrees C), which was related to lower MCAv (-15+/-3%/ degrees C; R2=0.98; P<0.001). Elevations in Q were related to increases in brachial blood flow (R2=0.65; P<0.01) and reductions in MCAv (R2=0.70; P<0.01), reflecting peripheral distribution of Q. Cerebral oxygenation was maintained, presumably via enhanced O2-extraction or regional differences in cerebral perfusion.  相似文献   

9.
Interaction of fatigue and hypercapnia in the canine diaphragm   总被引:1,自引:0,他引:1  
We studied 10 open-chest dogs and measured the pressure across the diaphragm (Pdi) in each period of the protocol during stimulation at frequencies of 1, 20, 50, and 80 Hz. Three ranges of arterial PCO2 (PaCO2) were examined: less than or equal to 26, 36-50, and greater than or equal to 89 Torr. The diaphragm was fatigued with repetitive phrenic stimulation (30 Hz). During the fatiguing activity, five of the animals were subjected to hypercapnia and the other five to hypocapnia. A frequency-Pdi curve was generated for each period in the protocol. The data show that 1) fatiguing to 50% of the initial Pdi value during hypercapnia was significantly more rapid than during hypocapnia; 2) both the prefatigue and postfatigue mean Pdi values over all interactions of frequency, fatigue, and PaCO2 were unaffected by the fatiguing environment (hypercapnia vs. hypocapnia); 3) the percent reduction of Pdi by hypercapnia was the same at all four frequencies; 4) hypocapnia did not alter either the pre- or postfatigue frequency-Pdi curve; and 5) one-half relaxation time, unaffected by PaCO2, was prolonged by fatigue. We conclude that the hypercapnic diaphragm has less endurance than the hypocapnic diaphragm and that although both fatigue and hypercapnia decrease Pdi, they appear to be separate entities working through different mechanisms.  相似文献   

10.
The effect of moderately extended, intermittent-hypoxia (IH) on cerebral perfusion during changes in CO2 was unknown. Thus, we assessed the changes in cerebral vascular conductance (CVC) and cerebral tissue oxygenation (ScO2) during experimental hypocapnia and hypercapnia following 14-day normobaric exposures to IH (10% O2). CVC was estimated from the ratio of mean middle cerebral arterial blood flow velocity (transcranial Doppler sonography) to mean arterial pressure (tonometry), and ScO2 in the prefrontal cortex was monitored by near-infrared spectroscopy. Changes in CVC and ScO2 during changes in partial pressure of end-tidal CO2 (PETCO2, mass spectrometry) induced by 30-s paced-hyperventilation (hypocapnia) and during 6-min CO2 rebreathing (hypercapnia) were compared before and after 14-day IH exposures in eight young nonsmokers. Repetitive IH exposures reduced the ratio of %ΔCVC/ΔPETCO2 during hypocapnia (1.00 ± 0.13 vs 1.94 ± 0.35 vs %/mmHg, P = 0.026) and the slope of ΔCVC/ΔPETCO2 during hypercapnia (1.79 ± 0.37 vs 2.97 ± 0.64 %/mmHg, P = 0.021), but had no significant effect on ΔScO2/ΔPETCO2. The ventilatory response to hypercapnia during CO2 rebreathing was significantly diminished following 14-day IH exposures (0.83 ± 0.07 vs 1.14 ± 0.09 L/min/mmHg, P = 0.009). We conclude that repetitive normobaric IH exposures significantly diminish variations of cerebral perfusion in response to hypercapnia and hypocapnia without compromising cerebral tissue oxygenation. This IH-induced blunting of cerebral vasoreactivity during CO2 variations helps buffer excessive oscillations of cerebral underperfusion and overperfusion while sustaining cerebral O2 homeostasis.  相似文献   

11.
The effects of 26 h of normoxic hypocapnia (PaCO2, 31 MMHg) vs. 26 h of hypocapnia plus hypobaric hypoxia (PaCO2 32, PaO2 57 mmHg) were compared with respect to: a) CSF acid-base status; and b) the spontaneous ventilation (at PIO2 145 mmHg) which followed the imposed (voluntary) hyperventilation. For each condition of prolonged hypocapnia, PaCO2 was held constant throughout and pHa and [HCO3-]a were constant over the final 6-10 h. We assumed that measured changes in lumbar CSF acid-base status paralleled those in cisternal CSF. Spontaneous hyperventilation followed both normoxic and hypoxic hypocapnia but was significantly greater following hypoxic hypocapnia. In the CSF, pH compensation after 26 h of hyperventilation was incomplete (similar to 45-50%), was similar to that in arterial blood, and was unaffected by a superimposed hypoxemia. These data were inconsistent with current theory which proposes the regulation of CSF [HCO2] via local mechanisms and, in turn, the mediation of ventilatory acclimatization to hypoxemia and/or hypocapnia via CSF [H+]. Alternative mediators of ventilatory acclimatization were postulated, including mechanisms both dependent on and independent of "chemoreceptor" stimuli.  相似文献   

12.
To study the mechanism of the action of progesterone on pulmonary ventilation during pregnancy, arterial and cerebrospinal fluid (CSF) acid-base parameters were measured in 59 pregnant and 36 nonpregnant women at the periods of follicular phase, luteal phase, early pregnancy, late pregnancy, and puerperium. Marked respiratory alkalosis in both arterial blood and CSF was observed in pregnancy and puerperium. The degree of hypocapnia observed in the luteal phase and during pregnancy was closely related to the progesterone level in arterial blood. In conclusion, it is unlikely that the observed hyperventilation results from stimulation at the central chemosensitive areas or peripheral chemoreceptors.  相似文献   

13.
Cerebral interstitial fluid (ISF) pH of ventral medulla or thalamus, cisternal cerebrospinal fluid (CSF) pH, and arterial blood pH, PCO2, and [HCO-3] were measured in chloralose-urethan-anesthetized, gallamine-paralyzed New Zealand White rabbits during 30-min episodes of either HCl or NaHCO3 intravenous infusions. ISF pH was measured continuously with glass microelectrodes (1- to 2-microns tip diameter). Cisternal CSF pH was measured continuously with an indwelling pH probe (1-mm tip diameter). Both ventral medullary and thalamic ISF [H+] changed significantly, whereas arterial PCO2 remained constant. CSF [H+] did not change. We conclude from these data that 1) changes in blood acid-base conditions are rapidly reflected in cerebral ISF and 2) transient differences in [H+] and [HCO-3] can exist between cerebral ISF and CSF.  相似文献   

14.
Individual effects of hypoxic hypoxia and hypercapnia on the cerebral circulation are well described, but data on their combined effects are conflicting. We measured the effect of hypoxic hypoxia on cerebral blood flow (CBF) and cerebral O2 consumption during normocapnia (arterial PCO2 = 33 +/- 2 Torr) and during hypercapnia (60 +/- 2 Torr) in seven pentobarbital-anesthetized lambs. Analysis of variance showed that neither the magnitude of the hypoxic CBF response nor cerebral O2 consumption was significantly related to the level of arterial PCO2. To determine whether hypoxic cerebral vasodilation during hypercapnia was restricted by reflex sympathetic stimulation we studied an additional six hypercapnic anesthetized lambs before and after bilateral removal of the superior cervical ganglion. Sympathectomy had no effect on base-line CBF during hypercapnia or on the CBF response to hypoxic hypoxia. We conclude that the effects of hypoxic hypoxia on CBF and cerebral O2 consumption are not significantly altered by moderate hypercapnia in the anesthetized lamb. Furthermore, we found no evidence that hypercapnia results in a reflex increase in sympathetic tone that interferes with the ability of cerebral vessels to dilate during hypoxic hypoxia.  相似文献   

15.
Clinical transcranial Doppler assessment of cerebral vasomotor reactivity (CVMR) uses linear regression of cerebral blood flow velocity (CBFV) vs. end-tidal CO(2) (Pet(CO(2))) under steady-state conditions. However, the cerebral blood flow (CBF)-Pet(CO(2)) relationship is nonlinear, even for moderate changes in CO(2). Moreover, CBF is increased by increases in arterial blood pressure (ABP) during hypercapnia. We used a modified rebreathing protocol to estimate CVMR during transient breath-by-breath changes in CBFV and Pet(CO(2)). Ten healthy subjects (6 men) performed 15 s of hyperventilation followed by 5 min of rebreathing, with supplemental O(2) to maintain arterial oxygen saturation constant. To minimize effects of changes in ABP on CVMR estimation, cerebrovascular conductance index (CVCi) was calculated. CBFV-Pet(CO(2)) and CVCi-Pet(CO(2)) relationships were quantified by both linear and nonlinear logistic regression. In three subjects, muscle sympathetic nerve activity was recorded. From hyperventilation to rebreathing, robust changes occurred in Pet(CO(2)) (20-61 Torr), CBFV (-44 to +104% of baseline), CVCi (-39 to +64%), and ABP (-19 to +23%) (all P < 0.01). Muscle sympathetic nerve activity increased by 446% during hypercapnia. The linear regression slope of CVCi vs. Pet(CO(2)) was less steep than that of CBFV (3 vs. 5%/Torr; P = 0.01). Logistic regression of CBF-Pet(CO(2)) (r(2) = 0.97) and CVCi-Pet(CO(2)) (r(2) = 0.93) was superior to linear regression (r(2) = 0.91, r(2) = 0.85; P = 0.01). CVMR was maximal (6-8%/Torr) for Pet(CO(2)) of 40-50 Torr. In conclusion, CBFV and CVCi responses to transient changes in Pet(CO(2)) can be described by a nonlinear logistic function, indicating that CVMR estimation varies within the range from hypocapnia to hypercapnia. Furthermore, quantification of the CVCi-Pet(CO(2)) relationship may minimize the effects of changes in ABP on the estimation of CVMR. The method developed provides insight into CVMR under transient breath-by-breath changes in CO(2).  相似文献   

16.
We tested the hypothesis that, following exposure to high altitude, cerebrovascular reactivity to CO2 and cerebral autoregulation would be attenuated. Such alterations may predispose to central sleep apnea at high altitude by promoting changes in brain PCO2 and thus breathing stability. We measured middle cerebral artery blood flow velocity (MCAv; transcranial Doppler ultrasound) and arterial blood pressure during wakefulness in conditions of eucapnia (room air), hypocapnia (voluntary hyperventilation), and hypercapnia (isooxic rebeathing), and also during non-rapid eye movement (stage 2) sleep at low altitude (1,400 m) and at high altitude (3,840 m) in five individuals. At each altitude, sleep was studied using full polysomnography, and resting arterial blood gases were obtained. During wakefulness and polysomnographic-monitored sleep, dynamic cerebral autoregulation and steady-state changes in MCAv in relation to changes in blood pressure were evaluated using transfer function analysis. High altitude was associated with an increase in central sleep apnea index (0.2 +/- 0.4 to 20.7 +/- 23.2 per hour) and an increase in mean blood pressure and cerebrovascular resistance during wakefulness and sleep. MCAv was unchanged during wakefulness, whereas there was a greater decrease during sleep at high altitude compared with low altitude (-9.1 +/- 1.7 vs. -4.8 +/- 0.7 cm/s; P < 0.05). At high altitude, compared with low altitude, the cerebrovascular reactivity to CO2 in the hypercapnic range was unchanged (5.5 +/- 0.7 vs. 5.3 +/- 0.7%/mmHg; P = 0.06), while it was lowered in the hypocapnic range (3.1 +/- 0.7 vs. 1.9 +/- 0.6%/mmHg; P < 0.05). Dynamic cerebral autoregulation was further reduced during sleep (P < 0.05 vs. low altitude). Lowered cerebrovascular reactivity to CO2 and reduction in both dynamic cerebral autoregulation and MCAv during sleep at high altitude may be factors in the pathogenesis of breathing instability.  相似文献   

17.
T A McCalden  R G Nath  K Thiele 《Life sciences》1984,34(19):1801-1807
The cerebral blood flow (CBF H/A) and the production of a stable prostacyclin metabolite, 6-Keto PGF 1 alpha ( 6KPGF ) was studied in 5 baboons in control, hypercapnic and hypoxic conditions. In steady-state conditions CBF H/A was measured by the clearance of an intra-arterial bolus injection of 133xenon and arterial and cerebral venous blood was sampled for assay of 6KPGF by radioimmunoassay. Both hypercapnia and hypoxia significantly increased CBF H/A and both increments were abolished by indomethacin. However, only hypoxia showed an increased 6KPGF production. Thus, hypoxia, but not hypercapnia, appears to produce cerebral vasodilation by increasing prostacyclin production.  相似文献   

18.
We examined the effects of exposure to 10-12 days intermittent hypercapnia [IHC: 5:5-min hypercapnia (inspired fraction of CO(2) 0.05)-to-normoxia for 90 min (n = 10)], intermittent hypoxia [IH: 5:5-min hypoxia-to-normoxia for 90 min (n = 11)] or 12 days of continuous hypoxia [CH: 1,560 m (n = 7)], or both IH followed by CH on cardiorespiratory and cerebrovascular function during steady-state cycling exercise with and without hypoxia (inspired fraction of oxygen, 0.14). Cerebrovascular reactivity to CO(2) was also monitored. During all procedures, ventilation, end-tidal gases, blood pressure, muscle and cerebral oxygenation (near-infrared spectroscopy), and middle cerebral artery blood flow velocity (MCAv) were measured continuously. Dynamic cerebral autoregulation (CA) was assessed using transfer-function analysis. Hypoxic exercise resulted in increases in ventilation, hypocapnia, heart rate, and cardiac output when compared with normoxic exercise (P < 0.05); these responses were unchanged following IHC but were elevated following the IH and CH exposure (P < 0.05) with no between-intervention differences. Following IH and/or CH exposure, the greater hypocapnia during hypoxic exercise provoked a decrease in MCAv (P < 0.05 vs. preexposure) that was related to lowered cerebral oxygenation (r = 0.54; P < 0.05). Following any intervention, during hypoxic exercise, the apparent impairment in CA, reflected in lowered low-frequency phase between MCAv and BP, and MCAv-CO(2) reactivity, were unaltered. Conversely, during hypoxic exercise following both IH and/or CH, there was less of a decrease in muscle oxygenation (P < 0.05 vs. preexposure). Thus IH or CH induces some adaptation at the muscle level and lowers MCAv and cerebral oxygenation during hypoxic exercise, potentially mediated by the greater hypocapnia, rather than a compromise in CA or MCAv reactivity.  相似文献   

19.
The effects of mild hypoxia on brain oxyhemoglobin, cytochrome a,a3 redox status, and cerebral blood volume were studied using near-infrared spectroscopy in eight healthy volunteers. Incremental hypoxia reaching 70% arterial O2 saturation was produced in normocapnia [end-tidal PCO2 (PETCO2) 36.9 +/- 2.6 to 34.9 +/- 3.4 Torr] or hypocapnia (PETCO2 32.8 +/- 0.6 to 23.7 +/- 0.6 Torr) by an 8-min rebreathing technique and regulation of inspired CO2. Normocapnic hypoxia was characterized by progressive reductions in arterial PO2 (PaO2, 89.1 +/- 3.5 to 34.1 +/- 0.1 Torr) with stable PETCO2, arterial PCO2 (PaCO2), and arterial pH and resulted in increases in heart rate (35%) systolic blood pressure (14%), and minute ventilation (5-fold). Hypocapnic hypoxia resulted in progressively decreasing PaO2 (100.2 +/- 3.6 to 28.9 +/- 0.1 Torr), with progressive reduction in PaCO2 (39.0 +/- 1.6 to 27.3 +/- 1.9 Torr), and an increase in arterial pH (7.41 +/- 0.02 to 7.53 +/- 0.03), heart rate (61%), and ventilation (3-fold). In the brain, hypoxia resulted in a steady decline of cerebral oxyhemoglobin content and a decrease in oxidized cytochrome a,a3. Significantly greater loss of oxidized cytochrome a,a3 occurred for a given decrease in oxyhemoglobin during hypocapnic hypoxia relative to normocapnic hypoxia. Total blood volume response during hypoxia also was significantly attenuated by hypocapnia, because the increase in volume was only half that of normocapnic subjects. We conclude that cytochrome a,a3 oxidation level in vivo decreases at mild levels of hypoxia. PaCO is an important determinant of brain oxygenation, because it modulates ventilatory, cardiovascular, and cerebral O2 delivery responses to hypoxia.  相似文献   

20.
In newborn pigs, cerebral ischemia abolishes both increased cerebral prostanoid production and cerebral vasodilation in response to hypercapnia and hypotension. Attenuation of prostaglandin endoperoxide synthase activity could account for the failure to increase prostanoid synthesis and loss of responses to these stimuli. To test this possibility, arachidonic acid (3, 6, or 30 micrograms/ml) was placed under cranial windows in newborn pigs that had been exposed to 20 min of cerebral ischemia. The conversion to prostanoids and pial arteriolar responses to the arachidonic acid were measured. At all three concentrations, arachidonic acid caused similar increases in pial arteriolar diameter in sham control piglets and piglets 1 hr postischemia. Topical arachidonic acid caused dose-dependent increases of PGE2 in cortical periarachnoid cerebral spinal fluid. 6-keto-PGF1 alpha and TXB2 only increased at the highest concentration of arachidonic acid (30 micrograms/ml). Cerebral ischemia did not decrease the conversion of any concentration of arachidonic acid to PGE2, 6-keto-PGF1 alpha, or TXB2. We conclude that ischemia and subsequent reperfusion do not result in inhibition of prostaglandin endoperoxide synthase in the newborn pig brain. Therefore, the mechanism for the impaired prostanoid production in response to hypercapnia and hypotension following cerebral ischemia appears to involve reduction in release of free arachidonic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号