首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

β-N-acetylhexosaminidases, which are involved in a variety of biological processes including energy metabolism, cell proliferation, signal transduction and in pathogen-related inflammation and autoimmune diseases, are widely distributed in Bacteria and Eukaryotes, but only few examples have been found in Archaea so far. However, N-acetylgluco- and galactosamine are commonly found in the extracellular storage polymers and in the glycans decorating abundantly expressed glycoproteins from different Crenarchaeota Sulfolobus sp., suggesting that β-N-acetylglucosaminidase activities could be involved in the modification/recycling of these cellular components.

Methods

A thermophilic β-N-acetylglucosaminidase was purified from cellular extracts of S. solfataricus, strain P2, identified by mass spectrometry, and cloned and expressed in E. coli. Glycosidase assays on different strains of S. solfataricus, steady state kinetic constants, substrate specificity analysis, and the sensitivity to two inhibitors of the recombinant enzyme were also reported.

Results

A new β-N-acetylglucosaminidase from S. solfataricus was unequivocally identified as the product of gene sso3039. The detailed enzymatic characterization demonstrates that this enzyme is a bifunctional β-glucosidase/β-N-acetylglucosaminidase belonging to family GH116 of the carbohydrate active enzyme (CAZy) classification.

Conclusions

This study allowed us to propose that family GH116 is composed of three subfamilies, which show distinct substrate specificities and inhibitor sensitivities.

General significance

The characterization of SSO3039 allows, for the first time in Archaea, the identification of an enzyme involved in the metabolism β-N-acetylhexosaminide, an essential component of glycoproteins in this domain of life, and substantially increases our knowledge on the functional role and phylogenetic relationships amongst the GH116 CAZy family members.  相似文献   

2.

Objective

The current study explored the correlation of Helicobacter pylori and the polymorphisms of human leukocyte antigen II (HLA-II) alleles with Graves disease (GD).

Methods

A total of 216 patients with GD were recruited. 102 healthy volunteers constituted the control group. Levels of H. pylori immunoglobulin G (IgG) antibodies and H. pylori cytotoxin-associated gene A (CagA) IgG antibodies were detected using enzyme-linked immunosorbent assays. Molecular typing of the HLA-II alleles was conducted using polymerase chain reaction with sequence specific primers.

Results

H. pylori, particularly CagA-positive strains, HLA-DQA1*0201, and HLA-DQA1*0501 were associated with GD (P = 0.015, OR = 1.811; P = 0.000, OR = 3.085; P = 0.000, OR = 0.315; and P = 0.004, OR = 2.844, respectively). Patients with CagA-positive H. pylori and negative HLA-DQA1*0201 or positive HLA-DQA1*0501 were more likely exposed to GD compared with those with only one of these indices.

Conclusion

CagA-positive H. pylori, negative HLA-DQA1*0201, or positive HLA-DQA1*0501 may increase the risk of GD.  相似文献   

3.

Background

Heme oxygenase catalyzes the conversion of heme to iron, carbon monoxide and biliverdin employing oxygen and reducing equivalents. This enzyme is essential for heme-iron utilization and contributes to virulence in Leptospira interrogans.

Methods

A phylogenetic analysis was performed using heme oxygenases sequences from different organisms including saprophytic and pathogenic Leptospira species. L. interrogans heme oxygenase (LepHO) was cloned, overexpressed and purified. The structural and enzymatic properties of LepHO were analyzed by UV–vis spectrophotometry and 1H NMR. Heme-degrading activity, ferrous iron release and biliverdin production were studied with different redox partners.

Results

A plastidic type, high efficiently ferredoxin-NADP+ reductase (LepFNR) provides the electrons for heme turnover by heme oxygenase in L. interrogans. This catalytic reaction does not require a ferredoxin. Moreover, LepFNR drives the heme degradation to completeness producing free iron and α-biliverdin as the final products. The phylogenetic divergence between heme oxygenases from saprophytic and pathogenic species supports the functional role of this enzyme in L. interrogans pathogenesis.

Conclusions

Heme-iron scavenging by LepHO in L. interrogans requires only LepFNR as redox partner. Thus, we report a new substrate of ferredoxin-NADP+ reductases different to ferredoxin and flavodoxin, the only recognized protein substrates of this flavoenzyme to date. The results presented here uncover a fundamental step of heme degradation in L. interrogans.

General significance

Our findings contribute to understand the heme-iron utilization pathway in Leptospira. Since iron is required for pathogen survival and infectivity, heme degradation pathway may be relevant for therapeutic applications.  相似文献   

4.

BACKGROUNDS:

Helicobacter pylori colonize the gastric mucosa of half of the world''s population. Although it is classified as a definitive type I carcinogen by World Health Organization, there is no effective vaccine against this bacterium. H. pylori evade the host immune response by avoiding toll-like detection, such as detection via toll-like receptor-5 (TLR-5). Thus, a chimeric construct consisting of selected epitopes from virulence factors that is incorporated into a TLR-5 ligand (Pseudomonas flagellin) could result in more potent innate and adaptive immune responses.

MATERIALS AND METHODS:

Based on the histocompatibility antigens of BALB/c mice, in silico techniques were used to select several fragments from H. pylori virulence factors with a high density of B- and T-cell epitopes.

RESULTS:

These segments consist of cytotoxin-associated geneA (residue 162-283), neutrophil activating protein (residue 30-135) and outer inflammatory protein A (residue 155-268). The secondary and tertiary structure of the chimeric constructs and other bioinformatics analyses such as stability, solubility, and antigenicity were performed. The chimeric construct containing antigenic segments of H. pylori proteins was fused with the D3 domain of Pseudomonas flagellin. This recombinant chimeric gene was optimized for expression in Escherichia coli. The in silico results showed that the conserved C- and N-terminal domains of flagellin and the antigenicity of selected fragments were retained.

DISCUSSION:

In silico analysis showed that Pseudomonas flagellin is a suitable platform for incorporation of an antigenic construct from H. pylori. This strategy may be an effective tool for the control of H. pylori and other persistent infections.  相似文献   

5.

Background

F1FO ATP synthases catalyze the synthesis of ATP from ADP and inorganic phosphate driven by ion motive forces across the membrane. A number of ATP synthases have been characterized to date. The one from the hyperthermophilic bacterium Aquifex aeolicus presents unique features, i.e. a putative heterodimeric stalk. To complement previous work on the native form of this enzyme, we produced it heterologously in Escherichia coli.

Methods

We designed an artificial operon combining the nine genes of A. aeolicus ATP synthase, which are split into four clusters in the A. aeolicus genome. We expressed the genes and purified the enzyme complex by affinity and size-exclusion chromatography. We characterized the complex by native gel electrophoresis, Western blot, and mass spectrometry. We studied its activity by enzymatic assays and we visualized its structure by single-particle electron microscopy.

Results

We show that the heterologously produced complex has the same enzymatic activity and the same structure as the native ATP synthase complex extracted from A. aeolicus cells. We used our expression system to confirm that A. aeolicus ATP synthase possesses a heterodimeric peripheral stalk unique among non-photosynthetic bacterial F1FO ATP synthases.

Conclusions

Our system now allows performing previously impossible structural and functional studies on A. aeolicus F1FO ATP synthase.

General significance

More broadly, our work provides a valuable platform to characterize many other membrane protein complexes with complicated stoichiometry, i.e. other respiratory complexes, the nuclear pore complex, or transporter systems.  相似文献   

6.

Background

The principal oxidative-stress defense in the human parasite Trypanosoma cruzi is the tryparedoxin-dependent peroxide detoxification pathway, constituted by trypanothione reductase (TryR), tryparedoxin (TXN), tryparedoxin peroxidase (TXNPx) and tryparedoxin-dependent glutathione peroxidase A (GPxA). Here, Metabolic Control Analysis (MCA) was applied to quantitatively prioritize drug target(s) within the pathway by identifying its flux-controlling enzymes.

Methods

The recombinant enzymes were kinetically characterized at physiological pH/temperature. Further, the pathway was in vitro reconstituted using enzyme activity ratios and fluxes similar to those observed in the parasites; then, enzyme and substrate titrations were performed to determine their degree of control on flux. Also, kinetic characterization of the whole pathway was performed.

Results

Analyses of the kinetic properties indicated that TXN is the less efficient pathway enzyme derived from its high Kmapp for trypanothione and low Vmax values within the cell. MCA established that the TXN–TXNPx and TXN–GPxA redox pairs controlled by 90–100% the pathway flux, whereas 10% control was attained by TryR. The Kmapp values of the complete pathway for substrates suggested that the pathway flux was determined by the peroxide availability, whereas at high peroxide concentrations, flux may be limited by NADPH.

Conclusion

These quantitative kinetic and metabolic analyses pointed out to TXN as a convenient drug target due to its low catalytic efficiency, high control on the flux of peroxide detoxification and role as provider of reducing equivalents to the two main peroxidases in the parasite.

General Significance

MCA studies provide rational and quantitative criteria to select enzymes for drug-target development.  相似文献   

7.

Background

We have shown previously that AtoSC two-component system regulates the biosynthesis of E. coli cPHB [complexed poly-(R)-3-hydroxybutyrate].

Methods

The AtoSC involvement on fatty acids metabolism, towards cPHB synthesis, was studied using cPHB determination, gene expression, and fatty acid metabolic pathways inhibitors.

Results

Deletion of the atoDAEB operon from the E. coli genome resulted in a consistent reduction of cPHB accumulation. When in ΔatoDAEB cells, the atoDAEB operon and the AtoSC system were introduced extrachromosomally, a significant enhancement of cPHB levels was observed. Moreover, the introduction of a plasmid with atoSC genes regulated positively cPHB biosynthesis. A lesser cPHB enhancement was triggered when plasmids carrying either atoS or atoC were introduced. The intracellular distribution of cPHB was regulated by AtoSC or AtoC according to the inducer (acetoacetate or spermidine). Blockage of β-oxidation by acrylic acid reduced cPHB levels, suggesting the involvement of this pathway in cPHB synthesis; however, the overproduction of AtoSC or its constituents separately resulted in cPHB enhancement. Inhibition of fatty acid biosynthesis by cerulenin resulted to a major cPHB reduction, indicating the contribution of this pathway in cPHB production. Inhibition of both β-oxidation and fatty acid biosynthesis reduced dramatically cPHB, suggesting the contribution of both pathways in cPHB biosynthesis.

Conclusions

Short fatty acid catabolism (atoDAEB operon) and fatty acids metabolic pathways participate in cPHB synthesis through the involvement of AtoSC system.

General significance

The involvement of the AtoSC system in the fatty acids metabolic pathways interplay towards cPHB biosynthesis provides additional perceptions of AtoSC role on E. coli regulatory biochemical processes.  相似文献   

8.
9.

Background

Heme oxidative degradation has been extensively investigated in peroxidases but not in catalases. The verdoheme formation, a product of heme oxidation which inactivates the enzyme, was studied in Proteus mirabilis catalase.

Methods

The verdoheme was generated by adding peracetic acid and analyzed by mass spectrometry and spectrophotometry.

Results

Kinetics follow-up of different catalase reactional intermediates shows that i) the formation of compound I always precedes that of verdoheme, ii) compound III is never observed, iii) the rate of compound II decomposition is not compatible with that of verdoheme formation, and iv) dithiothreitol prevents the verdoheme formation but not that of compound II, whereas NADPH prevents both of them. The formation of verdoheme is strongly inhibited by EDTA but not increased by Fe3+ or Cu2+ salts. The generation of verdoheme is facilitated by the presence of protein radicals as observed in the F194Y mutated catalase. The inability of the inactive variant (H54F) to form verdoheme, indicates that the heme oxidation is fully associated to the enzyme catalysis.

Conclusion

These data, taken together, strongly suggest that the verdoheme formation pathway originates from compound I rather than from compound II.

General significance

The autocatalytic verdoheme formation is likely to occur in vivo.  相似文献   

10.

Background

The cytoplasmic peptide:N-glycanase (PNGase) is a deglycosylating enzyme involved in the ER-associated degradation (ERAD) process, while ERAD-independent activities are also reported. Previous biochemical analyses indicated that the cytoplasmic PNGase orthologue in Arabidopsis thaliana (AtPNG1) can function as not only PNGase but also transglutaminase, while its in vivo function remained unclarified.

Methods

AtPNG1 was expressed in Saccharomyces cerevisiae and its in vivo role on PNGase-dependent ERAD pathway was examined.

Results

AtPNG1 could facilitate the ERAD through its deglycosylation activity. Moreover, a catalytic mutant of AtPNG1 (AtPNG1(C251A)) was found to significantly impair the ERAD process. This result was found to be N-glycan-dependent, as the AtPNG(C251A) did not affect the stability of the non-glycosylated RTA? (ricin A chain non-toxic mutant). Tight interaction between AtPNG1(C251A) and the RTA? was confirmed by co-immunoprecipitation analysis.

Conclusion

The plant PNGase facilitates ERAD through its deglycosylation activity, while the catalytic mutant of AtPNG1 impair glycoprotein ERAD by binding to N-glycans on the ERAD substrates.

General significance

Our studies underscore the functional importance of a plant PNGase orthologue as a deglycosylating enzyme involved in the ERAD.  相似文献   

11.

Background

Vitamin B6 synthesis requires a functional Pdx1 assembly that is dodecameric in vivo. We have previously shown that mutation of a catalytic lysine in the plasmodial Pdx1 protein results in a protein that is both inactive and hexameric in vitro.

Methods

Static and dynamic light scattering, circular dichroism, co-purification and enzyme assays are used to investigate the role of a glycine conserved in all Pdx1 family members.

Results

Static light scattering indicates that a glycine to alanine mutant is present as a hexamer in vitro. Subsequent circular dichroism experiments demonstrate that a significant change in secondary structure content is induced by this mutation. However, this mutant is still competent to bind and support Pdx2 activity.

Conclusions

As the mutated glycine occupies an unrestricted region of the Ramachandran plot the additional stereo-chemical restrictions imposed on alanine residues strongly support our hypothesis that significant structural rearrangement of Pdx1 is required during the transition from hexamer to dodecamer.

General significance

The presented results demonstrate that reduction in the mobility of this region in Pdx1 proteins is required for formation of the in vivo dodecamer, negatively affecting the activity of Pdx1, opening the possibility of allosteric Pdx1 inhibitors.  相似文献   

12.
13.

Background

Giardia lamblia is a pathogen of humans and other vertebrates. The synthesis of glycogen and of structural oligo and polysaccharides critically determine the parasite's capacity for survival and pathogenicity. These characteristics establish that UDP-glucose is a relevant metabolite, as it is a main substrate to initiate varied carbohydrate metabolic routes.

Results

Herein, we report the molecular cloning of the gene encoding UDP-glucose pyrophosphorylase from genomic DNA of G. lamblia, followed by its heterologous expression in Escherichia coli. The purified recombinant enzyme was characterized to have a monomeric structure. Glucose-1-phosphate and UTP were preferred substrates, but the enzyme also used galactose-1-phosphate and TTP. The catalytic efficiency to synthesize UDP-galactose was significant. Oxidation by physiological compounds (hydrogen peroxide and nitric oxide) inactivated the enzyme and the process was reverted after reduction by cysteine and thioredoxin. UDP-N-acetyl-glucosamine pyrophosphorylase, the other UTP-related enzyme in the parasite, neither used galactose-1-phosphate nor was affected by redox modification.

Conclusions

Our results suggest that in G. lamblia the UDP-glucose pyrophosphorylase is regulated by oxido-reduction mechanism. The enzyme exhibits the ability to synthesize UDP-glucose and UDP-galactose and it plays a key role providing substrates to glycosyl transferases that produce oligo and polysaccharides.

General significance

The characterization of the G. lamblia UDP-glucose pyrophosphorylase reinforces the view that in protozoa this enzyme is regulated by a redox mechanism. As well, we propose a new pathway for UDP-galactose production mediated by the promiscuous UDP-glucose pyrophosphorylase of this organism.  相似文献   

14.

Background

Entamoeba histolytica, an intestinal protozoan that is the causative agent of amoebiasis, is exposed to elevated amounts of highly toxic reactive oxygen and nitrogen species during tissue invasion. Thioredoxin reductase catalyzes the reversible transfer of reducing equivalents between NADPH and thioredoxin, a small protein that plays key metabolic functions in maintaining the intracellular redox balance.

Methods

The present work deals with in vitro steady state kinetic studies aimed to reach a better understanding of the kinetic and structural properties of thioredoxin reductase from E. histolytica (EhTRXR).

Results

Our results support that native EhTRXR is a homodimeric covalent protein that is able to catalyze the NAD(P)H-dependent reduction of amoebic thioredoxins and S‐nitrosothiols. In addition, the enzyme exhibited NAD(P)H dependent oxidase activity, which generates hydrogen peroxide from molecular oxygen. The enzyme can reduce compounds like methylene blue, quinones, ferricyanide or nitro-derivatives; all alternative substrates displaying a relative high capacity to inhibit disulfide reductase activity of EhTRXR.

Conclusions and general significance

Interestingly, EhTRXR exhibited kinetic and structural properties that differ from other low molecular weight TRXR. The TRX system could play an important role in the parasite defense against reactive species. The latter should be critical during the extra intestinal phase of the amoebic infection. So far we know, this is the first in depth characterization of EhTRXR activity and functionality.  相似文献   

15.

Background

The neurodegenerative disease Friedreich's ataxia is the result of frataxin deficiency. Frataxin is a mitochondrial protein involved in iron–sulfur cluster (Fe–S) cofactor biogenesis, but its functional role in this pathway is debated. This is due to the interconnectivity of iron metabolic and oxidative stress response pathways that make distinguishing primary effects of frataxin deficiency challenging. Since Fe–S cluster assembly is conserved, frataxin overexpression phenotypes in a simple eukaryotic organism will provide additional insight into frataxin function.

Methods

The Schizosaccharomyces pombe frataxin homologue (fxn1) was overexpressed from a plasmid under a thiamine repressible promoter. The S. pombe transformants were characterized at several expression strengths for cellular growth, mitochondrial organization, iron levels, oxidative stress, and activities of Fe–S cluster containing enzymes.

Results

Observed phenotypes were dependent on the amount of Fxn1 overexpression. High Fxn1 overexpression severely inhibited S. pombe growth, impaired mitochondrial membrane integrity and cellular respiration, and led to Fxn1 aggregation. Cellular iron accumulation was observed at moderate Fxn1 overexpression but was most pronounced at high levels of Fxn1. All levels of Fxn1 overexpression up-regulated oxidative stress defense and mitochondrial Fe–S cluster containing enzyme activities.

Conclusions

Despite the presence of oxidative stress and accumulated iron, activation of Fe–S cluster enzymes was common to all levels of Fxn1 overexpression; therefore, Fxn1 may regulate the efficiency of Fe–S cluster biogenesis in S. pombe.

General Significance

We provide evidence that suggests that dysregulated Fe–S cluster biogenesis is a primary effect of both frataxin overexpression and deficiency as in Friedreich's ataxia.  相似文献   

16.

Background

Mevalonate pathway is an important cellular metabolic pathway present in all higher eukaryotes and many bacteria. Four enzymes in mevalonate pathway, including MVK, PMK, MDD, and FPPS, play important regulatory roles in cholesterol biosynthesis and cell proliferation.

Methods

The following methods were used: cloning, expression and purification of enzymes in mevalonate pathway, organic syntheses of multifunctional enzyme inhibitors, measurement of their IC50 values for above four enzymes, kinetic studies of enzyme inhibitions, molecular modeling studies, cell viability tests, and fluorescence microscopy.

Results and conclusions

We report our multi-target-directed design, syntheses, and characterization of two blue fluorescent bisphosphonate derivatives compounds 15 and 16 as multifunctional enzyme inhibitors in mevalonate pathway. These two compounds had good inhibition to all these four enzymes with their IC50 values at nanomolar to micromolar range. Kinetic and molecular modeling studies showed that these two compounds could bind to the active sites of all these four enzymes. The fluorescence microscopy indicated that these two compounds could easily get into cancer cells.

General significance

Multifunctional enzyme inhibitors are generally more effective than single enzyme inhibitors, with fewer side effects. Our results showed that these multifunctional inhibitors could become lead compounds for further development for the treatment of soft-tissue tumors and hypercholesteremia.  相似文献   

17.

Background

An Atlantic salmon (Salmo salar) C-type lectin (SSL) binds to mannose and related sugars as well as to the surface of Aeromonas salmonicida. To characterize this lectin as a pathogen recognition receptor in salmon, aspects of its interaction with molecules and with intact pathogens were investigated.

Methods

SSL was isolated using whole-yeast-affinity and mannan-affinity chromatography. The binding of SSL to the two major surface molecules of A. salmonicida, lipopolysaccharide (LPS) and A-layer protein was investigated by western blotting and enzyme-linked immunosorbent assays. Microbial binding specificity of SSL was examined by whole cell binding assays using a range of species. Carbohydrate ligand specificity of SSL was examined using glycan array analysis and frontal affinity chromatography.

Results

SSL showed binding to bacteria and yeast including, Pseudomonas fluorescens, A. salmonicida, A. hydrophila, Pichia pastoris, and Saccharomyces cerevisiae, but there was no detectable binding to Yersinia ruckeri. In antimicrobial assays, SSL showed no activity against Escherichia coli, Bacillus subtilis, S. cerevisiae, or A. salmonicida, but it was found to agglutinate E. coli. The major surface molecule of A. salmonicida recognized by SSL was shown to be LPS and not the A-layer protein. LPS binding was mannose-inhibitable. Glycans containing N-acetylglucosamine were shown to be predominant ligands.

Conclusion

SSL has a distinct ligand preference while allowing recognition of a wide variety of related carbohydrate structures.

General Significance

SSL is likely to function as a wide-spectrum pattern recognition protein.  相似文献   

18.

Background

Escherichia coli O157:H7 (EHEC) is a food borne pathogen, which causes diarrhea and hemolytic uremic syndrome (HUS). There is an urgent need of novel antimicrobials for treatment of EHEC as conventional antibiotics enhance shiga toxin production and potentiate morbidity and mortality.

Methods

Six bioactive compounds were isolated, identified from citrus and evaluated for the effect on EHEC biofilm and motility. To determine the possible mode of action, a series of genes known to affect biofilm and motility were overexpressed and the effect on biofilm/motility was assessed. Furthermore, the relative expression of genes involved in motility and biofilm formation was measured by qRT-PCR in presence and absence of phytochemicals, to examine the repression caused by test compounds.

Results

The β-sitosterol glucoside (SG) was identified as the most potent inhibitor of EHEC biofilm formation and motility without affecting the cell viability. Furthermore, SG appears to inhibit the biofilm and motility through rssAB and hns mediated repression of flagellar master operon flhDC.

Conclusion

SG may serve as novel lead compound for further development of anti-virulence drugs.

General significance

Plant sterols constitute significant part of diet and impart various health benefits. Here we present the first evidence that SG, a plant sterol has significant effect on EHEC motility, a critical virulence factor, and may have potential application as antivirulence strategy.  相似文献   

19.

Background

IP3-mediated calcium mobilization from intracellular stores activates and translocates PKC-α from cytosol to membrane fraction in response to STa in COLO-205 cell line. The present study was undertaken to determine the involvement of cytoskeleton proteins in translocation of PKC-α to membrane from cytosol in the Escherichiacoli STa-mediated signaling cascade in a human colonic carcinoma cell line COLO-205.

Methods

Western blots and consequent densitometric analysis were used to assess time-dependent redistribution of cytoskeletal proteins. This redistribution was further confirmed by using confocal microscopy. Pharmacological reagents were applied to colonic carcinoma cells to disrupt the microfilaments (cytochalasin D) and microtubules (nocodazole).

Results

STa treatment in COLO-205 cells showed dynamic redistribution and an increase in actin content in the Triton-insoluble fraction, which corresponds to an increase in polymerization within 1 min. Moreover, pharmacological disruption of actin-based cytoskeleton greatly disturbed PKC-α translocation to the membrane.

Conclusions

These results suggested that the organization of actin cytoskeleton is rapidly rearranged following E. coli STa treatment and the integrity of the actin cytoskeleton played a crucial role in PKC-α movement in colonic cells. Depolymerization of tubulin had no effect on the ability of the kinase to be translocated to the membrane.

General significance

In the present study, we have shown for the first time that in colonic carcinoma cells, STa-mediated rapid changes of actin cytoskeleton arrangement might be involved in the translocation of PKC-α to membrane.  相似文献   

20.

Aims

The purposes of this study were to determine whether Cervi Pantotrichum Cornu (CPC) has osteogenic activities in human osteoblastic MG-63 cells and to investigate the underlying molecular mechanism.

Main methods

The effects of CPC on alkaline phosphatase activity, collagen synthesis, and calcium deposits were measured. The COL1A1, ALPL, BGLAP, and SPP1 expressions were measured by real-time PCR. Phosphorylated MAP kinases (ERK1/2, JNK1/2, p38, ELK1, and cJUN) were studied by western blot analysis. The involvement of MAPK pathway in osteogenic gene expressions was determined by using each selective MAPK inhibitor (PD98059, SP600125, and SB203580).

Key findings

CPC increased alkaline phosphatase activity, collagen synthesis, and calcium deposits. CPC activated ERK1/2, JNK1/2, p38, and ELK1 phosphorylation except cJUN. CPC increased the COL1A1, ALPL, BGLAP, and SPP1 gene expressions. The elevated COL1A1 and BGLAP expressions were inhibited by PD98059, SP600125 or SB203580. The elevated ALPL expression was blocked by SB203580. The elevated SPP1 expression was inhibited by SP600125 or SB203580. CPC increased COL1A1 and BGLAP expressions via ERK1/2, JNK1/2, and p38 MAPKs pathways and SPP1 expression via JNK1/2 and p38 pathways. p38 pathway is needed for ALPL expression.

Significance

These results imply that MAPK signaling pathway is an indispensable factor for bone matrix genes expression of CPC in MG-63 human osteoblast-like cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号