首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Human umbilical endothelial cells in culture retain differentiated morphological and functional characterization in primary culture and even in the early subcultures, after which they begin to degenerate. We have studied the morphological and biochemical characterization (ability to produce prostacyclin, prostaglandin E2 and thromboxane A2 in culture) of endothelial cells in the first seven subcultures. In addition the influence of serum and endothelial cell growth factor added to the culture medium have been evaluated. With 20% normal human serum, cell proliferation is faster than with the same concentration of human fetal or bovine fetal serum.After the 3rd passage, morphological and growth alterations become observable in the endothelial cells. However, prostacyclin, prostaglandin E2 and thromboxane A2 production showed no variations during the study.  相似文献   

2.
Tumor growth of colorectal cancers accompanies upregulation of cyclooxygenase-2, which catalyzes a conversion step from arachidonic acid to prostaglandin H(2) (PGH(2)). Here, we compared the expression levels of thromboxane synthase (TXS), which catalyzes the conversion of PGH(2) to thromboxane A(2) (TXA(2)), between human colorectal cancer tissue and its accompanying normal mucosa. It was found that TXS protein was consistently upregulated in the cancer tissues from different patients. TXS was also highly expressed in human colonic cancer cell lines. Depletion of TXS protein by the antisense oligonucleotide inhibited proliferation of the cancer cells. This inhibition was rescued by the direct addition of a stable analogue of TXA(2). The present results suggest that overexpression of TXS and subsequent excess production of TXA(2) in the cancer cells may be involved in the tumor growth of human colorectum.  相似文献   

3.
Abstract

Inhibitors of thromboxane A, (TxA2) synthase are regarded as potentially useful agents in the treatment of cardiovascular diseases and in the prevention of tumour cell metastases. We report here a novel in vitro assay for the evaluation of TxA2 synthase inhibitors. For the determination of inhibitory activity, malondialdehyde (MDA) formation by TxA2 synthase in whole blood was utilized. After reaction with thiobarbituric acid MDA was quantified spectrofluorimetrically. The blank value was obtained by incubation with a selective TxA2 synthase inhibitor. For the screening of compounds the simple MDA assay represents an alternative to the rather expensive and time consuming radioimmunoassay, HPLC and TLC methods. Only for compounds which have been shown to be good inhibitors in the MDA assay should a radioimmunoassay for selective inhibition of TxA2 synthase be performed.  相似文献   

4.
Prostacyclin synthase (PGIS) catalyzes an isomerization of prostaglandin H(2) to prostacyclin, a potent mediator of vasodilation and anti-platelet aggregation. Here, we report the crystal structure of human PGIS at 2.15 A resolution, which represents the first three-dimensional structure of a class III cytochrome P450. While notable sequence divergence has been recognized between PGIS and other P450s, PGIS exhibits the typical triangular prism-shaped P450 fold with only moderate structural differences. The conserved acid-alcohol pair in the I helix of P450s is replaced by residues G286 and N287 in PGIS, but the distinctive disruption of the I helix and the presence of a nearby water channel remain conserved. The side-chain of N287 appears to be positioned to facilitate the endoperoxide bond cleavage, suggesting a functional conservation of this residue in O-O bond cleavage. A combination of bent I helix and tilted B' helix creates a channel extending from the heme distal pocket, which seemingly allows binding of various ligands; however, residue W282, placed in this channel at a distance of 8.4 A from the iron with its indole side-chain lying parallel with the porphyrin plane, may serve as a threshold to exclude most ligands from binding. Additionally, a long "meander" region protruding from the protein surface may impede electron transfer. Although the primary sequence of the PGIS cysteine ligand loop diverges significantly from the consensus, conserved tertiary structure and hydrogen bonding pattern are observed for this region. The substrate-binding model was constructed and the structural basis for prostacyclin biosynthesis is discussed.  相似文献   

5.
Arachidonic acid metabolism through cyclooxygenase (COX) pathways leads to the generation of biologically active eicosanoids. Eicosanoid expression levels vary during development and progression of gastrointestinal (GI) malignancies.COX-2 is the major COX-isoform responsible for G.I. cancer development/progression. COX-2 expression increases during progression from a normal to cancerous state. Evidence from observational studies has demonstrated that chronic NSAID use reduces the risk of cancer development, while both incidence and risk of death due to G.I. cancers were significantly reduced by daily aspirin intake. A number of randomized controlled trials (APC trial, Prevention of Sporadic Adenomatous Polyps trial, APPROVe trial) have also shown a significant protective effect in patients receiving selective COX-2 inhibitors. However, chronic use of selective COX-2 inhibitors at high doses was associated with increased cardiovascular risk, while NSAIDs have also been associated with increased risk. More recently, downstream effectors of COX-signaling have been investigated in cancer development/progression. PGE2, which binds to both EP and PPAR receptors, is the major prostanoid implicated in the carcinogenesis of G.I. cancers. The role of TXA2 in G.I. cancers has also been examined, although further studies are required to uncover its role in carcinogenesis. Other prostanoids investigated include PGD2 and its metabolite 15d-PGJ2, PGF and PGI2. Targeting these prostanoids in G.I. cancers has the promise of avoiding cardiovascular toxicity associated with chronic selective COX-2 inhibition, while maintaining anti-tumor reactivity.A progressive sequence from normal to pre-malignant to a malignant state has been identified in G.I. cancers. In this review, we will discuss the role of the COX-derived prostanoids in G.I. cancer development and progression. Targeting these downstream prostanoids for chemoprevention and/or treatment of G.I. cancers will also be discussed. Finally, we will highlight the latest pre-clinical technologies as well as avenues for future investigation in this highly topical research field.  相似文献   

6.
The current article aims to summarize all possible spectrum of protein–protein interactions for thromboxane A synthase (CYP5A1) and prostacyclin synthase (CYP8A1). These enzymes metabolize the same substrate (prostaglandin H2) and can participate in cardiovascular, inflammatory, immune processes, and apoptosis modulation, as well as significantly influence the risk of cancers. Binary protein–protein and multiprotein complexes are of great importance in enzyme-regulating and signal-transduction pathways. However, protein partners of CYP5A1 and CYP8A1 are not yet fully identified, although both synthases are considered as prospective drug targets. At least 36 novel protein partners of CYP5A1 and CYP8A1 were revealed from different tissue types using an approach based on affinity isolation and mass spectrometry. Enrichment analysis showed that these proteins have different molecular functions: folding (refolding), unfolded protein and chaperon binding, protein transport (export/import), posttranslational modification, protein domain-specific binding, antioxidant activity, and glutathione homeostasis. A significant part of them, belonging to molecular chaperones, were common partners for CYP5A1 and CYP8A1, while other proteins were unique with the tissue-dependent distribution. New aspects of CYP5A1 and CYP8A1 interactomics and hetero-complex formation with different protein partners, including cytochrome P450s are discussed.  相似文献   

7.
8.
In eukaryotic and prokaryotic cells, F-ATP synthases provide energy through the synthesis of ATP. The chloroplast F-ATP synthase (CF1FO-ATP synthase) of plants is integrated into the thylakoid membrane via its FO-domain subunits a, b, b’ and c. Subunit c with a stoichiometry of 14 and subunit a form the gate for H+-pumping, enabling the coupling of electrochemical energy with ATP synthesis in the F1 sector.Here we report the crystallization and structure determination of the c14-ring of subunit c of the CF1FO-ATP synthase from spinach chloroplasts. The crystals belonged to space group C2, with unit-cell parameters a=144.420, b=99.295, c=123.51 Å, and β=104.34° and diffracted to 4.5 Å resolution. Each c-ring contains 14 monomers in the asymmetric unit. The length of the c-ring is 60.32 Å, with an outer ring diameter 52.30 Å and an inner ring width of 40 Å.  相似文献   

9.
Summary The atp operon from the extreme alkaliphile Bacillus firmus OF4 was cloned and sequenced, and shown to contain genes for the eight structural subunits of the ATP synthase, preceded by a ninth gene predicted to encode a 14 kDa hydrophobic protein. The arrangement of genes is identical to that of the atp operons from Escherichia coli, Bacillus megaterium, and thermophilic Bacillus PS3. The deduced amino acid sequences of the subunits of the enzyme are also similar to their homologs in other ATP synthases, except for several unusual substitutions, particularly in the a and c subunits. These substitutions are in domains that have been implicated in the mechanism of proton translocation through F0-ATPase, and therefore could contribute to the gating properties of the alkaliphile ATP synthase or its capacity for proton capture.  相似文献   

10.

Background

F1FO ATP synthases catalyze the synthesis of ATP from ADP and inorganic phosphate driven by ion motive forces across the membrane. A number of ATP synthases have been characterized to date. The one from the hyperthermophilic bacterium Aquifex aeolicus presents unique features, i.e. a putative heterodimeric stalk. To complement previous work on the native form of this enzyme, we produced it heterologously in Escherichia coli.

Methods

We designed an artificial operon combining the nine genes of A. aeolicus ATP synthase, which are split into four clusters in the A. aeolicus genome. We expressed the genes and purified the enzyme complex by affinity and size-exclusion chromatography. We characterized the complex by native gel electrophoresis, Western blot, and mass spectrometry. We studied its activity by enzymatic assays and we visualized its structure by single-particle electron microscopy.

Results

We show that the heterologously produced complex has the same enzymatic activity and the same structure as the native ATP synthase complex extracted from A. aeolicus cells. We used our expression system to confirm that A. aeolicus ATP synthase possesses a heterodimeric peripheral stalk unique among non-photosynthetic bacterial F1FO ATP synthases.

Conclusions

Our system now allows performing previously impossible structural and functional studies on A. aeolicus F1FO ATP synthase.

General significance

More broadly, our work provides a valuable platform to characterize many other membrane protein complexes with complicated stoichiometry, i.e. other respiratory complexes, the nuclear pore complex, or transporter systems.  相似文献   

11.
Both 12-hydroxyheptadecatrienoic acid (12-HHT) and thromboxane A2 (TXA2) are products derived from prostaglandin H2 (PGH2) catalyzed by thromboxane synthase. Whether or not they exhibit similar actions remains to be determined. While TXA2-induced activation of extracellular signal-regulated kinases (ERKs) has been extensively studied, 12-HHT-induced activation of ERKs has not been explored. We reported for the first time that 12-HHT induced activation of ERKs in human prostate cancer cell line, PC3. We also compared the mechanisms of 12-HHT- and I-BOP-, a TXA2 mimetic, mediated ERK activation in PC3 cells. The activation of ERKs induced by either agent was shown to involve protein kinase C (PKC)-, protein kinase A (PKA)-, Src kinase and phosphoinositide-3 kinase (PI-3K)-dependent mechanisms in addition to the transactivation of the EGF receptor (EGFR) and the involvement of matrix metalloproteinases (MMPs) based on the sensitivity of the activation to their respective inhibitors. JNK/SAPK and p38 MAPK pathways were responsive to I-BOP but not to 12-HHT stimulation. Both 12-HHT- and I-BOP-induced activations of ERKs were also examined in other human prostate cancer cells, human lung cancer cells, and human lung fibroblast. I-BOP appeared to induce activation of ERKs in most cell lines, whereas 12-HHT induced activation of ERKs only in lung fibroblast in addition to PC3 cells. It appears that TPs are more generally expressed and the potential 12-HHT receptor (s) is expressed in limited specific cell types. Our results suggest that increased expression of thromboxane synthase as seen in prostate tumor may stimulate tumorigenesis as a consequence of concurrent increased synthesis of two fatty acids capable of activating ERKs.  相似文献   

12.
For decades, the binding of prostaglandin H2 (PGH2) to multiple target proteins of unrelated protein structures which mediate diverse biological functions has remained a real mystery in the field of eicosanoid biology. Here, we report that the structure of a PGH2 mimic, U46619, bound to the purified human TP, was determined and compared with that of its conformation bound to the COX-downstream synthases, prostacyclin synthase (PGIS) and thromboxane A2 synthase (TXAS). Active human TP protein, glycosylated and in full length, was expressed in Sf-9 cells using a baculovirus (BV) expression system and then purified to near homogeneity. The binding of U46619 to the purified receptor in a nonionic detergent-mimicked lipid environment was characterized by high-resolution NMR spectroscopy. The conformational change of U46619, upon binding to the active TP, was evidenced by the significant perturbation of the chemical shifts of its protons at H3 and H4 in a concentration-dependent manner. The detailed conformational changes and 3D structure of U46619 from the free form to the TP-bound form were further solved by 2D 1H NMR experiments using a transferred NOE (trNOE) technique. The distances between the protons of H11 and H18, H11 and H19, H15 and H18, and H15 and H19 in U46619 were shorter following their binding to the TP in solution, down to within 5 Å, which were different than that of the U46619 bound to PGIS and U44069 (another PGH2 mimic) bound to TXAS. These shorter distances led to further separation of the U46619 α and ω chains, forming a unique “rectangular” shape. This enabled the molecule to fit into the ligand-binding site pocket of a TP model, in which homology modeling was used for the transmembrane (TM) domain, and NMR structures were used for the extramembrane loops. The proton perturbations and 3D conformations in the TP-bound U46619 were different with that of the PGH2 mimics bound to PGIS and TXAS. The studies indicated that PGH2 can adopt multiple conformations in solution to satisfy the specific and unique shapes to fit the different binding pockets in the TP receptor and COX-downstream enzymes. The results also provided sufficient information for speculating the molecular basis of how PGH2 binds to multiple target proteins even though unrelated in their protein sequences.  相似文献   

13.
14.
Many clinical trials have demonstrated the beneficial effects of soybean (Glycine max) on general cardiovascular health. Among a variety of soybeans, black soybean is known to display diverse biological activities superior to those of yellow and green soybeans, such as in antioxidant, anti-inflammatory and anticancer activities. However, few studies have been directed on the effect of black soybean on cardiovascular function. In this study, we aimed to investigate the effect of black soybean extract (BB) on platelet activation, a key contributor to thrombotic diseases. In freshly isolated human platelets, BB has shown potent inhibitory activity on collagen-induced platelet aggregation, while yellow soybean extract had marginal activity only. BB also attenuated serotonin secretion and P-selectin expression, which are important factors for the platelet–tissue interaction along with thromboxane A2 formation. These in vitro results were further confirmed in an ex vivo platelet aggregation measurement and in vivo venous thrombosis model where oral administration of BB reduced collagen-induced platelet aggregation and FeCl3-induced thrombus formation significantly. A potential active ingredient for antiplatelet effects of BB was isolated and identified to be adenosine through bioassay-directed fractionation and NMR and ESI-MS analyses. These results indicate that black soybean can be a novel dietary supplement for the prevention of cardiovascular risks and the improvement of blood circulation.  相似文献   

15.
Prostaglandin endoperoxide H synthases and their arachidonate products have been implicated in modulating angiogenesis during tumor growth and chronic inflammation. Here we report the involvement of thromboxane A(2), a downstream metabolite of prostaglandin H synthase, in angiogenesis. A TXA(2) mimetic, U46619, stimulated endothelial cell migration. Angiogenic basic fibroblast growth factor (bFGF) or vascular endothelial growth factor (VEGF) increased TXA(2) synthesis in endothelial cells three- to fivefold. Inhibition of TXA(2) synthesis with furegrelate or CI reduced HUVEC migration stimulated by VEGF or bFGF. A TXA(2) receptor antagonist, SQ29,548, inhibited VEGF- or bFGF-stimulated endothelial cell migration. In vivo, CI inhibited bFGF-induced angiogenesis. Finally, development of lung metastasis in C57Bl/6J mice intravenously injected with Lewis lung carcinoma or B16a cells was significantly inhibited by thromboxane synthase inhibitors, CI or furegrelate sodium. Our data demonstrate the involvement of TXA(2) in angiogenesis and development of tumor metastasis.  相似文献   

16.
The crystal structures of the nucleotide-empty (AE), 5′-adenylyl-β,γ-imidodiphosphate (APNP)-bound, and ADP (ADP)-bound forms of the catalytic A subunit of the energy producer A1AO ATP synthase from Pyrococcus horikoshii OT3 have been solved at 2.47 Å and 2.4 Å resolutions. The structures provide novel features of nucleotide binding and depict the residues involved in the catalysis of the A subunit. In the AE form, the phosphate analog SO42− binds, via a water molecule, to the phosphate binding loop (P-loop) residue Ser238, which is also involved in the phosphate binding of ADP and 5′-adenylyl-β,γ-imidodiphosphate. Together with amino acids Gly234 and Phe236, the serine residue stabilizes the arched P-loop conformation of subunit A, as shown by the 2.4-Å structure of the mutant protein S238A in which the P-loop flips into a relaxed state, comparable to the one in catalytic β subunits of F1FO ATP synthases. Superposition of the existing P-loop structures of ATPases emphasizes the unique P-loop in subunit A, which is also discussed in the light of an evolutionary P-loop switch in related A1AO ATP synthases, F1FO ATP synthases, and vacuolar ATPases and implicates diverse catalytic mechanisms inside these biological motors.  相似文献   

17.
The first committed steps of steroid/hopanoid pathways involve squalene synthase (SQS). Here, we report the Escherichia coli production of diaponeurosporene and diapolycopene, yellow C30 carotenoid pigments, by expressing human SQS and Staphylococcus aureus dehydrosqualene (C30 carotenoid) desaturase (CrtN). We suggest that the carotenoid pigments are synthesized mainly via the desaturation of squalene rather than the direct synthesis of dehydrosqualene through the non-reductive condensation of prenyl diphosphate precursors, indicating the possible existence of a “squalene route” and a “lycopersene route” for C30 and C40 carotenoids, respectively. Additionally, this finding yields a new method of colorimetric screening for the cellular activity of squalene synthases, which are major targets for cholesterol-lowering drugs.  相似文献   

18.
We investigated the role of a 1 Hz low-strength magnetic pulse superimposed on the environmental electromagnetic field (emf) on the secretion of anti-aggregant (prostacyclin or PGI2) and pro-aggregant (thromboxane A2 or TXA2) agents in the EaHy-926 endothelial cell line. We established that magnetic pulse exposure has opposite effects on the two secretions: PGI2 is decreased, whereas TXA2 is increased, with a PGI2/TXA2 ratio shifted toward thrombosis. We also show that the effect of the magnetic field depends on its orientation, normal or parallel, to the cell monolayer. Finally, we show that the amplitude of the effect does not increase with the magnitude of the magnetic pulse, particularly with PGI2 secretion, which is increased as the field magnitude is decreased, suggesting a new concept for defining a threshold for health hazards.  相似文献   

19.
Thromboxanes: Synthase and receptors   总被引:4,自引:0,他引:4  
Thromboxane A2 is a biologically potent arachidonate metabolite through the cyclooxygenase pathway. It induces platelet aggregation and smooth muscle contraction and may promote mitogenesis and apoptosis of other cells. Its roles in physiological and pathological conditions have been widely documented. The enzyme that catalyzes its synthesis, thromboxane A2 synthase, and the receptors that mediate its actions, thromboxane A2 receptors, are the two key components critical for the functioning of this potent autacoid. Recent molecular biological studies have revealed the structure-function relationship and gene organizations of these proteins as well as genetic and epigenetic factors modulating their gene expression. Future investigation should shed light on detailed molecular signaling events specifying thromboxane A2 actions, and the genetic underpinning of the enzyme and the receptors in health and disease.  相似文献   

20.
Uncontrollable bleeding is still a worldwide killer. In this study, we aimed to investigate a novel approach to exhibit effective haemostatic properties, which could possibly save lives in various bleeding emergencies. According to the structure‐based enzymatic design, we have engineered a novel single‐chain hybrid enzyme complex (SCHEC), COX‐1‐10aa‐TXAS. We linked the C‐terminus of cyclooxygenase‐1 (COX‐1) to the N‐terminus of the thromboxane A2 (TXA2) synthase (TXAS), through a 10‐amino acid residue linker. This recombinant COX‐1‐10aa‐TXAS can effectively pass COX‐1–derived intermediate prostaglandin (PG) H2 (PGH2) to the active site of TXAS, resulting in an effective chain reaction property to produce the haemostatic prostanoid, TXA2, rapidly. Advantageously, COX‐1‐10aa‐TXAS constrains the production of other pro‐bleeding prostanoids, such as prostacyclin (PGI2) and prostaglandin E2 (PGE2), through reducing the common substrate, PGH2 being passed to synthases which produce aforementioned prostanoids. Therefore, based on these multiple properties, this novel COX‐1‐10aa‐TXAS indicated a powerful anti‐bleeding ability, which could be used to treat a variety of bleeding situations and could even be useful for bleeding prone situations, including nonsteroidal anti‐inflammatory drugs (NSAIDs)‐resulted TXA2‐deficient and PGI2‐mediated bleeding disorders. This novel SCHEC has a great potential to be developed into a biological haemostatic agent to treat severe haemorrhage emergencies, which will prevent the complications of blood loss and save lives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号