首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Major histocompatibility complex (MHC) class I is a major host defense mechanism against viral infections such as type 16 and type 18 of the human papillomavirus (HPV). Here, we found that the E6 oncogene from HPV16, but not HPV18, suppressed MHC I expression. Ectopic expression of HPV16E6 in HeLa cells, which are infected with HPV18, suppressed MHC I expression, and that knockdown by antisense or siRNA of the HPV16E6 strongly enhanced MHC I expression in Caski cells, which are infected with HPV18, but not HPV16. The expression of HPV16E6 strongly enhanced cellular resistance to cytotoxic T lymphocytes (CTLs)-mediated lytic activity, and knockdown of HPV16E6 by antisense had the opposite effect. The regulation of HPV16E6-mediated MHC I suppression might be through the regulation of lymphotoxin (LT) and its receptor, LTβR. In addition, cells from the spleen and liver of LTα- or LTβR-deficient mice showed increased MHC I expression. Overall, these results demonstrated that the E6 oncogene of HPV16 might play an important role in cell transformation and cancer development through LT-mediated MHC I downregulation in humans.  相似文献   

3.
UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) is an important epigenetic regulator that plays a part in DNA methylation, protein methylation and ubiquitination. It is also frequently overexpressed in many types of cancers, including cervical cancer, which is caused by human papillomavirus (HPV). In this study, we showed that UHRF1 was up-regulated in HPV oncogene E7 expressing cells and HPV-positive cervical cancer cells. We demonstrated that UHRF1 down-regulated the expression of UBE2L6 gene that encodes the ISG15-conjugating enzyme UbcH8. Overexpression of UHRF1 reduced UBE2L6 while knockdown UHRF1 elevated the expression of UBE2L6. We showed that UHRF1 regulated UBE2L6 gene by promoter hypermethylation in cervical cancer cells. Consistent with the functions of UHRF1, restored expression of UbcH8 induced apoptosis. These findings establish UBE2L6 as a novel target of UHRF1 that regulates the apoptosis function of UHRF1. Our studies suggest that UHRF1/ UbcH8 can be manipulated for therapy in cervical cancer.  相似文献   

4.
The simultaneous expression of human papillomavirus type 16 (HPV16) E6 and E7 oncogenes is pivotal for malignant transformation and maintenance of malignant phenotypes. Silencing these oncogenes is considered to be applicable in molecular therapies of human cervical cancer. However, it remains to be determined whether HPV16 E6 and E7 could be both silenced to obtain most efficient antitumor activity by using RNA interference (RNAi) technology. Herein, we designed a small interfering RNA (siRNA) targeting HPV16-E7 region to degrade either E6, or truncated E6 (E6*) and E7 mRNAs and to simultaneously knockdown both E6 and E7 expression. Firstly, the sequence targeting HPV16-E7 region was inserted into the shRNA packing vector pSIREN-DNR, yielding pSIREN-16E7 to stably express corresponding shRNA. HPV16-transformed SiHa and CaSki cells were used as a model system; RT-PCR, Western Blotting, MTT assay, TUNEL staining, Annexin V apoptosis assay and flow cytometry were applied to examine the effects of pSIREN-16E7. Our results indicated that HPV16-E7 specific shRNA (16E7-shRNA) induced selective degradation of E6 and E7 mRNAs and proteins. E6 silencing induced accumulation of cellular p53 and p21. In contrast, E7 silencing induced hypophosphorylation of retinoblastoma (Rb) protein. The loss of E6 and E7 reduced cell growth and ultimately resulted in massive apoptotic cell death selectively in HPV-positive cancer cells, compared with the HPV-negative ones. We demonstrated that 16E7-shRNA can induce simultaneous E6 and E7 suppression and lead to striking apoptosis in HPV16-related cancer cells by activating cellular p53, p21 and Rb. Therefore, RNAi using E7 shRNA may have the gene-specific therapy potential for HPV16-related cancers.  相似文献   

5.
In most cervical cancer cells, p53 and Rb are disrupted by human papillomaviruses (HPVs) E6 and E7, respectively. Restoration of p53 or Rb function by blocking E6/p53 or E7/Rb pathway might be a potential therapeutic purpose for these cancer cells. Treatment with sodium arsenite (SA) resulted in significant repression of E6 and E7 mRNA levels in SiHa cells. After E6 and E7 repression, p53 was dramatically induced and accumulated in cellular nuclei and Rb was also induced. Two p53-responsive genes, p21(waf1/cip1) and mdm2, were induced after SA treatment. Furthermore, SA also reduced the expressions of Cdc25A and cyclin B, blocked cell cycle progression at G2/M phase, and induced apoptosis in SiHa cells. SA-induced apoptosis was greatly reduced by expression of a dominant-negative mutated p53. In this study, we have first demonstrated that SA did repress E6 and E7 oncogenes, restore the p53 tumor suppressor pathway and induce apoptosis in SiHa cells. Therefore, it would be a potential strategy to promote SA as therapeutic purpose for HPV-positive cancer cells.  相似文献   

6.
Papillomaviruses (HPVs) are a major cause of human disease, and are responsible for approximately half a million cases of cervical cancer each year. HPVs also cause genital warts, and are the most common sexually transmitted disease in many countries. Despite their importance, there are currently no specific antivirals that are active against HPVs. Papillomavirus protein function is mediated largely by protein-protein interactions, which are difficult to inhibit using conventional approaches. To circumvent these problems, we have prepared an scFv library, and have used this to isolate high-affinity binding molecules that may stearically hinder the association of E6 with p53 and prevent E6-mediated p53 degradation in cervical cancer cells. One of the molecules isolated from the library (GTE6-1), had an affinity for 16E6 of 60nM, and bound within the first zinc finger of the protein. GTE6-1 was able to associate with non-denatured E6 following expression in mammalian cells and could inhibit E6-mediated p53 degradation in in vitro assays. E6-mediated p53 degradation is essential for the continuous growth of cervical cancer cells caused by HPV16. To examine the potential of GTE6-1 as an inhibitor of E6 function in such cells, the molecule was expressed in scFv, diabody and triabody formats in a number of cell lines that are driven to proliferate by the HPV16 oncogenes E6 and E7, including the cervical cancer cell line SiHa. In contrast to small E6-binding peptides containing the ELLG E6-binding motif, GTE6-1 expression lead to changes in nuclear structure, the appearance of apoptosis markers, and an elevation in the levels of p53. No effects were seen with a control scFv molecule, or when GTE6-1 was expressed in cells that are driven to proliferate by simian virus 40 (SV40) T-antigen. Given the accessibility of HPV-associated lesions to topical therapy, our results suggest that large interfering molecules such as intrabodies may be useful inhibitors of viral protein-protein interactions and be particularly appropriate for the treatment of HPV-associated disease.  相似文献   

7.
The tumor necrosis factor (TNF) can induce apoptosis in many cells including MCF-7 cells. To identify the genes responsible for TNF-induced apoptosis, we generated a series of TNF-resistant MCF-7 cell lines by employing retrovirus insertion-mediated random mutagenesis. In one of the resistant lines, gelsolin was found to be disrupted by viral insertion. Exogenous expression of gelsolin in this mutant cell line (Gelmut) restored the sensitivity to TNF-induced cell death and knock-down of gelsolin by siRNA conferred MCF-7 cells with resistance to TNF, indicating that gelsolin is required for TNF-induced apoptosis. Interestingly, the resistance of Gelmut cells to apoptosis induction is selective to TNF, since Gelmut and wild-type cells showed similar sensitivity to other death stimuli that were tested. Furthermore, TNF-induced ROS production in Gelmut cells was significantly decreased, demonstrating that gelsolin-mediated ROS generation plays a crucial role in TNF-induced apoptosis in MCF-7 cells. Importantly, caspase-mediated gelsolin cleavage is dispensable for TNF-triggered ROS production and subsequent apoptosis of MCF-7 cells. Our study thus provides genetic evidence linking gelsolin-mediated ROS production to TNF-induced cell death.  相似文献   

8.
Tumor cells utilize preferably glucose for energy production. They accomplish cellular glucose uptake in part through Na+-coupled glucose transport mediated by SGLT1 (SLC5A1). This study explored the possibility that the human papillomavirus 18 E6 protein HPV18 E6 (E6) participates in the stimulation of SGLT1 activity. E6 is one of the two major oncoproteins of high-risk human papillomaviruses, which are the causative agent for cervical carcinoma. According to Western blotting, SGLT1 is expressed in the HPV18-positive cervical carcinoma cell line HeLa. To explore whether E6 affects SGLT1 activity, SGLT1 was expressed in Xenopus oocytes with and without E6 and electrogenic glucose transport determined by dual electrode voltage clamp. In SGLT1-expressing oocytes, but not in oocytes injected with water or expressing E6 alone, glucose triggered a current (Ig). Ig was significantly increased by coexpression of E6 but not by coexpression of E2. According to chemiluminescence and confocal microscopy, coexpression of E6 significantly increased the SGLT1 protein abundance in the cell membrane. The decay of Ig following inhibition of carrier insertion by Brefeldine A (5 μM) was not significantly affected E6 coexpression. Accrodingly, E6 was not effective by increasing carrier protein stability in the membrane. In conclusion, HPV18 E6 oncoprotein participates in the upregulation of SGLT1.  相似文献   

9.
10.
11.
Cervical cancer is the second most common malignant tumor among women worldwide. The initiating event of cervical cancer is the infection with certain types of human papillomavirus (HPV). Interestingly, viral oncogene expression is necessary but not per se sufficient to promote cervical cancer and other factors are involved in neoplastic progression. Thus, major research efforts should be focused to identify novel co-carcinogenic factors and to understand the mechanisms played into tumor development. To reach this goal, proteomics strategies are powerful tools and a number of studies performed by following this approach have contributed to unravel the interplay between viral infection and protein dysfunction that ultimately results in cancer. The present review summarizes the most relevant findings obtained by applying proteomics technologies to both cell culture models and human tissue specimens. The results suggest that viral oncogenes selectively interact with a subset of intracellular proteins mainly involved in apoptosis resistance, cell growth and differentiation and cell transformation.  相似文献   

12.
To evaluate the effect of HPV16 E6/E7 on drug sensitivity, primary human OSE cells were infected with HPV16 E6/E7 expressing retrovirus and then exposed to chemotherapeutic agents. Apoptosis induced by mitomycin C was dose-dependent in both primary OSE and E6E7/OSE cells. E6E7/OSE cells were more sensitive to mitomycin C than parental OSE cells. HPV16 E6/E7 also sensitized OSE cells to 5-FU and its derivative 5-FUdR, but only at low doses. This phenomenon was also observed in cervical cancer cells and was independent of thymidylate synthase, a target of thymine and thymidine analogues. We conclude that HPV16 E6/E7 specifically modulates the activity of 5-FU and 5-FUdR, and confers OSE cells hypersensitivity to low-dose but not high-dose 5-FU and 5-FUdR. Molecular analysis indicates that induction of p53 and p21, and suppression of pRB are associated with apoptosis induced by 5-FUdR and may partly explain the hypersensitivity of E6E7/OSE cells to low-dose 5-FUdR.  相似文献   

13.
A virally-encoded oncoprotein (E7 from human papillomavirus 16, involved in the initiation of cell transformation) was the target for RNA aptamer development by the process of systematic evolution of ligands by exponential enrichment (SELEX). A number of aptamers were identified, one of which was shown to inhibit the interaction between E7 and its major binding partner, pRb. Aptamers with very similar sequences (more than 92% similarity in the random regions) did not share this activity. This study demonstrates the potential of aptamers to be highly specific, with small differences in aptamer sequence having profound effects on function.  相似文献   

14.
Summary Availability of a standard human melanocyte cell line with unlimited growth potential and otherwise normal melanocytic properties will greatly facilitate research in melanocyte biology and in vitro studies on the etiology of pigmentary disorders and melanoma. Using a retroviral vector, E6 and E7 open reading frames of human papilloma virus type 16 (HPV 16) have been introduced into cultured normal human melanocytes. Cells selected by increased resistance to geneticin conveyed by the vector and expressing E6E7 mRNA have been cloned to ensure genetic homogeneity. Since their establishment as primary cells, cloned PIG1 cells have undergone more than twice the amount of population doublings of senescent parental cells. Moreover, in passage numbers when parental cells had become senescent, proliferation of clonal cells was retained at levels exceeding those of normal human melanocytes in third passage by 100%. Further characterization has revealed that the cells remain dependent on tetradecanoyl phorbol 13-acetate (TPA) for growth and do not proliferate in soft agar nor form tumors in nude mice. The antigenic profile of the cells was slightly altered as compared to parental cells, but was incomparable to that of M14 melanoma cells. Importantly, PIG1 cells contain more melanin pigment than parental cells.  相似文献   

15.
Interaction of oncogenic papillomavirus E6 proteins with fibulin-1   总被引:5,自引:0,他引:5  
Human papillomavirus (HPV) infection is the primary risk factor for the development of cervical cancer. The papillomavirus E6 gene is essential for virus-induced cellular transformation and the viral life cycle. Important insight into the mechanism of E6 function came from the discovery that cancer-related HPV E6 proteins promote the degradation of the tumor suppressor p53. However, mounting evidence indicates that interaction with p53 does not mediate all E6 activities. To explore the p53-independent functions of E6, we performed a yeast two-hybrid screen and identified fibulin-1 as an E6 binding protein. Fibulin-1 is a calcium-binding plasma and extracellular matrix protein that has been implicated in cellular transformation and tumor invasion. The interaction between E6 and fibulin-1 was demonstrated by both in vitro and in vivo assays. Fibulin-1 is associated specifically with cancer-related HPV E6s and the transforming bovine papillomavirus type 1 E6. Significantly, overexpression of fibulin-1 specifically inhibited E6-mediated transformation. These results suggest that fibulin-1 plays an important role in the biological activities of E6.  相似文献   

16.
Cervical cancer is a leading cause of cancer-related deaths among women in India.Human papillomavirus (HPV) infection is the causative agent of cervical cancer; and infection with the high-risk genotypes, predominantly HPV16 and 18,is the biggest risk factor.Vaccines targeting HPV16 and 18 have been found to confer protection in large- scale clinical trials.HPV genotyping has traditionally been carried out to screen the population "at risk" using indirect methods based on polymerase chain reaction (PCR) using consensus primers combined with various DNA hybridization techniques,and often followed by the sequencing of candidate products.Recently,a high-throughput and direct method based on DNA sequencing has been described for HPV genotyping using multiplex pyrosequencing. We present a pilot study on HPV genotyping of cervical cancer and non-malignant cervical samples using multiplex pyrosequencing.Using genomic DNA from cell lines,cervical biopsies,surgical tissues or formalin-fixed,paraffin- embedded tissue samples,we could successfully resolve 6 different HPV types out of the 7 tested,with their prevalence found to be in agreement with earlier reports. We also resolved coinfections with two different HPV types in several samples. An HPV16 genotype with a specific and recurrent sequence variation was observed in 8 cancer samples and one non-malignant sample. We find this technique eminently suited for high-throughput applications,which can be easily extended to large sample cohorts to determine a robust benchmark for HPV genotypes prevalent in India.  相似文献   

17.
目的探讨女性HPV DNA检测在宫颈癌防治方面的意义。方法应用DNA杂交技术对2 761例妇科门诊就诊者基因分型检测。结果 2 761例样本中,HPV感染有768例,阳性率27.82%,HPV感染人次972人次。检测高危型HPV(16,18,31,33,35,39,45,51,52,56,58,59,68)813人次,占感染总人次的83.64%;检出低危型HPV(6,11,42,43,44)73人次,占感染总人次7.51%;中国人群常见型HPV(53,66,CP8304)86人次,占感染总人次的8.85%。165例样本中包含了25种亚型的感染。结论 DNA杂交技术检测HPV基因分型,可一次检测多种亚型,有利于对HPV多重感染的诊断和宫颈癌的防治,可作为宫颈癌筛查的手段。  相似文献   

18.
Infection with human papillomaviruses (HPV) is strongly associated with the development of cervical cancer. The HPV E6 gene is essential for the oncogenic potential of HPV. E6 induces cell proliferation and apoptosis in cervical cancer precursor lesions and in cultured cells. Although induction of telomerase and inactivation of the tumor suppressor p53 play important roles for E6 to promote cell growth, the molecular basis of E6-induced apoptosis is poorly understood. While it is expected that inactivation of p53 by E6 should lead to a reduction in cellular apoptosis, numerous studies demonstrated that E6 could in fact sensitize cells to apoptosis. Understanding the mechanism of p53-independent apoptosis is of clinical significance. In the present study, we investigated the mechanism of apoptosis during E6-mediated immortalization of primary human mammary epithelial cell (HMEC). E6 by itself is sufficient to immortalize HMECs and is believed to do so at least in part by activation of telomerase. During the process of E6-mediated HMEC immortalization, an increased apoptosis was observed. Mutational analysis demonstrated that E6-induced apoptosis was distinct from its ability to promote cell proliferation, activate telomerase, or degrade p53. While the known pro-apoptotic E6 target proteins such as Bak or c-Myc did not appear to play an important role, down-regulation of the cyclin-dependent kinase inhibitor p21Waf1/Cip1 (p21) by E6 correlated with its ability to induce apoptosis. Ectopic expression of p21 inhibited E6-induced apoptosis. Moreover, a p53 degradation defective E6 mutant was competent for p21 down-regulation and apoptosis induction. The anti-apoptotic function of p21 may not simply be the result of p21-induced growth arrest. These studies demonstrate an E6 activity to down-regulate p21 that is important for induction of apoptosis.  相似文献   

19.
Tumour necrosis factor-alpha (TNF-alpha)-induced intestinal epithelial cell apoptosis may contribute to mucosal injury in inflammatory bowel disease. Inhibition of TNF-alpha-induced apoptosis, using specific caspase inhibitors could, therefore, be of benefit in the treatment of disease. In vitro, CaCo-2 colonic epithelial cells are refractory to apoptosis induced by TNF-alpha alone; however, TNF-alpha can act synergistically with the short-chain fatty acid (SCFA) and colonic fermentation product, butyrate, to promote apoptosis. TNF-alpha/butyrate-induced apoptosis was characterised by nuclear condensation and fragmentation and caspase-3 activation. Inhibitors of caspase-8 (z-IETD.fmk) and caspase-10 (z-AEVD.fmk) significantly reduced TNF-alpha/butyrate-induced apoptosis, based on nuclear morphology and terminal deoxynucleotide transferase-mediated dUTP-biotin nick-end labelling (TUNEL), although caspase inhibition was associated with a significant increase in cells demonstrating atypical nuclear condensation. Inclusion of atypical cells in calculations of total cell death, still demonstrated that z-IETD.fmk and z-AEVD.fmk (in combination) significantly reduced cell death. Reduction in cell death was associated with maintenance of viable cell number. Transmembrane resistance was also used a measure of the ability of caspase inhibitors to prevent TNF-alpha/butyrate-mediated damage to epithelial monolayers. TNF-alpha/butyrate resulted in a significant fall in transmembrane resistance, which was prevented by pre-treatment with z-IETD.fmk, but not z-AEVD.fmk. In conclusion, synthetic caspase inhibitors can reduce the apoptotic response of CaCo-2 colonic epithelial cells to TNF-alpha/butyrate, improve the maintenance of viable cell numbers and block loss of transmembrane resistance. We hypothesise that caspase inhibition could be a useful therapeutic goal in the treatment of inflammatory bowel conditions, such as ulcerative colitis.  相似文献   

20.
CD95-induced apoptosis is an important regulatory mechanism in T cells and this complex signalling pathway is now thought to include the protein kinase RIP. Although, RIP is best known for its role in TNF signalling and NF-kappaB activation, it contains a death domain and it is capable of causing apoptosis upon cleavage. In the present study, the role of RIP in CD95-induced apoptosis and its inter-relationship with the caspase cascade was investigated. Studies were performed on both a RIP-/- T cell line and peripheral T lymphocytes, where RIP was degraded through the addition of geldanamycin. Apoptosis was induced by membrane CD95-L, thought to be the most physiological relevant form of CD95-L. Results showed that RIP-/- cells had a decreased susceptibility to death, thus confirming a role for RIP in CD95-induced apoptosis. Furthermore, it was confirmed that RIP is cleaved upon CD95-L stimulation, a process that can be inhibited by Z-VAD. However, only partial inhibition in peripheral T lymphocytes by Z-VAD was observed, suggesting a potential caspase-independent processing of RIP. Studies performed on the activity of effector caspase 3 and on the initiator caspases 2, 8, and 9 revealed that, in the absence of RIP, the activity of these caspases decreases, indicating that RIP-associated apoptosis is caspase-dependent. Hence, these studies support a caspase-related role for RIP in CD95-induced T apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号