首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lipids that are labeled with the NBD (7-nitrobenz-2-oxa-1,3-diazol-4-yl) group are widely used as fluorescent analogues of native lipids in biological and model membranes to monitor a variety of processes. The NBD group of acyl chain labeled NBD lipids is known to loop up to the membrane interface in fluid phase membranes. However, the organization of these lipids in gel phase membranes is not resolved. In this paper, we monitored the influence of the membrane phase state on the looping up behavior of acyl chain labeled NBD lipids utilizing red edge excitation shift (REES) and other sensitive fluorescence approaches. Interestingly, our REES results indicate that NBD group of lipids, which are labeled at the fatty acyl region, resides in the more hydrophobic region in gel phase membranes, and complete looping of the NBD group occurs only in the fluid phase. This is supported by other fluorescence parameters such as polarization and lifetime. Taken together, our results demonstrate that membrane packing, which depends on temperature and the phase state of the membrane, significantly affects the localization of acyl chain labeled NBD lipids. In view of the wide ranging use of NBD-labeled lipids in cell and membrane biology, these results could have potentially important implications in future studies involving these lipids as tracers.  相似文献   

2.
We have previously shown that two synthetic antimicrobial peptides with alternating α- and β-amino acid residues, designated simply as α/β-peptide I and α/β-peptide II, had toxicity toward bacteria and affected the morphology of bacterial membranes in a manner that correlated with their effects on liposomes with lipid composition similar to those of the bacteria. In the present study we account for the weak effects of α/β-peptide I on liposomes or bacteria whose membranes are enriched in phosphatidylethanolamine (PE) and why such membranes are particularly susceptible to damage by α/β-peptide II. The α/β-peptide II has marked effects on unilamellar vesicles enriched in PE causing vesicle aggregation and loss of their internal aqueous contents. The molecular basis of these effects is the ability of α/β-peptide II to induce phase segregation of anionic and zwitterionic lipids as shown by fluorescence and differential scanning calorimetry. This phase separation could result in the formation of defects through which polar materials could pass across the membrane as well as form a PE-rich membrane domain that would not be a stable bilayer. α/β-Peptide II is more effective in this regard because, unlike α/β-peptide I, it has a string of two or three adjacent cationic residues that can interact with anionic lipids. Although α/β-peptide I can destroy membrane barriers by converting lamellar to non-lamellar structures, it does so only weakly with unilamellar vesicles or with bacteria because it is not as efficient in the aggregation of these membranes leading to the bilayer-bilayer contacts required for this phase conversion. This study provides further understanding of why α/β-peptide II is more toxic to micro-organisms with a high PE content in their membrane as well as for the lack of toxicity of α/β-peptide I with these cells, emphasizing the potential importance of the lipid composition of the cell surface in determining selective toxicity of anti-microbial agents.  相似文献   

3.
Anammox bacteria that are capable of anaerobically oxidizing ammonium (anammox) with nitrite to nitrogen gas produce unique membrane phospholipids that comprise hydrocarbon chains with three or five linearly condensed cyclobutane rings. To gain insight into the biophysical properties of these ‘ladderane’ lipids, we have isolated a ladderane phosphatidylcholine and a mixed ladderane phosphatidylethanolamine/phosphatidylglycerol lipid fraction and reconstituted these lipids in different membrane environments. Langmuir monolayer experiments demonstrated that the purified ladderane phospholipids form fluid films with a relatively high lipid packing density. Fluid-like behavior was also observed for ladderane lipids in bilayer systems as monitored by cryo-electron microscopy on large unilamellar vesicles (LUVs) and epi-fluorescence microscopy on giant unilamellar vesicles (GUVs). Analysis of the LUVs by fluorescence depolarization revealed a relatively high acyl chain ordering in the hydrophobic region of the ladderane phospholipids. Micropipette aspiration experiments were applied to study the mechanical properties of ladderane containing lipid bilayers and showed a relatively high apparent area compressibility modulus for ladderane containing GUVs, thereby confirming the fluid and acyl chain ordered characteristics of these lipids. The biophysical findings in this study support the previous postulation that dense membranes in anammox cells protect these microbes against the highly toxic and volatile anammox metabolites.  相似文献   

4.
We have previously shown that the PEGylated LPD (liposome-polycation-DNA) nanoparticles were highly efficient in delivering siRNA to the tumor with low liver uptake. Its mechanism of evading the reticuloendothelial system (RES) is reported here. In LPD, nucleic acids were condensed with protamine into a compact core, which was then coated by two cationic lipid bilayers with the inner bilayer stabilized by charge-charge interaction (also called the supported bilayer). Finally, a detergent-like molecule, polyethylene glycol (PEG)-phospholipid is post-inserted into the lipid bilayer to modify the surface of LPD. The dynamic light scattering (DLS) data showed that LPD had improved stability compared to cationic liposomes after incubation with a high concentration of DSPE-PEG2000, which is known to disrupt the bilayer. LPD prepared with a multivalent cationic lipid, DSGLA, had enhanced stability compared to those containing DOTAP, a monovalent cationic lipid, suggesting that stronger charge-charge interaction in the supported bilayer contributed to a higher stability. Distinct nanoparticle structure was found in the PEGylated LPD by transmission electron microscopy, while the cationic liposomes were transformed into tubular micelles. Size exclusion chromatography data showed that approximately 60% of the total cationic lipids, which were located in the outer bilayer of LPD, were stripped off during the PEGylation; and about 20% of the input DSPE-PEG2000 was incorporated into the inner bilayer with about 10.6 mol% of DSPE-PEG2000 presented on the particle surface. This led to complete charge shielding, low liver sinusoidal uptake, and 32.5% injected dose delivered to the NCI-H460 tumor in a xenograft model.  相似文献   

5.
In vivo oxidation of glycerophospholipid generates a variety of products including truncated oxidized phospholipids (tOx-PLs). The fatty acyl chains at the sn-2 position of tOx-PLs are shorter in length than the parent non-oxidized phospholipids and contain a polar functional group(s) at the end. The effect of oxidatively modified sn-2 fatty acyl chain on the physicochemical properties of tOx-PLs aggregates has not been addressed in detail, although there are few reports that modified fatty acyl chain primarily determines the biological activities of tOx-PLs. In this study we have compared the properties of four closely related tOx-PLs which differ only in the type of modified fatty acyl chain present at the sn-2 position: 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC), 1-palmitoyl-2-(9′-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PoxnoPC), 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC), and 1-palmitoyl-2-(5′-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC). Aggregates of individual tOx-PL in aqueous solution were characterized by fluorescence spectroscopy, size exclusion chromatography, native polyacrylamide and agarose gel electrophoresis. The data suggest that aggregates of four closely related tOx-PLs form micelle-like particles of considerably different properties. Our result provides first direct evidence that because of the specific chemical composition of the sn-2 fatty acyl chain aggregates of particular tOx-PL possess a distinctive set of physicochemical properties.  相似文献   

6.
The structural complexity of the cell membrane makes analysis of membrane processes in living cells, as compared to model membrane systems, highly challenging. Living cells decorated with surface-attached colorimetric/fluorescent polydiacetylene patches might constitute an effective platform for analysis and visualization of membrane processes in situ. This work examines the biological and chemical consequences of plasma membrane labeling of promyelocytic leukemia cells with polydiacetylene. We show that the extent of fusion between incubated lipid/diacetylene vesicles and the plasma membrane is closely dependent upon the lipid composition of both vesicles and cell membrane. In particular, we find that cholesterol presence increased bilayer fusion between the chromatic vesicles and the plasma membrane, suggesting that membrane organization plays a significant role in the fusion process. Spectroscopic data and physiological assays show that decorating the cell membrane with the lipid/diacetylene patches reduces the overall lateral diffusion within the membrane bilayer, however polydiacetylene labeling does not adversely affect important cellular metabolic pathways. Overall, the experimental data indicate that the viability and physiological integrity of the surface-engineered cells are retained, making possible utilization of the platform for studying membrane processes in living cells. We demonstrate the use of the polydiacetylene-labeled cells for visualizing and discriminating among different membrane interaction mechanisms of pharmaceutical compounds.  相似文献   

7.
Lu X  Xu Y  Zhang F  Shin YK 《FEBS letters》2006,580(9):2238-2246
Synaptic membrane fusion, which is necessary for neurotransmitter release, may be mediated by SNAREs and regulated by synaptotagmin (Syt) and Ca(2+). Fusion of liposomes mediated by reconstituted SNAREs produces full fusion and hemifusion, a membrane structure in which outer leaflets are mixed but the inner leaflets remain intact. Here, using the liposome fusion assay, it is shown that Syt promoted both hemifusion and full fusion in a Ca(2+)-dependent manner. Syt.Ca(2+) increased hemifusion more than full fusion, modulating the ratio of hemifusion to full fusion. Unlike the case of neuronal SNAREs, stimulation of fusion by Syt.Ca(2+) was not seen for other SNAREs involved in trafficking in yeast, indicating that the Syt.Ca(2+) stimulation was SNARE-specific. We constructed hybrid SNAREs in which transmembrane domains were swapped between neuronal and yeast SNAREs. With these hybrid SNAREs, we demonstrated that the interaction between the SNARE motifs of neuronal proteins and Syt.Ca(2+) was required for the stimulation of fusion.  相似文献   

8.
9.
Using x-ray diffraction and NMR spectroscopy, we present structural and material properties of phosphatidylserine (PS) bilayers that may account for the well documented implications of PS headgroups in cell activity. At 30 degrees C, the 18-carbon monounsaturated DOPS in the fluid state has a cross-sectional area of 65.3 A(2) which is remarkably smaller than the area 72.5 A(2) of the DOPC analog, despite the extra electrostatic repulsion expected for charged PS headgroups. Similarly, at 20 degrees C, the 14-carbon disaturated DMPS in the gel phase has an area of 40.8 A(2) vs. 48.1 A(2) for DMPC. This condensation of area suggests an extra attractive interaction, perhaps hydrogen bonding, between PS headgroups. Unlike zwitterionic lipids, stacks of PS bilayers swell indefinitely as water is added. Data obtained for osmotic pressure versus interbilayer water spacing for fluid phase DOPS are well fit by electrostatic interactions calculated for the Gouy-Chapman regime. It is shown that the electrostatic interactions completely dominate the fluctuational pressure. Nevertheless, the x-ray data definitively exhibit the effects of fluctuations in fluid phase DOPS. From our measurements of fluctuations, we obtain the product of the bilayer bending modulus K(C) and the smectic compression modulus B. At the same interbilayer separation, the interbilayer fluctuations are smaller in DOPS than for DOPC, showing that B and/or K(C) are larger. Complementing the x-ray data, (31)P-chemical shift anisotropy measured by NMR suggest that the DOPS headgroups are less sensitive to osmotic pressure than DOPC headgroups, which is consistent with a larger K(C) in DOPS. Quadrupolar splittings for D(2)O decay less rapidly with increasing water content for DOPS than for DOPC, indicating greater perturbation of interlamellar water and suggesting a greater interlamellar hydration force in DOPS. Our comparisons between bilayers of PS and PC lipids with the same chains and the same temperature enable us to focus on the effects of these headgroups on bilayer properties.  相似文献   

10.
Reason for post-kala-azar dermal leishmaniasis (PKDL) is yet to be established. Earlier it was observed that morphology and biochemical properties of host peroxisomes were impaired during Leishmania infection. As peroxisome is known to be involved in various metabolic pathways to monitor normal function of the host cells, it is essential that Leishmania-induced dysfunction of this organelle should totally be repaired during treatment of visceral leishmaniasis (VL). In this paper it has been shown that resumption of normal peroxisomal function could not be attained when one of the existing drugs sodium antimony gluconate (SAG) was used for chemotherapy against VL. Although Leishmania parasite was found to be completely eliminated from host liver and spleen after SAG treatment, normal activities of peroxisomal catalase and superoxide dismutase could not be restored. Also unusual peptides were found to be present due to abnormal proteolytic cleavage of proteins. It is proposed that peroxisomal disorder which exists even after successful chemotherapy of VL may be figured out as one of the possible reasons to develop PKDL. It may also be pointed out that continued effect of peroxisomal disorder even after complete treatment of this parasitic disease may also lead to genetic disorders not yet been explored in post-kala-azar patients.  相似文献   

11.
Biologically important peptides such as the Alzheimer peptide Abeta(1-40) display a reversible random coil <==>beta-structure transition at anionic membrane surfaces. In contrast to the well-studied random coil left arrow over right arrow alpha-helix transition of amphipathic peptides, there is a dearth on information on the thermodynamic and kinetic parameters of the random coil left arrow over right arrow beta-structure transition. Here, we present a new method to quantitatively analyze the thermodynamic parameters of the membrane-induced beta-structure formation. We have used the model peptide (KIGAKI)(3) and eight analogues in which two adjacent amino acids were substituted by their d-enantiomers. The positions of the d,d pairs were shifted systematically along the three identical segments of the peptide chain. The beta-structure content of the peptides was measured in solution and when bound to anionic lipid membranes with circular dichroism spectroscopy. The thermodynamic binding parameters were determined with isothermal titration calorimetry and the binding isotherms were analysed by combining a surface partition equilibrium with the Gouy-Chapman theory. The thermodynamic parameters were found to be linearly correlated with the extent of beta-structure formation. beta-Structure formation at the membrane surface is characterized by an enthalpy change of DeltaH(beta)=-0.23 kcal/mol per residue, an entropy change of DeltaS(beta)=-0.24 cal/mol K residue and a free energy change of DeltaG(beta)=-0.15 kcal/mol residue. An increase in temperature induces an unfolding of beta-structure. The residual free energy of membrane-induced beta-structure formation is close to that of membrane-induced alpha-helix formation.  相似文献   

12.
Lipid asymmetry is a ubiquitous property of the lipid bilayers in cellular membranes and its maintenance and loss play important roles in cell physiology, such as blood coagulation and apoptosis. The resulting exposure of phosphatidylserine on the outer surface of the plasma membrane has been suggested to be caused by a specific membrane enzyme, scramblase, which catalyzes phospholipid flip-flop. Despite extensive research the role of scramblase(s) in apoptosis has remained elusive. Here, we show that phospholipid flip-flop is efficiently enhanced in liposomes by oxidatively modified phosphatidylcholines. A combination of fluorescence spectroscopy and molecular dynamics simulations reveal that the mechanistic basis for this property of oxidized phosphatidylcholines is due to major changes imposed by the oxidized phospholipids on the biophysical properties of lipid bilayers, resulting in a fast cross bilayer diffusion of membrane phospholipids and loss of lipid asymmetry, requiring no scramblase protein.  相似文献   

13.
We have examined the kinetics of the adsorption of melittin, a secondary amphipathic peptide extracted from bee venom, on lipid membranes using three independent and complementary approaches. We probed (i) the change in the polarity of the 19Trp of the peptide upon binding, (ii) the insertion of this residue in the apolar core of the membrane, measuring the 19Trp-fluorescence quenching by bromine atoms attached on lipid acyl chains, and (iii) the folding of the peptide, by circular dichroism (CD). We report a tight coupling of the insertion of the peptide with its folding as an α-helix. For all the investigated membrane systems (cholesterol-containing, phosphoglycerol-containing, and pure phosphocholine bilayers), the decrease in the polarity of 19Trp was found to be significantly faster than the increase in the helical content of melittin. Therefore, from a kinetics point of view, the formation of the α-helix is a consequence of the insertion of melittin. The rate of melittin folding was found to be influenced by the lipid composition of the bilayer and we propose that this was achieved by the modulation of the kinetics of insertion. The study reports a clear example of the coupling existing between protein penetration and folding, an interconnection that must be considered in the general scheme of membrane protein folding.  相似文献   

14.
N-Acyl phosphatidylethanolamines are negatively charged phospholipids, which are naturally occurring albeit at low abundance. In this study, we have examined how the amide-linked acyl chain affected the membrane behavior of the N-acyl-1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine (N-acyl-POPE) or N-acyl-dipalmitoyl-sn-glycero-3-phosphatidylethanolamine (N-acyl-DPPE), and how the molecules interacted with cholesterol. The gel → liquid crystalline transition temperature of sonicated N-acyl phosphatidylethanolamine vesicles in water correlated positively with the number of palmitic acyl chains in the molecules. Based on diphenylhexatriene steady state anisotropy measurements, the presence of 33 mol% cholesterol in the membranes removed the phase transition from N-oleoyl-POPE bilayers, but failed to completely remove it from N-palmitoyl-DPPE and N-palmitoyl-POPE bilayers, suggesting rather weak interaction of cholesterol with the N-saturated NAPEs. The rate of cholesterol desorption from mixed monolayers containing N-palmitoyl-DPPE and cholesterol (1:1 molar ratio) was much higher compared to cholesterol/DPPE binary monolayers, suggesting a weak cholesterol interaction with N-palmitoyl-DPPE also in monolayers. In bilayer membranes, both N-palmitoyl-POPE and N-palmitoyl-DPPE failed to form sterol-rich domains, and in fact appeared to displace sterol from sterol/N-palmitoyl-sphingomyelin domains. The present data provide new information about the effects of saturated NAPEs on the lateral distribution of cholesterol in NAPE-containing membranes. These findings may be of relevance to neural cells which accumulate NAPEs during stress and cell injury.  相似文献   

15.
The serotonin1A receptor is the most extensively studied member of the family of seven transmembrane domain G-protein coupled serotonin receptors. Serotonergic signaling appears to play a key role in the generation and modulation of various cognitive and behavioral functions such as sleep, mood, pain, addiction, locomotion, sexual activity, depression, anxiety, alcohol abuse, aggression and learning. Since a significant portion of the protein lies embedded in the membrane and the ligand-binding pocket is defined by the transmembrane stretches in such receptors, membrane composition and organization represent a crucial parameter in the structure-function analysis of G-protein coupled receptors. In this paper, we have monitored the role of membrane cholesterol in the ligand-binding function of the hippocampal serotonin1A receptor. Our results demonstrate that the reduction of membrane cholesterol significantly attenuates the antagonist-binding function of the serotonin1A receptor. Based on prior pharmacological knowledge regarding the requirements for the antagonist to bind the receptor, our results indicate that membrane cholesterol modulates receptor function independently of its ability to interact with G-proteins. These effects on ligand-binding function of the receptor are predominantly reversed upon cholesterol-replenishment of cholesterol-depleted membranes. When viewed in the light of our earlier results on the effect of cholesterol depletion on the serotonin1A receptor/G-protein interaction, these results comprehensively demonstrate the importance of cholesterol in the serotonin1A receptor function and form the basis for understanding lipid-protein interactions involving this important neuronal receptor.  相似文献   

16.
The binding of the antimicrobial peptides temporins B and L to supported lipid bilayer (SLB) model membranes composed of phosphatidylcholine and phosphatidylglycerol (4:1, mol/mol) caused the formation of fibrillar protrusions, visible by fluorescent microscopy of both a fluorescent lipid analog and a labeled peptide. Multicolor imaging at low peptide-to-lipid ratios (P/L < approximately 1:5) revealed an initial in-plane segregation of membrane-bound peptide and partial exclusion of lipid from the peptide-enriched areas. Subsequently, at higher P/L numerous flexible lipid fibrils were seen growing from the areas enriched in lipid. The fibrils have diameters <250 nm and lengths of up to approximately 1 mm. Fibril formation reduces the in-plane heterogeneity and results in a relatively even redistribution of bound peptide over the planar bilayer and the fibrils. Physical properties of the lipid fibrils suggest that they have a tubular structure. Our data demonstrate that the peptide-lipid interactions alone can provide a driving force for the spontaneous membrane shape transformations leading to tubule outgrowth and elongation. Further experiments revealed the importance of positive curvature strain in the tubulation process as well as the sufficient positive charge on the peptide (>/=+2). The observed membrane transformations could provide a simplified in vitro model for morphogenesis of intracellular tubular structures and intercellular connections.  相似文献   

17.
Antimicrobial peptides have raised much interest as pathogens become resistant against conventional antibiotics. We review biophysical studies that have been performed to better understand the interactions of linear amphipathic cationic peptides such as magainins, cecropins, dermaseptin, δ-lysin or melittin. The amphipathic character of these peptides and their interactions with membranes resemble the properties of detergent molecules and analogies between membrane-active peptide and detergents are presented. Several models have been suggested to explain the pore-forming, membrane-lytic and antibiotic activities of these peptides. Here we suggest that these might be ‘special cases’ within complicated phase diagrams describing the morphological plasticity of peptide/lipid supramolecular assemblies.  相似文献   

18.
Previous studies have shown that the carcinogen N-hydroxy-2-acetylaminofluorene is converted by one-electron oxidants to a free nitroxide radical which dismutates to N-acetoxy-2-acetylaminofluorene and 2-nitrosofluorene. The present study shows that the same oxidation can be achieved with horseradish peroxidase and H2O2. The free radical intermediate was detected by its ESR signal, and the yields of N-acetoxy-2-acetylaminofluorene and of 2-nitrosofluorene were determined under a number of conditions. Addition of tRNA to the reaction mixture containing N-acetoxy-N-2-acetyl[2′-3H]aminofluorene yielded tRNA-bound radioactivity; addition of guanosine yielded a reaction product which appears to be N-guanosin-8-yl)-2-acetylaminofluorene. The latter compound has previously been identified as a reaction product of N-acetoxy-2-acetylaminofluorene and guanosine. Preliminary attempts to demonstrate the formation of a nitroxide free radical or its dismutation products with rat liver mixed function oxidase systems were not successful.  相似文献   

19.
Macrophages play vital roles in inflammatory responses, and their number at sites of inflammation is strictly regulated by cell death and division. Here, we demonstrate that production of nitric oxide (NO) is a major mechanism whereby ceramide-1-phosphate (C1P) blocks apoptosis in macrophages. However, NO failed to stimulate macrophage proliferation. The prosurvival effect of C1P was blocked by inhibitors of inducible NO synthase. The antiapoptotic effect of C1P was also blocked by phosphatidylinositol 3-kinase or nuclear factor-kappa B inhibitors. Moreover, NO reversed the inhibitory effect of C1P on acid sphingomyelinase, but the prosurvival effect of C1P was independent of this action.  相似文献   

20.
We have developed a novel α-helical peptide antibiotic termed NK-2. It efficiently kills bacteria, but not human cells, by membrane destruction. This selectivity could be attributed to the different membrane lipid compositions of the target cells. To understand the mechanisms of selectivity and membrane destruction, we investigated the influence of NK-2 on the supramolecular aggregate structure, the phase transition behavior, the acyl chain fluidity, and the surface charges of phospholipids representative for the bacterial and the human cell cytoplasmic membranes. The cationic NK-2 binds to anionic phosphatidylglycerol liposomes, causing a thinning of the membrane and an increase in the phase transition temperature. However, this interaction is not solely of electrostatic but also of hydrophobic nature, indicated by an overcompensation of the Zeta potential. Whereas NK-2 has no effect on phosphatidylcholine liposomes, it enhances the fluidity of phosphatidylethanolamine acyl chains and lowers the phase transition enthalpy of the gel to liquid cristalline transition. The most dramatic effect, however, was observed for the lamellar/inverted hexagonal transition of phosphatidylethanolamine which was reduced by more than 10 °C. Thus, NK-2 promotes a negative membrane curvature which can lead to the collapse of the phosphatidylethanolamine-rich bacterial cytoplasmic membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号